Utilization of Carbon Nanospheres in Photocatalyst Production: from Composites to Highly Active Hollow Structures

Tamás Gyulavári 1,2, Gábor Veréb 1,3,*, Zsolt Pap 1,4,*, Balázs Réti 3, Kornelia Baan 2, Milica Todea 4,6, Klára Magyari 4, Imre Miklós Szilágyi 7 and Klara Hernadi 1,2

1 Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Tisza Lajos krt. 103, Hungary
2 Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich tér 1, Hungary
3 Institute of Process Engineering, Faculty of Engineering, University of Szeged, H-6725 Szeged, Moszkvai krt. 9, Hungary
4 Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, RO–400271 Cluj-Napoca, Treboniu Laurian 42, Romania
5 Institute of Environmental Science and Technology, University of Szeged, H-6720, Szeged, Tisza Lajos krt. 103, Hungary
6 Department of Molecular Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, RO–400012 Cluj-Napoca, Romania
7 Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Hungary

* Correspondence: verebg@mk.u-szeged.hu (G.V.); Tel.: +36-62-546-582 (G.V.); pzsolt@chem.u-szeged.hu (Z.P.); Tel.: +36-62-544-338 (Z.P.)

Supplementary material

Figure S1. Emission spectrum of the visible light emitting lamps used for the photocatalytic activity measurements.
Figure S2. X-ray diffraction patterns of H2_CS_0 and H2_HS_0 samples.

Figure S3. IR spectra of the investigated H2_CS_0 and H2_HS_0 samples.
Figure S4. Phenol degradation curves of the H2_CS_0, H2_HS_0 and reference Rutile-H2 samples.

Figure S5. Chromatogram of the most efficient H2_HS_5 sample by the end of the photocatalytic oxidation of phenol.