
materials

Article

A Refined Simple First-Order Shear Deformation
Theory for Static Bending and Free Vibration
Analysis of Advanced Composite Plates

Hoang Nam Nguyen 1 , Tran Thi Hong 2, Pham Van Vinh 3 , Nguyen Dinh Quang 4

and Do Van Thom 3,*
1 Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics

Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; nguyenhoangnam@tdtu.edu.vn
2 Center of Excellence for Automation and Precision Mechanical Engineering, Nguyen Tat Thanh University,

Ho Chi Minh City 700000, Vietnam
3 Faculty of Mechanical Engineering, Le Quy Don Technical University, Hanoi City 100000, Vietnam
4 Institute of Technology, General Department of Defense Industry, Hanoi City 100000, Vietnam
* Correspondence: thom.dovan@lqdtu.edu.vn

Received: 29 June 2019; Accepted: 17 July 2019; Published: 26 July 2019
����������
�������

Abstract: A refined simple first-order shear deformation theory is developed to investigate the
static bending and free vibration of advanced composite plates such as functionally graded plates.
By introducing the new distribution shape function, the transverse shear strain and shear stress have
a parabolic distribution across the thickness of the plates, and they equal zero at the surfaces of
the plates. Hence, the new refined theory needs no shear correction factor. The Navier solution is
applied to investigate the static bending and free vibration of simply supported advanced composite
plates. The proposed theory shows an improvement in calculating the deflections and frequencies of
advanced composite plates. The formulation and transformation of the present theory are as simple
as the simple first-order shear deformation. The comparisons of deflection, axial stresses, transverse
shear stresses, and frequencies of the plates obtained by the proposed theory with published results
of different theories are carried out to show the efficiency and accuracy of the new theory. In addition,
some discussions on the influence of various parameters such as the power-law index, the slenderness
ratio, and the aspect ratio are carried out, which are useful for the design and testing of advanced
composite structures.
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1. Introduction

Functionally graded materials (FGMs) are a class of advanced composite materials. The mechanical
properties of FGMs change continuously over the thickness of structures. In general, FGM is made
from a mixture of ceramic and metal. In recent years, they have gained significant attention in many
engineering fields such as automotive, civil engineering, aerospace, and nuclear engineering. Hence,
due to the exotic properties of FGMs, many researchers have been captivated to investigate the bending
behaviors, free vibration, and dynamic and buckling behaviors of FGM beams, plates, and shells.
According to the literature, the analysis of FGM plates can be investigated with some different theories
such as the classical plate theory (CPT), the first-order shear deformation theory (FSDT), higher-order
shear deformation theory (HSDT), the quasi-3D theory and Carrera unified formulation (CUF).

In the CPT, transverse shear deformation is neglected, so only thin plates can be regarded by this
theory. Timoshenko et al. [1] used the CPT to analyze plates and shells. Liessa [2] applied the CPT for
the free vibration of isotropic thin rectangular plates. Javahenri et al. [3] investigated the buckling
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behavior of FGM plates under compressive loading. Mohammadi et al. [4] developed analytical
solutions based on the Levy procedure to study buckling of FGM plates. In [5], Hu and his co-authors
applied the CPT and von Karman assumptions to analyze the vibration and stability of FGM plates,
and the influences of some parametric were carried out. In the study of Ghannadpour et al. [6], the
buckling of FGM plates under thermal loadings was investigated using the finite strip method based
on the CPT. A combination of the CPT and the Rayleigh–Ritz method was used by Chakraverty et
al. [7] to analyze the vibration of plates made of FGM. In his work, the plate rested on the Winkler
elastic foundation with various boundary conditions. The influence of some parameters of elastic
foundation, boundary conditions, and geometric properties were investigated. Kowal-Michalska
and his co-authors [8] studied the bending behavior and dynamic buckling of FGM plates using the
CPT. In their investigations, the plate was subjected to a combination of thermal and mechanical
load. The effects of the neutral surface on the behavior of FGM plates were considered. Damanpack
and his colleagues [9] developed a model based on the neutral surface and the CPT to investigate
the bending behavior of FGM plates. In their work, the boundary element method was used for
numerical computation.

The FSDT developed by Mindlin [10] considered the effects of constant transverse shear
deformation, so it can be applied for both thick and thin FGM plates. Raju et al. [11] used the
finite element method based on the Mindlin plate theory to study the free vibration of thin and
moderately thick plates. Liew et al. [12] applied the Mindlin plate theory to analyze the vibration of
thick rectangular plates with different boundary conditions. The bending behaviors of FGM plates
were subjected to mechanical load in the thermal environment were investigated by Croce and his
partners [13], who used the FSDT. Kim et al. [14] used the FSDT and the Green strain tensor to develop
a four-node quasi-conforming shell element which was used to investigate the nonlinear bending
behavior of FGM plates and shells. The nonlinear vibration of FGM plates under initial in-plane
compressive and bending stresses with a shear deformation effect was studied by Chen [15]. Alijani et
al. [16] used the FSDT to study the nonlinear vibration of FGM rectangular plates with movable edges
in thermal environments. In his study, the effect of temperature variations and volume coefficients
was discussed, and he showed that the deformed FGM plates had stronger hardening behavior in the
thermal environment. Fallah and his co-authors [17] employed the FSDT and the extended Kantorovich
method to analyze the free vibration of moderately thick FGM plates resting on an elastic foundation.
Ganapathi et al. [18] developed a finite element formulation based on the FSDT to study the buckling
of FGM skew plates subjected to mechanical loads. Nguyen et al. [19] used the FSDT and the Galerkin
method to study the post-buckling of FGM plates with a shear deformation effect; the FGM plates were
in a thermal environment and subjected to a mechanical load, and it was found that the behaviour
of the plate depended greatly on the temperature. The free vibration of FGM plates and shells were
considered by Zhao et al. [20]. In their work, the authors used the element-free kp-Ritz method and the
FSDT model. Nguyen et al. [21,22] applied an edge-based smoothed strain smoothing finite element
method (ES-FEM) and a node-based smoothed finite element method (NS-FEM) to analyze the static
bending, free vibration and buckling behavior of FGM plates. Hosseini-Hashemi and his co-authors [23]
developed a Levy solution to investigate the free vibration of FGM rectangular plates. In his extended
work [24], a new exact analytical approach was developed based on the Reissner–Mindlin plate theory
to analyze the free vibration of FGM rectangular plates. Nguyen et al. [25] developed a new FSDT plate
model for the analysis of FGM plates. Singha and his co-authors [26] analyzed FGM plates subjected
to transverse load using the FSDT and the finite element method (FEM). The free vibration of isotropic
rectangular plates was examined by Manna [27]. In his study, a high-order triangular finite element
was developed based on FSDT. The influence of some parameters such as thickness ratios, aspect ratios,
and boundary conditions were studied. In the work of Shimpi et al. [28], two refined plate theories
(RPT) were developed, and some examples of static bending and free vibration of isotropic plates were
carried out. Thai et al. [29–31] used a simplified FSDT for FGM plates, and they laminated composite
plates and FGM sandwich plates. Senjanović et al. [32] developed a modified Mindlin plate theory for
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the finite element analysis of thin and thick plates, in which both the bending and shear components
of the stiffness matrix were calculated using full integration without shear-looking phenomena. Yu
et al. [33] and Yin et al. [34] applied a simplified FSDT for the isogeometric analysis (IGA) of FGM
plates. Tan-Van et al. [35] used a simple FSDT-based meshfree method for the static bending and free
vibration analysis of FGM plates.

On the other hand, the HSDT developed by Reddy [36] was used by many researchers to study
the static bending, free vibration, and buckling of FGM plates. Javaheri et al. [37] applied third-order
shear deformation theory (TSDT) and the Navier solution to investigate the thermal buckling of
simply supported FGM plates. A nonlinear analysis of FGM plates subjected to transverse loads in the
thermal environment was investigated by Shen et al. [38,39] using the TSDT. Yang et al. [40] studied
the buckling, free vibration and dynamic stability of laminated FGM plates using the HSDT. Yang and
his co-authors [40] studied the free vibration, buckling behavior, and dynamic stability of laminated
FGM plates using the HSDT. Yang et al. [41] and Huang et al. [42] employed the TSDT to investigate
the free vibration, transient response, and nonlinear vibration of initially stressed FGM plates, and
they found that the material properties of the plate depended on the temperature. Bodaghi and his
partners [43] developed an analytical solution for the buckling of thick FGM rectangular plates under
in-plane loadings based on the HSDT. Ferreira et al. [44,45] studied static bending of FGM plates using
the TSDT and a robust meshless collocation method. Thai and his colleagues [46] used a neutral surface
based-TSDT to analyze the buckling of FGM plates. Kim [47] employed the TSDT and the Rayleigh–Ritz
procedure to investigate the vibration of FGM plates, in which the material properties depended on
the temperature. Hosseini-Hashemi et al. [48] used the TSDT to derive a new exact solution to analyze
the free vibration of FGM rectangular plates. Baferani et al. [49] developed an accurate solution based
on FSDT and the Levy solution to analyze the free vibration of FGM plates. The work focused on
the effect of the elastic foundation on the behavior of FGM plates. Tran et al. [50] analyzed FGM
plates using the HSDT and IGA. Do et al. [51] investigated the influences of material combination and
thermal environment in the mechanical behavior of FGM sandwich plates. Zenkour [52] developed a
generalized shear deformation theory for the bending analysis of FGM plates. Senthilnathan et al. [53]
and Murty [54] employed a simplified TSDT for the analysis of laminated composite plates. Shimpi [55]
used the RPT and its variants for analysis of isotropic and orthotropic plates. Thai et al. [56–58]
developed various HSDTs for the bending, buckling and vibration of FGM plates. Mechab et al. [59]
proposed a four-variable refined plate theory based on an HSDT for the static and dynamic analysis
of FGM plates. Meiche et al. [60] developed a new four-unknown HSDT using a hyperbolic shear
function for the buckling and vibration of FGM sandwich plates. Nguyen-Xuan and his co-authors [61]
developed a refined plate theory based on the HSDT for the isogeometric analysis of FGM plates.
Zhang et al. [62] used the TSDT to investigate the nonlinear dynamics and chaotic vibration of a simply
supported orthotropic FGM rectangular plate in the thermal environment subjected to parametric
and external excitations. Hao and his co-authors [63] studied the nonlinear oscillation of a cantilever
FGM rectangular plate subjected to the transversal excitation in the thermal environment using the
TSDT and an asymptotic perturbation method. Wang et al. [64] applied sinusoidal shear deformation
theory (SSDT) to focus on performing a free vibration analysis of a FGM porous cylindrical shell with
different sets of boundary conditions. Wang and his colleagues [65] developed a new HSDT to analyze
the forced vibration of an FG graphene nanoplatelet reinforced composite beam under two successive
moving masses.

Recently, a quasi-3D theory has been developed to study medium, thick, and very thick FGM
plates. This theory accounts for higher-order variations of both in-plane and transverse displacement
across the thickness and, consequently, takes the effects of both shear and normal deformations.
Pandya and Kant [66] developed a finite element formulation based on a seven-unknown HSDT for
the flexure of sandwich plates. Touratier [67] studied isotropic and laminated composite plates, an
investigation in which the author developed a SSDT with five unknowns. Soldatos [68] analyzed
a homogeneous monoclinic plate using the HSDT with hyperbolic shear function. Werner [69]
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developed a three-dimensional solution for rectangular plate bending. Batra and Vidoli [70] used
a three-dimensional variational principle to derive an HSDT for the analysis of piezoelectric plates.
Qian et al. [71,72] applied the HSDT and the normal deformable plate theory and meshless local
Petrov–Galerkin (MLPG) method for the static bending, free vibration, and dynamic response of FGM
plates. Gilhooley et al. [73] also used the HSDT and the normal deformable plate theory and MLPG
with radial basis functions for the analysis of thick FGM plates. Talha and his co-authors [74] used the
HSDT to study the bending behavior and free vibration of FGM plates—the effect of some geometric
parameters and the power-law index were carried out. Nguyen et al. [75] applied the HSDT and IGA
for the analysis of composite sandwich plates. Akavci [76,77] developed two new hyperbolic HSDTs
for the analysis of laminated composite and FGM plates. Karama and his partners [78] employed the
HSDT for analysis of laminated composite beams. In this study, the composite beam was modelled
by the multi-layered model based on the HSDT. Matsunaga [79] analyzed the free vibration and
stability of FGM plates. In his work, the FGM plates were modelled using a 2-D HSDT. Aydogdu [80]
developed a new HSDT to analyze laminated composite plates. Mantari and his co-authors [81–90]
developed various quasi-3D plate theories for the static bending, free vibration, and buckling of
laminated composite plates, FGM plates, and sandwich FGM plates. Nguyen et al. [91] developed a
new inverse trigonometric shear deformation theory for isotropic and FGM sandwich plates analysis.
Thai et al. [92,93] applied IGA with the inverse trigonometric shear deformation theory and generalized
shear deformation theory to investigate laminated composite and FGM sandwich plates. Zenkour [94]
used the sinusoidal function to develop 3-D elasticity solutions to study bending behavior and free
vibration of exponentially graded thick rectangular plates. Bui et al. [95] applied the TSDT and the FEM
for the mechanical behaviors of heated FGM plates in a high-temperature environment. Do et al. [96]
analyzed bi-directional FGM plates using the FEM and the TSDT. Mantari et al. [97,98] developed
various quasi-3D theories which consisted of four unknowns to study FGM plates. Thai et al. [99]
employed a sinusoidal function to develop a simple quasi-3D theory with only five unknowns to
analyze FGM plates. Zenkour [100–103] developed many different quasi-3D theories which contained
only four unknowns to study the bending behavior and vibration behavior of FGM plates and FGM
sandwich plates. Neves and his co-authors [104] developed a new quasi-3D theory using a hyperbolic
function to analyze FGM plates. Neves et al. [105] applied a quasi-3D HSDT and a meshless technique
for the static bending, free vibration and buckling of sandwich FGM plates. In [106], Neves and his
co-authors developed a quasi-3D SSDT to analyze FGM plates. Cerrera et al. [107] investigated the
influences of thickness stretching in FGM plates and shells.

Furthermore, Carrera et al. [108,109] proposed the unified formulation (CUF) for multilayered
composite structures. Brischetto et al. [110,111] studied the bending behavior of FGM plates and shells
using CUF. Cinefra et al. [112] and Ferreira et al. [113] investigated the bending behavior and vibration
behavior of laminated composite shells. In their works, the SSDT was developed using CUF. The
bending behavior of FGM plates and shells was investigated by Cinefra and his co-authors [114]. In
his work, the combination of the CUF and the mixed interpolation of tensorial components (MITC)
was used to develop a nine-node shell element.

By decomposing the transverse displacements into two parts, the bending part and shear part, the
simplified FSDT has less unknowns than the FSDT, the HSDT, the SSDT and the quasi-3D theory, so its
computational expenses are reduced. Thus, the development of a simplified FSDT is still necessary.
This paper developed a refined simple FSDT for the analysis of advanced composite plates, such as
FGM plates. By introducing the distribution shape function to the shear strain, the proposed theory not
only shows an improvement on expecting deflections but also accounts for a parabolic transverse shear
strain distribution through the thickness of the plates. The Navier solution was applied to investigate
the static bending and free vibration of simply supported plates. Several numerical examples are
presented to illustrate the accuracy of the new refined plate theory.



Materials 2019, 12, 2385 5 of 25

2. Material Properties of Advanced Composite Plates

Advanced composite materials such as functionally graded materials can be produced by
continuously varying the constituents of multi-phase materials in a predetermined profile. An FGM
can be defined by the variation in the volume fractions. In this paper, FGM plates with the power-law
function (P-FGM) and exponential function (E-FGM) were considered (Figure 1).
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For the case of P-FGM plates, the materials properties of P-FGM depend on the volume fraction,
which can be obtained as a power-law function as the following formula.

Vc =
(1

2
+

z
h

)p
(1)

where p is the material parameter and h is the thickness of the plate. The material properties of a
P-FGM can be determined as

P(z) = Pm + (Pc − Pm)Vc (2)

where Pc, Pm are the Young’s modulus or density of the ceramic and metal, respectively.
For the case of E-FGM plates, the material properties of E-FGM are defined as

P(z) = P0ep(z+h/2) (3)

where P0 is the Young’s modulus or density of the bottom surface of the FGM plate and p is the material
parameter.

3. Formulation of Refined First-Order Shear Deformation Theory

3.1. Kinematics

Corresponding to the simple FSDT, the transverse displacement w is separated into two parts—the
bending constituent wb and the shear constituent ws. The displacement fields of the plate can be
expressed as

u = u− z∂wb
∂x

v = v− z∂wb
∂y

w = wb + ws

(4)
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The strains related to the displacement fields are

εx = ∂u
∂x − z∂

2wb
∂x2

εy = ∂v
∂y − z∂

2wb
∂y2

γxy = ∂u
∂y + ∂v

∂x − 2z∂
2wb
∂x∂y

γxz =
∂ws
∂x

γyz =
∂ws
∂y

(5)

Certainly, the simple FSDT theory was based on the statement of linear shear strain distribution
across thickness, so a constant shear correction coefficient was needed to overcome the shear-locking
phenomenon. Nevertheless, the shear stress was distributed parabolically across the thickness and
disappeared on the top and bottom surfaces of the plate. In this paper, an assumption of shear distributed
function is presented to improve the simple FSDT. Therefore, the shear strains vector becomes{

γc
xz
γc

yz

}
= f (z)

{
γxz

γyz

}
(6)

where f (z) is the assuming shear distributed function, which defines the distribution of the transverse
shear strains across the thickness of the plate. The shear distributed function was chosen so it satisfies
the following conditions: The shear strain is distributed parabolically over the thickness and equal to
zero on the top and bottom surfaces of the plate; the integration through the thickness of the plate
approximating with the constant shear correction factor of the FSDT (5/6). Inspired by the study of
Zenkour [52], the shear distributed function can be chosen as

f (z) =
5
4

cos
(
πz
h

)
(7)

The constitutive equations for the plate can be expressed as

σx

σy

τxy

τxz

τyz


=

E(z)
1− ν2


1 ν 0 0 0
ν 1 0 0 0
0 0 1−ν

2 0 0
0 0 0 1−ν

2 0
0 0 0 0 1−ν

2





εx

εy

γxy

γxz

γyz


(8)

3.2. Equations of Motion

The equations of motion can be quantified using the Hamilton’s principle, that is

0 =

∫ T

0
(δU + δV − δK)dt (9)

where δU is the variation of strain energy, δV is the variation of work done by external forces, and δK
is the variation of kinetic energy. The expression of δU is

δU =

∫
A

∫ h/2

−h/2

(
σxδεx + σyδεy + τxyδγxy + τc

xzδγ
c
xz + τc

yzδγ
c
yz

)
dzdA (10)

δU =
∫

A

[
Nx

∂δu
∂x −Mx

∂2δwb
∂x2 + Ny

∂δv
∂y −My

∂2δwb
∂y2 +

+Nxy

(
∂δu
∂y + ∂δv

∂x

)
− 2Mxy

∂2δwb
∂x∂y + Qc

x
∂δws
∂x + Qc

y
∂δws
∂y

]
dA

(11)
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where N, M, and Qc are the stress resultants which are defined by

(
Nx, Ny, Nxy

)
=

∫ h/2

−h/2

(
σx, σy, σxy

)
dz (12)

(
Mx, My, Mxy

)
=

∫ h/2

−h/2

(
σx, σy, σxy

)
zdz (13)

(
Qc

x, Qc
y

)
=

∫ h/2

−h/2

(
τc

xz, τc
yz

)
f (z)dz (14)

The expression of δV is

δV = −

∫
A

qδ(wb + ws)dA (15)

The expression of the variation of kinetic energy δK is

δK =

∫
V

( .
uδ

.
u +

.
vδ

.
v +

.
wδ

.
w
)
ρ(z)dV (16)

After integrating Equation (16) over the thickness direction, Equation (16) becomes

δK =
∫

A

{
I0
[ .
uδ

.
u +

.
vδ

.
v +

( .
wb +

.
ws

)
δ
( .
wb +

.
ws

)]
−I1

(
.
u∂δ

.
wb
∂x +

∂
.

wb
∂x δ

.
u +

.
v∂δ

.
wb
∂y +

∂
.

wb
∂y δ

.
v
)

+I2

(
∂

.
wb
∂x

∂δ
.

wb
∂x +

∂
.

wb
∂y

∂δ
.

wb
∂y

)}
dA

(17)

where

(I0, I1, I2) =

∫ h/2

−h/2

(
1, z, z2

)
ρ(z)dz (18)

Substituting Equations (11), (15) and (17) into Equation (9) and integrating by parts, the equations
of motions are obtained as

δu :
∂Nx

∂x
+
∂Nxy

∂y
= I0

..
u− I1

∂
..
wb
∂x

(19)

δv :
∂Ny

∂y
+
∂Nxy

∂x
= I0

..
v− I1

∂
..
wb
∂y

(20)

δwb :
∂2Mx

∂x2 +
∂2My

∂y2 + 2
∂Mxy

∂x∂y
+ q = I0

( ..
wb +

..
ws

)
+ I1

(
∂

..
u
∂x

+
∂

..
v
∂y

)
− I2∇

2 ..
wb (21)

δws :
∂Qc

x
∂x

+
∂Qc

y

∂y
+ q = I0

( ..
wb +

..
ws

)
(22)

where ∇2 = ∂2

∂x2 +
∂2

∂y2 .

4. Analytical Solutions

In this study, a simply supported rectangular plate was considered. The length of the plate was a,
the width of the plate was b, and the height of the plate was h. The plate was subjected to a distributed
transverse load q. Employing the Navier solution, the solutions of the plate were assumed as

u(x, y, t)
v(x, y, t)

wb(x, y, t)
ws(x, y, t)

 =
∞∑

m=1

∞∑
n=1


Umneiωt cosαmx sin βny
Vmneiωt sinαmx cos βny
Wbmneiωt sinαmx sin βny
Wsmneiωt sinαmx sin βny

 (23)
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where i2 = −1, αm = mπ/a, βn = nπ/b, (Umn, Vmn, Wbmn, Wsmn) are quantities to be determined,
m and n are mode numbers, and ω is the frequency of free vibration. The transverse distributed load q
was also expanded in the following form

q(x, y) =
∞∑

m=1

∞∑
n=1

Qmn sinαmx sin βny (24)

For the case of a sinusoidal distributed load, we have

Q11 = q0, m = n = 1 (25)

For the case of uniformly distributed load, the coefficients Qmn are defined as follows

Qmn =
16q0

mnπ2 (26)

By substituting Equations (23) and (24) into the equations of motion, Equations (19)–(22), analytical
solutions can be obtained from the following equation.(

K−ω2M
)
∆ = f (27)

where K and M are, respectively, the stiffness matrix and the mass matrix; f is the force vector; ∆ is the
vector of unknown coefficients, and ω is the frequency of free vibration. The elements of the K, M, f,
and ∆ are as follows

k11 = A11α2 + A33β2, k12 = (A12 + A33)αβ,
k13 = −B11α3

− (B12 + 2B33)αβ2, k22 = A22β2 + A33α2,
k23 = −B22β2

− (B12 + 2B33)α2β, k33 = D11α4 + (2D12 + 4D33),α2β2 + D22β4

k44 = As11α2 + As22β2, k14 = k24 = k34 = 0,

(28)

m11 = I0, m13 = −αI1, m22 = I0, m23 = −βI1, m33 = I0 + I2(α2 + β2),
m34 = I0, m44 = I0, m12 = m14 = m24 = 0,

(29)

f1 = f2 = 0, f3 = f4 = Qmn, (30)

∆ = {Umn, Vmn, Wbmn, Wsmn}
T. (31)

For bending analysis, the closed-form solution could be obtained by setting the natural frequency
ω equal to zero. For free vibration analysis, the closed-form solution was obtained by setting the
transverse load q equal to zero.

5. Numerical Results and Discussion

In this section, some numerical illustrations are carried out and discussed to prove the efficiency
and accuracy of the proposed theory in the static bending and free vibration responses of simply
supported isotropic homogeneous and FGM plates. The non-dimensional entities were used as the
following formulas

w = 10Ech3

q0a4 w
(

a
2 , b

2

)
, σx(z) = h

q0aσx
(

a
2 , b

2 , z
)
, σy(z) = h

q0aσy
(

a
2 , b

2 , z
)
,

σxy(z) = h
q0aσxy(0, 0, z), σxz(z) = h

q0aσxz
(
0, b

2 , z
)
, σyz(z) = h

q0aσxz
(

a
2 , 0, z

)
,

ω̂ = ωh
√
ρc
Ec

, ω̃ = ω
(

a
h

)2 √
ρc
Ec

,ω = ω a2

h

√
ρc
Ec

,ω∗ = ω a2

hπ2

√
12ρ
E .

(32)
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5.1. Static Bending Analysis

Example 1. Firstly, the results obtained using the present theory were compared with those of the
classical plate theory [1] given by Timoshenko, the Navier-type three-dimensionally (3-D) exact solution
given by Werner [69], and the generalized shear deformation theory by Zenkour [52] in Tables 1 and 2.
The geometric and material properties of plate were a = 1, b = 1, E = 1, q0 = 1, ν = 0.3 with three
cases of the thickness of plate h = 0.01, h = 0.03, and h = 0.1. The comparison exhibited the fact that
that the present results were in good agreement with other published results. According to Table 2, the
axial stress equaled zero at the mid-plane for the case of the isotropic plate. Therefore, the neutral
surface was identical to mid-plane for the isotropic plate.

Table 1. Comparison of center deflections of the isotropic homogeneous plates.

h Classical
[1] 3-D [69] SSDT [52] Present

0.01 44360.9 44384.7 44383.84 44385.41
0.03 1643.00 1650.94 1650.646 1651.169
0.10 44.3609 46.7443 46.65481 46.81271

Table 2. Comparison of distribution of stress across the depth of isotropic homogeneous plates.

h z/h
σx τxy

3-D [69] SSDT [52] Present 3-D [69] SSDT [52] Present

0.01 0.5 2873.3 2873.39 2873.51 1949.6 1949.36 1948.61
0.4 2298.6 2298.57 2298.86 1559.2 1559.04 1558.85
0.3 1723.9 1723.84 1724.22 1169.1 1168.99 1169.09
0.2 1149.2 1149.18 1149.58 779.3 779.18 779.33
0.1 574.6 574.58 574.93 389.6 389.55 389.56
0.0 0.0 0.00 0.00 0.0 0.00 0.00

0.03 0.5 319.40 319.445 319.279 217.11 217.156 216.512
0.4 255.41 255.415 255.429 173.26 173.282 173.205
0.3 191.49 191.472 191.580 129.75 129.682 129.897
0.2 127.63 127.603 127.731 86.41 86.313 86.592
0.1 63.80 63.788 63.881 43.18 43.112 43.285
0.0 0.00 0.00 0.00 0.00 0.000 0.000

0.1 0.5 28.890 28.9307 28.7351 19.920 20.0476 19.4861
0.4 22.998 23.0055 22.9887 15.606 15.6459 15.5885
0.3 17.182 17.1660 17.2422 11.558 11.4859 11.6909
0.2 11.423 11.3994 11.4958 7.642 7.5315 7.7933
0.1 5.702 5.6858 5.7493 3.803 3.7265 3.8957
0.0 0.000 0.000 0.000 0.000 0.000 0.000

Example 2. Next, a functionally graded square plate made of aluminum (Al) and alumina (Al2O3)
subjected to a uniform or sinusoidal distributed load was considered. The Young’s modulus for (Al)
was 70 GPa and 380 GPa for Al2O3, while Poisson’s ratios were constant for both, equaling 0.3. Young’s
modulus was calculated using the power-law distribution. The solutions obtained using the present
theory were compared with the solutions of Zenkour [52] using the generalized shear deformation
theory with different values of the power-law index p and the constant value of ratio a/h = 10. The
comparisons are given in Tables 3 and 4. According to these tables, the solutions of the proposed plate
theory were very close to the results of Zenkour [52].
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Table 3. Non-dimensional displacements and stress of an FGM square plate under uniform load
(a/h = 10).

p Source w σx σy τyz τxz τxy

Ceramic SSDT [52] 0.4665 2.8932 1.9103 0.4429 0.5114 1.2850
Present 0.4681 2.8732 1.9155 0.4665 0.5386 1.2993

1 SSDT [52] 0.9287 4.4745 2.1692 0.5446 0.5114 1.1143
Present 0.9262 4.4408 2.1768 0.5010 0.4705 1.1221

2 SSDT [52] 1.1940 5.2296 2.0338 0.5734 0.4700 0.9907
Present 1.1863 5.1853 2.0442 0.4757 0.3899 1.0000

3 SSDT [52] 1.3200 5.6108 1.8593 0.5629 0.4367 1.0047
Present 1.3081 5.5577 1.8720 0.4452 0.3454 1.0162

4 SSDT [52] 1.3890 5.8915 1.7197 0.5346 0.4204 1.0298
Present 1.3747 5.8316 1.7338 0.4198 0.3301 1.0430

5 SSDT [52] 1.4356 6.1504 1.6104 0.5031 0.4177 1.0451
Present 1.4211 6.0858 1.6253 0.4014 0.3333 1.0593

6 SSDT [52] 1.4727 6.4043 1.5214 0.4755 0.4227 1.0536
Present 1.4593 6.3365 1.5365 0.3901 0.3468 1.0685

7 SSDT [52] 1.5049 6.6547 1.4467 0.4543 0.4310 1.0589
Present 1.4936 6.5849 1.4615 0.3846 0.3649 1.0743

8 SSDT [52] 1.5343 6.8999 1.3829 0.4392 0.4399 1.0628
Present 1.5255 6.8288 1.3973 0.3836 0.3842 1.0785

9 SSDT [52] 1.5617 7.1383 1.3283 0.4291 0.4481 1.0662
Present 1.5556 7.0665 1.3423 0.3858 0.4029 1.0821

10 SSDT [52] 1.5876 7.3689 1.2820 0.4227 0.4552 1.0694
Present 1.5841 7.2965 1.2954 0.3900 0.4200 1.0855

Metal SSDT [52] 2.5327 2.8932 1.9103 0.4429 0.5114 1.2850
Present 2.5413 2.8732 1.9155 0.4665 0.5386 1.2993

Table 4. Non-dimensional displacements and stress of an FGM square plate under sinusoidal load
(a/h = 10).

p Source w σx σy τyz τxz τxy

Ceramic SSDT [52] 0.2960 1.9955 1.3121 0.2132 0.2462 0.7065
Present 0.2971 1.9758 1.3172 0.2205 0.2546 0.7092

1 SSDT [52] 0.5889 3.0870 1.4894 0.2622 0.2462 0.6110
Present 0.5872 3.0537 1.4969 0.2369 0.2224 0.6125

2 SSDT [52] 0.7573 3.6094 1.3954 0.2763 0.2265 0.5441
Present 0.7520 3.5657 1.4057 0.2249 0.1843 0.5459

3 SSDT [52] 0.8377 3.8742 1.2748 0.2715 0.2107 0.5525
Present 0.8295 3.8218 1.2873 0.2105 0.1633 0.5547

4 SSDT [52] 0.8819 4.0693 1.1783 0.2580 0.2029 0.5667
Present 0.8721 4.0102 1.1923 0.1984 0.1561 0.5693

5 SSDT [52] 0.9118 4.2488 1.1029 0.2429 0.2017 0.5755
Present 0.9018 4.1849 1.1176 0.1898 0.1576 0.5783

6 SSDT [52] 0.9356 4.4244 1.0417 0.2296 0.2041 0.5803
Present 0.9264 4.3574 1.0566 0.1844 0.1639 0.5833

7 SSDT [52] 0.9562 4.5971 0.9903 0.2194 0.2081 0.5834
Present 0.9485 4.5281 1.0050 0.1818 0.1725 0.5864

8 SSDT [52] 0.9750 4.7661 0.9466 0.2121 0.2124 0.5856
Present 0.9690 4.6959 0.9609 0.1814 0.1817 0.5887

9 SSDT [52] 0.9925 4.9303 0.9092 0.2072 0.2164 0.5875
Present 0.9883 4.8593 0.9230 0.1824 0.1905 0.5907

10 SSDT [52] 1.0089 5.0890 0.8775 0.2041 0.2198 0.5894
Present 1.0065 5.0175 0.8908 0.1844 0.1986 0.5926

Metal SSDT [52] 1.6070 1.9955 1.3121 0.2132 0.2462 0.7065
Present 1.6129 1.9758 1.3172 0.2205 0.2546 0.7092
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To demonstrate the accuracy of the present theory for wide range of aspects and side-to-thickness
ratios a/h, through the thickness distributions of the in-plane longitudinal and normal stresses σx and
σy, the longitudinal tangential stress τxy, the shear stresses τxz and τyz in the FGM plate under uniform
load are explained in Figures 2–7, which show, respectively, the influence of the aspect ratio and the
side-to-thickness ratio on the center deflection of the plates. The obtained results were compared with
those reported by Zenkour [52]. The comparison shows that the results of the present theory and
Zenkour are almost identical, except for the case of the transverse shear stresses τxz and τyz, where
a small difference between the results can be seen. However, it should be noticed that the results of
Zenkour were obtained using the generalized shear deformation theory, while the present results were
obtained using the proposed refined simple FSDT. According to Figure 2, the axial stress did not equal
to zero at the mid-plane of the FGM plates, so the neutral surface moved toward the ceramic surface of
the FGM plates. From Figures 4 and 5, the shear stresses were asymmetric through the thickness of the
FGM plates. In addition, Figures 6 and 7 show that the deflection of the plate decreased when the
aspect ratio (a/b) and side-to-thickness ratio (a/h) increased.
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Figure 7. Non-dimensional center deflection as a function of the side-to-thickness ratio (a/h) of an
FGM plate.

Example 3. In the next example, a square plate made of Al/Al2O3 was considered. The plate was
subjected to a sinusoidal distributed load. Young’s modulus for Al was 70 GPa and 380 GPa for Al2O3,
while Poisson’s ratios were constant for both and equal to 0.3. Young’s modulus was expressed by
Equation (2). Three different values of the power-law index p = 1, p = 4 and p = 10 were used in this
example. The results obtained using the present theory were compared with the solutions given by
Neves et al. [104–106], Carrera et al. [107,108], and Thai et al. [29], in which Neves and Carrera used
different quasi-3D theories and Thai used a simple FSDT. In addition, it should be observed that the
effect of thickness stretching is accounted in quasi-3D theories, while it is ignored in the simple FSDT
of Thai and their proposed theory. According to Table 5, it can be noticed that results obtained of the
present theory are in good agreement with published results for both thin and thick FGM plates.
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Table 5. Non-dimensional deflection and stress of Al/Al2O3 square plates under sinusoidal loads.

p Source
σx w

a/h = 4 a/h = 10 a/h = 100 a/h = 4 a/h = 10 a/h = 100

1 Quasi-3D [104] 0.5910 1.4917 14.9440 0.7020 0.5868 0.5648
Quasi-3D [105] 0.5911 1.4917 14.9450 0.7020 0.5868 0.5647
Quasi-3D [106] 0.5925 1.4945 14.9690 0.6997 0.5845 0.5624
Quasi-3D [107] 0.6221 1.5064 14.9690 0.7171 0.5875 0.5625
Quasi-3D [108] 0.6221 1.5064 14.9690 0.7171 0.5875 0.5625

S-FSDT [29] 0.5987 1.4968 14.9683 0.7291 0.5890 0.5625
Present 0.5987 1.4969 14.9687 0.7177 0.5872 0.5625

4 Quasi-3D [104] 0.4340 1.1593 11.7380 1.1095 0.8698 0.8241
Quasi-3D [105] 0.4330 1.1588 11.7370 1.1108 0.8700 0.8240
Quasi-3D [106] 0.4404 1.1783 11.9320 1.1178 0.8750 0.8286
Quasi-3D [107] 0.4877 1.1971 11.9230 1.1585 0.8821 0.8286
Quasi-3D [108] 0.4877 1.1971 11.9230 1.1585 0.8821 0.8286

S-FSDT [29] 0.4769 1.1922 11.9222 1.1125 0.8736 0.8286
Present 0.4769 1.1923 11.9228 1.1027 0.8721 0.8286

10 Quasi-3D [104] 0.3108 0.8467 8.6013 1.3327 0.9886 0.9228
Quasi-3D [105] 0.3097 0.8462 8.6010 1.3334 0.9888 0.9227
Quasi-3D [106] 0.3227 1.1783 11.9320 1.3490 0.8750 0.8286
Quasi-3D [107] 0.3695 0.8965 8.6077 1.3745 1.0072 0.9361
Quasi-3D [108] 0.3695 0.8965 8.6077 1.3745 1.0072 0.9361

S-FSDT [29] 0.3563 0.8907 8.9072 1.3178 0.9966 0.9361
Present 0.3563 0.8908 8.9077 1.3796 1.0065 0.9362

Example 4. Continuously, an exponential FGM plate with thickness ratio a/h = 2 and a/h = 4 were
investigated. The Poisson’s ratios were constant and equal to 0.3. Young’s modulus was evaluated
using the exponential distribution. The results of the present theory were compared with those of
the 3D elasticity solution [94], quasi-3D theories [88,94], the HSDT [85], and the simple HSDT [56].
From Table 6, the present results are in excellent agreement with literature results for medium thick
plates. For the very thick FGM plates (a/h = 2), the deflections obtained of the proposed theory were
slightly larger than those of 3D results and quasi-3D results, because the thickness stretching effect was
neglected in the present theory.

Table 6. Non-dimensional deflection of exponential function (E)-FGM rectangular plates.

a/h b/a Method
p

0.1 0.3 0.5 0.7 1 1.5

2 1 3D [94] 0.5769 0.5247 0.4766 0.4324 0.3727 0.2890
Quasi-3D [94] 0.5731 0.5181 0.4679 0.4222 0.3612 0.2771
Quasi-3D [88] 0.5776 0.5222 0.4716 0.4255 0.3640 0.2792

HSDT [85] 0.6363 0.5752 0.5195 0.4687 0.4018 0.3079
S-HSDT [56] 0.6362 0.5751 0.5194 0.4687 0.4011 0.3079

Present 0.6692 0.6062 0.5460 0.4879 0.4003 0.2786
2 3D [94] 1.1944 1.0859 0.9864 0.8952 0.7727 0.6017

Quasi-3D [94] 1.1880 1.0740 0.9701 0.8755 0.7494 0.5758
Quasi-3D [88] 1.1938 1.0790 0.9748 0.8797 0.7530 0.5785

HSDT [85] 1.2776 1.1553 1.0441 0.9431 0.8093 0.6238
S-HSDT [56] 1.2775 1.1553 1.0441 0.9431 0.8086 0.6238

Present 1.3239 1.1928 1.0674 0.9454 0.7578 0.5958
3 3D [94] 1.4430 1.3116 1.1913 1.0812 0.9334 0.7275

Quasi-3D [94] 1.4354 1.2977 1.1722 1.0580 0.9057 0.6962
Quasi-3D [88] 1.4419 1.3035 1.1774 1.0626 0.9096 0.6991

HSDT [85] 1.5341 1.3874 1.2540 1.1329 0.9725 0.7506
S-HSDT [56] 1.5340 1.3873 1.2540 1.1329 0.9719 0.7506

Present 1.5843 1.4255 1.2734 1.1253 0.8965 0.6766
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Table 6. Cont.

a/h b/a Method
p

0.1 0.3 0.5 0.7 1 1.5

4 1 3D [94] 0.3490 0.3168 0.2875 0.2608 0.2253 0.1805
Quasi-3D [94] 0.3475 0.3142 0.2839 0.2563 0.2196 0.1692
Quasi-3D [88] 0.3486 0.3152 0.2848 0.2571 0.2203 0.1697

HSDT [85] 0.3602 0.3259 0.2949 0.2668 0.2295 0.1785
S-HSDT [56] 0.3602 0.3259 0.2949 0.2668 0.2295 0.1785

Present 0.3651 0.3257 0.2879 0.2507 0.1917 0.1088
2 3D [94] 0.8153 0.7395 0.6708 0.6085 0.5257 0.4120

Quasi-3D [94] 0.8120 0.7343 0.6635 0.5992 0.5136 0.3962
Quasi-3D [88] 0.8145 0.7365 0.6655 0.6009 0.5151 0.3973

HSDT [85] 0.8325 0.7534 0.6819 0.6173 0.5319 0.4150
S-HSDT [56] 0.8325 0.7534 0.6819 0.6173 0.5319 0.4150

Present 0.8374 0.7440 0.6543 0.5659 0.5239 0.4240
3 3D [94] 1.0134 0.9190 0.8335 0.7561 0.6533 0.5121

Quasi-3D [94] 1.0094 0.9127 0.8248 0.7449 0.6385 0.4927
Quasi-3D [88] 1.0124 0.9155 0.8272 0.7470 0.6404 0.4941

HSDT [85] 1.0325 0.9345 0.8459 0.7659 0.6601 0.5154
S-HSDT [56] 1.0325 0.9345 0.8459 0.7659 0.6601 0.5154

Present 1.0370 0.9205 0.8088 0.7985 0.6209 0.5708

5.2. Free Vibration Analysis

Example 5. The next verification was performed for the free vibration of an isotropic homogeneous
rectangular plate with a simply supported boundary condition. The length-to-height ratios of the
plates were a/h = 1000 and 5. The first six non-dimensional frequencies ω∗ of the present theory
were compared with the available published results of Manna [27], Leissa [2], Liew et al. [12] and
Raju [11], in which, Manna [27] used a family of higher-order triangular element, Leissa [2] used
an analytical solution, Liew et al. [12] used the pb-2 Rayleigh–Ritz method, and Raju [11] used a
nine-node Lagrangian quadrilateral isoparametric plate element. The comparision was shown in
Table 7. According to Table 7, it can be concluded that the present solutions are in good agreement
with published solutions.

Table 7. The first six non-dimensional frequencies ω∗ for square isotropic homogeneous plates.

a/h Source
Mode

1 2 3 4 5 6

1000 PS-6 [27] 2.000 5.000 5.000 8.000 10.000 10.000
PS-8a [27] 2.000 5.000 5.000 8.000 10.000 10.000
PS-8b [27] 2.000 5.000 5.000 8.000 10.000 10.000
Leissa [2] 2.000 5.000 5.000 8.000 10.000 10.000

Liew et al. [12] 2.000 5.000 5.000 8.000 10.000 10.000
Present 2.096 5.241 5.241 8.386 10.482 10.482

5 PS-12 [27] 1.768 3.868 3.868 5.596 6.615 6.615
PS-14a [27] 1.768 3.868 3.868 5.594 6.611 6.611
PS-14b [27] 1.807 4.000 4.000 5.807 6.867 6.867

Liew et al. [12] 1.768 3.866 3.866 5.588 6.601 6.601
Raju [11] 1.768 3.876 3.876 5.600 6.683 -
Present 1.843 4.010 4.010 5.779 6.817 6.817

Example 6. The next example was carried out for an isotropic Al/Al2O3 square plate. The Young’s
modulus and density of aluminum were Em = 70 GPa and ρm = 2702 kg/m3, respectively, and those of
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alumina were Ec = 380 GPa and ρc = 3800 kg/m3, respectively. The Poisson’s ratio of the plate was
assumed to be constant through the thickness, and it equaled 0.3. In this example, Young’s modulus
and density were obtained using Equation (2). The length-to-thickness ratio a/h varied from 2 to
10, and the power-law index varied from 0 to 10. The first two non-dimensional frequencies ω̂ for
different values of length-to-thickness ratio a/h and the power-law index p using the present theory
and those of other theories are given in Table 8. From this table, it can be found that the present theory
has an excellent accuracy to determine the frequency for FGM plates. It was also observed that the
non-dimensional frequencies of FGM plates decreased as the value of the power-law index increased.

Table 8. The first two non-dimensional frequencies ω̂ of isotropic Al/Al2O3 square plates.

Mode a/h Method
p

0 0.5 1 4 10

1 2 Quasi-3D [79] 0.9400 0.8233 0.7477 0.5997 0.5460
S-FSDT [29] 0.9265 0.8062 0.7333 0.6116 0.5644

Present 0.9114 0.8099 0.7445 0.6165 0.5417
5 Quasi-3D [79] 0.2121 0.1819 0.1640 0.1383 0.1306

S-FSDT [29] 0.2112 0.1805 0.1631 0.1397 0.1324
Present 0.2100 0.1808 0.1639 0.1401 0.1304

10 Quasi-3D [79] 0.0578 0.0492 0.0443 0.0381 0.0364
S-FSDT [29] 0.0577 0.0490 0.0442 0.0382 0.0366

Present 0.0576 0.0490 0.0443 0.0383 0.0364
2 2 Quasi-3D [79] 1.7406 1.5425 1.4078 1.1040 0.9847

S-FSDT [29] 1.7045 1.4991 1.3706 1.1285 1.0254
Present 1.6667 1.5088 1.4001 1.1411 0.9710

5 Quasi-3D [79] 0.4658 0.4040 0.3644 0.3000 0.2790
S-FSDT [29] 0.4618 0.3978 0.3604 0.3049 0.2856

Present 0.4570 0.3989 0.3637 0.3064 0.2780
10 Quasi-3D [79] 0.1381 0.1180 0.1063 0.0905 0.0859

S-FSDT [29] 0.1376 0.1173 0.1059 0.0911 0.0867
Present 0.1371 0.1174 0.1062 0.0913 0.0858

Example 7. The first four non-dimensional frequencies ω of an FGM rectangular plate with
length-to-thickness ratio varied from 5 to 20 and the power-law index varied from 0 to 10 are compared
in Table 9. The plate was made from aluminum (as metal) and alumina (as ceramic). The material
properties of aluminum were Em = 70 GPa and ρm = 2702 kg/m3, and those of alumina were Ec = 380 GPa
and ρc = 380 kg/m3. The Poisson’s ratio of the plate was assumed to be constant through the thickness,
and it equaled to 0.3. Equation (2) was used to evaluate the Young’s modulus and density of the plate.
The first four non-dimensional frequencies ω obtained by using the present theory were compared
with those given by Hosseini-Hashemi et al. [24] based on the FSDT, Reddy [36] based on the TSDT,
and Thai et al. [58] based on the SSDT. In addition, the variations of the non-dimensional fundamental
frequency of FGM square plate with respect to the power-law index p and length-to-thickness ratio
a/h are compared in Figures 8 and 9, respectively. According to Table 9 and Figures 8 and 9, the
non-dimensional frequencies achieved by the proposed theory are in excellent agreement with those
obtained by the FSDT, TSDT and SSDT. From Table 9 and Figure 8, the first frequencies of the FGM
plate decreased when the power-law index increased. When the length-to-thickness ratio increased,
the first frequencies of the FGM plate increased, as shown in Figure 9.



Materials 2019, 12, 2385 17 of 25

Table 9. Comparison of the first four non-dimensional frequencies ω of rectangular plate (b/a = 2).

a/h Mode (m, n) Method
p

0 0.5 1 2 5 8 10

5 1 (1,1) FSDT [24] 3.4409 2.9322 2.6473 2.4017 2.2528 2.1985 2.1677
TSDT [36] 3.4412 2.9347 2.6475 2.3949 2.2272 2.1697 2.1407
SSDT [58] 3.4416 2.9350 2.6478 2.3948 2.2260 2.1688 2.1403

Present 3.4277 2.9351 2.6562 2.4127 2.2517 2.1823 2.1450
2 (1,2) FSDT [24] 5.2802 4.5122 4.0773 3.6953 3.4492 3.3587 3.3094

TSDT [36] 5.2813 4.518 4.0781 3.6805 3.3938 3.2964 3.2514
SSDT [58] 5.2822 4.5187 4.0787 3.6804 3.3914 3.2947 3.2506

Present 5.2507 4.5188 4.0974 3.7202 3.4469 3.3233 3.2599
3 (1,3) FSDT [24] 8.0710 6.9231 6.2636 5.6695 5.2579 5.1045 5.0253

TSDT [36] 8.0749 6.9366 6.2663 5.6390 5.1425 4.9758 4.9055
SSDT [58] 8.0772 6.9384 6.2678 5.6391 5.1378 4.9727 4.9044

Present 8.0073 6.9378 6.3078 5.7239 5.2528 5.0298 4.9212
4 (2,1) FSDT [24] 9.7416 8.6926 7.8711 7.1189 6.5749 5.9062 5.7518

TSDT [36] 10.1164 8.7138 7.8762 7.0751 6.4074 6.1846 6.0954
SSDT [58] 10.1201 8.7167 7.8787 7.0756 6.4010 6.1806 6.0942

Present 10.0142 8.7147 7.9376 7.2005 6.5674 6.2611 6.1159
10 1 (1,1) FSDT [24] 3.6518 3.0983 2.7937 2.5386 2.3998 2.3504 2.3197

TSDT [36] 3.6518 3.0990 2.7937 2.5364 2.3916 2.3411 2.3110
SSDT [58] 3.6519 3.0991 2.7937 2.5364 2.3912 2.3408 2.3108

Present 3.6477 3.0991 2.7962 2.5419 2.3994 2.3452 2.3124
2 (1,2) FSDT [24] 5.7693 4.8997 4.4192 4.0142 3.7881 3.7072 3.6580

TSDT [36] 5.7694 4.9014 4.4192 4.0090 3.7682 3.6846 3.6368
SSDT [58] 5.7697 4.9016 4.4194 4.0089 3.7673 3.6839 3.6365

Present 5.7594 4.9017 4.4256 4.0224 3.7872 3.6946 3.6403
3 (1,3) FSDT [24] 9.1876 7.8145 7.0512 6.4015 6.0247 5.8887 5.8086

TSDT [36] 9.1880 7.8189 7.0515 6.3886 5.9765 5.8341 5.7575
SSDT [58] 9.1887 7.8194 7.0519 6.3885 5.9742 5.8324 5.7566

Present 9.1632 7.8197 7.0674 6.4217 6.0226 5.8583 5.7658
4 (2,1) FSDT [24] 11.8310 10.0740 9.0928 8.2515 7.7505 7.5688 7.4639

TSDT [36] 11.8315 10.0810 9.0933 8.2309 7.6731 7.4813 7.3821
SSDT [58] 11.8326 10.0818 9.0940 8.2306 7.6696 7.4787 7.3808

Present 11.7909 10.0823 9.1193 8.2845 7.7472 7.5199 7.3952
20 1 (1,1) FSDT [24] 3.7123 3.1456 2.8352 2.5777 2.4425 2.3948 2.3642

TSDT [36] 3.7123 3.1458 2.8352 2.5771 2.4403 2.3923 2.3619
SSDT [58] 3.7123 3.1458 2.8353 2.5771 2.4401 2.3922 2.3618

Present 3.7112 3.1457 2.8358 2.5785 2.4423 2.3933 2.3622
2 (1,2) FSDT [24] 5.9198 5.0175 4.5228 4.1115 3.8939 3.8170 3.7681

TSDT [36] 5.9199 5.0180 4.5228 4.1100 3.8884 3.8107 3.7622
SSDT [58] 5.9199 5.0180 4.5228 4.1100 3.8881 3.8105 3.7621

Present 5.9171 5.0179 4.5244 4.1136 3.8936 3.8134 3.7631
3 (1,3) FSDT [24] 9.5668 8.1121 7.3132 6.6471 6.2903 6.1639 6.0843

TSDT [36] 9.5669 8.1133 7.3132 6.6433 6.2760 6.1476 6.0690
SSDT [58] 9.5671 8.1135 7.3133 6.6432 6.2753 6.1471 6.0688

Present 9.5598 8.1133 7.3176 6.6527 6.2896 6.1547 6.0714
4 (2,1) FSDT [24] 12.4560 10.5660 9.5261 8.6572 8.1875 8.0207 7.9166

TSDT [36] 12.4562 10.5677 9.5261 8.6509 8.1636 7.9934 7.8909
SSDT [58] 12.4565 10.5680 9.5263 8.6508 8.1624 7.9925 7.8905

Present 12.4443 10.5679 9.5336 8.6668 8.1863 8.0054 7.8950
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Example 8. This example aimed to verify the obtained results of thin and thick plates. A fully simply
supported Al/Al2O3 square thick plate with different length-to-thickness ratios a/h was analyzed.
The material properties of aluminum were Em = 70 GPa and ρm = 2707 kg/m3, and those of alumina
were Ec = 380 GPa and ρc = 3800 kg/m3. The Poisson’s ratio of the plate was assumed to be constant
through the thickness, and it equaled 0.3. Equation (2) was used to evaluate the Young’s modulus
and density of the plate. The first non-dimensional frequencies ω̂ obtained by the present theory and
different methods for some values of the power-law index and length-to-thickness ratios are tabulated
in Table 10. It can be seen that a significant agreement between the results of the present theory and
different approaches for the first non-dimensional frequencies is found for all length-to-thickness ratios
and the power-law index.
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Table 10. Comparison of first non-dimensional frequencies ω̂ of an Al/Al2O3 square plate.

a/h Method n = 0 n = 0.5 n = 1 n = 4 n = 10

2 Analytical 2D-HOT [34] 0.9400 0.8232 0.7476 0.5997 0.5460
S-HSDT [34] 0.9297 0.8110 0.7356 0.5924 0.5412

FSDT-IGA [34] 0.9265 0.8060 0.7330 0.6111 0.5640
Meshless S-FSDT [35] 0.9270 0.8070 0.7350 0.6136 0.5652
Present RS-FSDT 0.9114 0.8097 0.7442 0.6161 0.5412

10 Analytical 2D-HOT [34] 0.0578 0.0492 0.0443 0.0381 0.0364
S-HSDT [34] 0.0577 0.0490 0.0442 0.0381 0.0364

FSDT-IGA [34] 0.0577 0.0490 0.0442 0.0382 0.0366
Meshless S-FSDT [35] 0.0575 0.0489 0.0442 0.0383 0.0366
Present RS-FSDT 0.0576 0.0490 0.0442 0.0382 0.0364

20 Analytical 2D-HOT [34] 0.0148 0.0125 0.0113 0.0098 0.0094
S-HSDT [34] 0.0146 0.0124 0.0112 0.0097 0.0093

FSDT-IGA [34] 0.0148 0.0125 0.0113 0.0098 0.0094
Meshless S-FSDT [35] 0.0148 0.0125 0.0111 0.0098 0.0094
Present RS-FSDT 0.0148 0.0125 0.0113 0.0098 0.0094

Example 9. In this last example, the results of free vibration of a square plate made of Al/Al2O3

using the proposed theory were compared with those of Brischetto [115] using the exact elasticity
solution. The material properties of Al and Al2O3 were: Em = 73 GPa, νm = 0.3, ρm = 2800 kg/m3,
Ec = 380 GPa, νc = 0.3, and ρc = 3800 kg/m3. The three cases of dimensions and length-to-thickness
ratios were a = b = 100, a/h = 100; a = b = 20, a/h = 20, and a = b = 5, a/h = 5. The mass density
and Young’s modulus were obtained by the power-law function. The comparison of the first three
non-dimensional frequencies ω̃ obtained by the proposed theory and those of Brischetto using the
exact elasticity solution are given in Table 11. According to Table 11, the results of the proposed theory
are in good agreement with those of Brischetto using the exact elasticity solution.

Table 11. Comparison of first three non-dimensional frequencies ω̃ of an Al/Al2O3 square plate.

a/h Mode (m, n) Method
p

0 0.5 1 2

100 (1,1) Exact solution [115] 5.9713 5.0502 4.5529 4.1453
Present 5.9710 5.0492 4.5526 4.1451

(2,2) Exact solution [115] 23.860 20.182 18.195 16.564
Present 23.857 20.176 18.191 16.561

(3,3) Exact solution [115] 53.592 45.338 40.874 37.206
Present 53.576 45.316 40.858 37.189

20 (1,1) Exact solution [115] 5.9219 5.0126 4.5193 4.1118
Present 5.9171 5.0074 4.5144 4.1064

(2,2) Exact solution [115] 23.108 19.603 17.681 16.054
Present 23.038 19.539 17.610 15.974

(3,3) Exact solution [115] 50.055 42.605 38.447 34.813
Present 49.742 42.325 38.129 34.453

5 (1,1) Exact solution [115] 5.3036 4.5316 4.0923 3.6943
Present 5.2507 4.4844 4.0382 3.6331

(2,2) Exact solution [115] 16.882 14.644 13.278 11.876
Present 16.467 14.274 12.847 11.387

(3,3) Exact solution [115] 30.318 26.597 24.217 21.574
Present 29.249 27.544 24.819 21.775
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6. Conclusions

In this paper, a refined simple first-order shear deformation plate theory was developed for the
static bending and free vibration of advanced composite plates such as functionally graded plates.
By introducing the distributed shape function to the shear strain, the refined theory accounted for a
variable transverse shear strain distribution through the thickness of the plate, and it satisfied the
traction free boundary conditions at the top and bottom surfaces of the plate. Moreover, the presented
theory retained the simplicity of the FSDT. Analytical solutions were obtained for simply supported
FGM plates using the Navier technique. Some numerical examples were carried out to verify the
convenience and accuracy of the proposed theory. According to these examples, some remarkable
information can be given:

• The proposed theory is efficient and accurate for the static bending and free vibration analysis of
FGM plates.

• For FGM plates, the neutral surface is not identical to the mid-plane surface. It moves toward the
ceramic surface, and it is different from the isotropic plates.

• The power-law index, aspect ratio, and side-to-thickness ratio have a great effect on the bending
behavior and free vibration of FGM plates.

This theory can be applied to the analysis of other structures such as beams and shells made of
advanced composite plates. In addition, the proposed theory can be improved by optimizing the
distributed shape function to achieve results that are close to the 3D solution, which is a good idea for
further work.
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