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Abstract: Paper, a web of interconnected cellulose fibres, is widely used as a base substrate. It has
been applied in several applications since it features interesting properties, such as renewability,
biodegradability, recyclability, affordability and mechanical flexibility. Furthermore, it offers a broad
possibility to modify its surface properties toward specifics additives. The fillers retention and the
fibres bonding ability are heavily affected by the cellulose refining process that influences chemical and
morphological features of the fibres. Several refining theories were developed in order to determine
the best refining conditions. However, it is not trivial to control the cellulose refining as different
phenomena occur simultaneously. Therefore, it is intuitively managed by experienced papermakers
to improve paper structures and properties. An approach based on the machine learning aimed at
estimating the effects of refining on the fibres morphology is proposed in this study. In particular, an
artificial neural network (ANN) was implemented and trained with experimental data to predict the
fibres length as a function of refining process variables. The prediction of this parameter is crucial to
obtain a high-performance process in terms of effectiveness and the optimisation of the final product
performance as a function of the process parameter. To achieve these results, data mining of the
experimental patterns collected was exploited. It led to the achievement of excellent performance
and high accuracy in fibres length prediction.

Keywords: artificial neural networks; machine learning; cellulose fibres processing; process
management; refining optimisation

1. Introduction

In its essence, paper is a network of fibres interconnected. Usually, it is filled with several additives
aimed at controlling the penetration of coating colours and ink, as well as improving mechanical
performance and morphological features. In order to ensure effective additives action and efficient
manufacturing processes, a high retention ability of a fibres web is required. Furthermore, for reaching
elevated mechanical performance, fibres must feature strong linkages. These paper properties can
be deeply affected by the manufacturing process, as it influences the fibres specification, such as
morphology and surface chemistry.

The raw materials exploited for the paper production include softwoods, hardwoods and nonwood
fibres. The main elements of the fibres may be identified in cellulose, hemicellulose and lignin [1].
Fibres are structured in elementary fibrils, which are twisted around the cell wall axis. The structural
formula of microfibrils presents hydroxyl groups in the glucose units, which are responsible for
the hydrogen bonding ability and allow for the creation of a strong paper structure [2–4]. Further,
since ionisable acidic groups are present in lignin and hemicellulose, when fibres are suspended in
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water, they carry a negative charge. The fibres charge and the electrochemical parameters of a pulp
are fundamental in papermaking, as a large number of the interactions between fibres and fillers
are charge-induced.

Cellulose refining is a critical step in paper production. During the refining, compression and
shear forces are applied to fibres flocs, causing several changes in fibres specifications, such as fibres
morphology and distribution of chemicals on the surface of the fibres. Fibres morphological changes
have been widely discussed. Particularly, they can be summarised in external and internal fibrillation
and fines formation, in addition to fibres shortening and straightening [1]. Internal fibrillation is the
effect of delamination of the outer layers of the fibres as a consequence of the cyclic compression action
of the forces inside the refining devices [5]. The breakage of the bonds among the three constitutive
elements of the fibres causes expansion and swelling of the porous structure inside the cell wall,
making the fibres more flexible. In addition, studies demonstrated that layers delaminated during the
refining process are major restrains against swelling [6,7]. The leakage of fibrils from the surface of the
fibres is defined as external fibrillation, and its main result is the growth of the specific surface area. It
is always associated with internal fibrillation and fines formation, since they occur simultaneously.
Therefore, it is hard to judge the external fibrillation role within the refining process [8]. Further,
growing amounts of charged fines are produced. In [9], fines are defined as the fraction of a pulp
that is able to pass through a mesh screen or a perforated plate having a hole diameter of 76 µm. The
secondary fines formation is the effect of external fibrillation or fibres shortening during the refining
process. They are different from the primary fines, which come from ray cells and parenchyma cells,
and are present also in nonrefined pulps. The primary and secondary fines are usually characterised
by a reduced length, generally less than 0.3 mm, and their presence within the pulp causes a greater
bonding capacity as well as a reduction in drainage speed [9–11]. The last effect of refining is the fibres
length modification as a consequence of the shear and compression forces applied. Fibres lengthening
is critical for producing high-quality products, since it results in an enhanced load capacity, stress
distribution along the network and elastic modulus [12]. Excessive fibres lengthening or high shear
forces may result in fibres shortening. Although the latter is often considered as a detrimental effect, in
some rare applications, it may be desirable [13]. As the fibres shortening is related to fines formation, it
is difficult to measure accurately the length changes after refining treatment. Usually, length changes
are evaluated considering the weighted average lengths before and after refining [14]. In addition,
morphological changes of the fibres affect the chemicals and charge distribution on fibres surfaces and
walls. Indeed, the morphological changes of fibres make the chemical constituents of the fibres more
accessible. However, a relationship between chemical changes and variation of the fibre surface charge
during refining has not been established yet [15].

From the above review, it is clear that, in the context of industrial paper production, fibres refining
represents one of the greatest challenges in order to obtain high-quality products. Overall, all the
aforementioned effects of refining occur simultaneously, influencing each other. It is evident that the
refining effects on fibres charge and morphology are extremely complex, since both chemical and
mechanical factors are involved. Additionally, they are correlated by means of a nonlinear relationship.
Several refining theories were developed in order to determine the most suitable refining control system
and the best refining conditions. The most commons are based on the energy applied to the fibres
during the process. Therefore, it is the most exploited variable to define the refining intensity [16–18].
These theories also consider parameters such fibre lengths, coarseness, refining disks geometry and
rotation speeds, in addition to pulp consistency. However, other theories consider the forces in order
to characterise the refining action [19–21].

Although these several refining theories and methods to explore how a three-dimensional
paper structure is related to macroscopic paper properties are now emerging, alternative indirect
methods were applied over years. However, no theories concerning the morphological modification of
refined fibres were reported. Therefore, the manufacturing process is often managed by experienced
papermakers that know intuitively how to vary the refining settings to improve the paper properties.
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The knowledge is important, despite being more empirical than scientific. In the context of artificial
intelligence (AI), expert systems and artificial neural networks (ANNs) have been widely employed to
exploit the empirical knowledge in the management of industrial production systems. The ANNs have
been widely applied over years; particularly, they were applied in modelling, pattern classification
and clustering tasks [22]. There are several application fields, including aid of decision-making
processes [23–26], classification tasks [27–29], phenomena and processes prediction [30–34], design
optimisation [35,36] and materials characterisation [37,38].

Several works in the literature investigate an ANN approach to paper-making. These methods
mainly concern the application of neural models for paper properties prediction [39–43]; others deal
with pulping process control [44,45]. To the best of our knowledge, no work concerning the prediction
of fibres morphology, and specifically fibres lengths, by means of AI has been presented.

The objective of the proposed work is the implementation of a machine learning system addressed
towards the control of the refining process. Particularly, the implementation of an ANN aimed at
predicting the length of the outgoing fibres from a refining device is presented. The possibility of
foreseeing one of the fundamental morphological characteristics of the fibres would be crucial for
optimising the product performance and manufacturing the process efficiency. In this respect, the
collection and the analysis of an experimental dataset allowed for the training of the ANN implemented.
The result achieved showed an excellent ability in the prediction of the fibres length after a refining
process on the basis of the main process parameters involved in the paper production. Therefore, the
application of ANNs is a valuable tool for the innovation of the traditional control methods aimed at
optimising the manufacturing process and the final products performance.

2. Materials and Methods

The refining analysis was carried out considering a system composed of four conical refiners, as
represented in Figure 1.
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Figure 1. Schematic of a refining process.

Outgoing pulp samples from refiners and outgoing untreated pulp from a pulper were collected
and analysed. Initially, the main variables affecting the refining process were identified. In particular,
three typologies of variables were defined. The first group of variables concerned the pulp composition
in terms of fibres content and fillers amount, which remained constant for all the refining phases. The
fibres were classified both qualitatively and quantitatively, reporting their amounts as a percentage of
the total quantity of the pulp. The fibres qualities exploited in the paper production during analysis
performed were as follows: Pacifico, FSC Cenibra, A3F from Aracruz, FSC Celbi, Arauco Radiata,
FSC BTMP Waggeryd and FSC CMPC Guaiba. Instead, the fillers amount was considered as the total
amount of the different additives exploited to mix with the pulp. This simplification was made with
the aim of reducing the variables number. Furthermore, the titanium dioxide was a preponderant
element among the additives exploited in the different pulps considered. The additives considered for
the process analysis were iron oxides, kaolin and inks. Other additives exploited but not considered
for the analysis, as constant during the experimental investigation, were resins and lye.
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After that, the refining process parameters were considered. The net refining power, which was
the difference between load power and no-load power consumed by refiners, and the pulp flow were
chosen, as their combination was an index of the refining intensity. Furthermore, the refining bar
geometry of the conical refining disks, which was the shape of the bars providing for pulp refining and
transport of fibre suspension, and their wear rate considered as the hours of operation were taken
into account. In particular, the refiners exploited in this work were as follows: Parason SF (Parason,
Aurangabad, India), Parason PA-2815SF (Parason, Aurangabad, India), Airaghi SF-2063019 (Officine
Airaghi (S.R.L.), San Giovanni Lupatoto, Italy), Airaghi XSF-2063019 (Officine Airaghi (S.R.L.), San
Giovanni Lupatoto, Italy) and Airaghi SF-20633019 (Officine Airaghi (S.R.L.), San Giovanni Lupatoto,
Italy). In order to create a dataset suitable for the neural network training, five refining disk geometries
exploited for the production were considered qualitatively. The last input parameter concerned the
fibres morphology. Specifically, it is the mean length of the incoming fibres. The length of the fibres
was chosen also as a parameter for the process control, since length modification is one of the main
effects of the refining and a valuable index to evaluate the process effectiveness. The length measures
were carried out by means of a fibres tester, Lorentzen & Wettre 912 plus (AB Lorentzen & Wettre,
Kista, Sweden). It provides an automated fibres quality measurement of a pulp for fast classification
and detection of fibres features, such as mean lengths, widths, areas, perimeters and shape factors, in
primary and secondary fines amounts. In particular, the device calculates the weighted average fibre
length, evaluated as the sum of individual fibre lengths squared divided by the sum of the individual
fibre lengths. The boundary values of the variables considered in the dataset are reported in Table 1.

Table 1. Values of the variables analysed.

Variables Min/Max

Fibres composition (1–7) 0/1
Fillers amount 850/1538 [kg]

Net power 0/158 [kw]
Pulp flow rate 760/1538 [L/min]

Wear rate 1/2352 [h]
Fibres length 0.768/1.140 [mm]

With the aim of acquiring examples to be exploited in the neural network training, a subdataset
was acquired for each refiner involved in the cellulose refining, as represented in Figure 2.
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Figure 2. Subdataset creation scheme.

Under the simplifying hypothesis that the refiners process the fibres in the same way, the
experimental data extrapolated from each refiner were exploited to build a single dataset to be used in
the ANN training. Additionally, the refiners were considered independent, so that, for a given stage,
the effect of the previous refining step could be neglected. This is not rigorous, as there is a limit in the
fibres lengthening during the refining and therefore in the energy that can be globally supplied to the
fibres. The energy transferred to the fibres during the single refining step is low and does not affect the
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following refining stage. This allows for the development of a single neural network for the prediction
of length modification after each step of the refining line considered in this study.

The first ANN developed, named ANN1, is represented in Figure 3.
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It was trained by means of the Broyden–Fletcher–Goldfarb–Shanno (BFGS) backpropagation
algorithm exploiting 72 patters collected during the experimental phases previously described. The
algorithm was chosen, because a quasi-Newtown method is one of the most suitable techniques for
function fitting. Like any of Newton-like methods, BFGS uses the quadratic Taylor approximation of
the objective function about a generic point xn, which can be written as Equation (1):

f (xn + δx) = f (xn) + gT
nδx +

1
2
δxTHnδx (1)

where
gn = ∇ f (xn) (2)

xn = ∇2 f (xn) (3)

The necessary condition for a minimum was described as:

∇ f (xn) = gn + Hnδx = 0 (4)

δx = −H−1
n gn (5)

In an iterative process, the variables update was expressed as:

xn+1 = xn −H−1
n gn (6)

In quasi-Newton methods, the idea is to use matrices that approximate, instead of computing, the
Hessian matrix Hn for a reduced computational effort. Particularly, the BFGS method estimates the
Hessian matrix with the following Equation (7):

Hn+1 = Hn −
(Hnsn)(snHn)

T

HnsnsT
n

+
qnqT

n

qT
n sn

(7)

A connection between an input layer and a hidden layer was the tangent function, as it is most
suitable in a hidden layer for ANNs aimed at function fitting. Although the pure linear transfer
function is the most suitable for the connection of the hidden and output layers in order not to shorten
a wide output range in a short interval, a logarithmic transfer function was applied. This was possible
as the output values characterising the patterns in the dataset were compressed in a very short range.
The numbers of neurons of the input and output layers were 13 and 1, respectively, representing the
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variables analysed. The hidden layer counted 25 neurons, which was the size giving the best prediction
performance. It was the results of the test of several neural networks featuring the same architecture
and different hidden sizes. The training of the network was performed exploiting 70% of the dataset
for the training and the remaining 30% for the network validation. The stop criterion imposed was the
maximum number of epochs equal to 2000 or the minimum square error equal than 1 × 10−10.

In order to enhance the neural network training, the dataset was treated by means of statistical
tools. In fact, the process data exploited in the ANN1 training were handwritten in a specific paper
register, as the IT (Information Technology) tools for data collection were missing in the paper mill
object of the case study. This is a major source of uncertainty, which may cause a drop in the ANN
performance. Particularly, a principal component analysis (PCA) was performed, excluding the data
concerning the pulp fibres composition and the refiner geometry. It was mostly aimed at reducing
the variance within the data introduced by inaccurate records of the raw materials quantities and the
process parameters settings. Furthermore, the consequent input variables reduction aids the evaluation
of the error surface, enhancing the ANN performance, reducing the ANN architecture’s size and the
weights number. Additionally, the reduction of the variables number was approached, evaluating
the correlation coefficients and performing a scatterplot analysis. At a later stage, a single-linkage
hierarchical clustering (HC) was exploited, evaluating the Euclidean distances among the data for the
outlier detection.

The resulting modified dataset was applied for the training of the second artificial neural network
(ANN2), of which the structure is represented in Figure 4.
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It had an input layer featuring a reduced number of neurons with respect to the ANN1 implemented.
In particular, the fibres typology and refiner geometry variables were kept unchanged. Instead, the
pulp flow, fibres length, fillers amount, wear rate and refining power were elaborated by means of a
PCA, which led to the definitions of three principal components. Therefore, the input layer counted 11
neurons, which referred to the input variable, while the output layer presented a single neuron in the
representation of the fibres length. The hidden layer counted 7 neurons, which is the number of neurons
to achieve the best performance. Again, the transfer functions between the layers were the tangent
sigmoid and the logarithmic sigmoid transfer function for the output and hidden layers, respectively.
As the size of this this ANN architecture was decreased with respect to the first attempt, the training
algorithm was modified. In particular, the algorithm exploited was the the Levenberg–Marquardt
algorithm, since it gives the best performances with small-size architecture when accurate training is
required. The weight estimation was performed with the following equation, which produced a fester
convergence of the training:

xn+1 = xn − (H − λdiag[H])−1gn (8)

For this reason, the minimum mean squared error and the epoch number were reduced with
respect to the first ANN and set to 10−10 and 2000, respectively. The training was performed with 70%
of the data left from the dataset cleaning, which was 52 patterns, while the test was conducted with the
remaining 30% of the data. The split of the dataset was random.
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While the performance of the networks was evaluated by means of the mean squared error, the
error committed was evaluated as a ratio of the difference between the actual and predicted fibres
lengths with an actual length as reported in the following Equation (9):

E% =
Lp − La

La
× 100 (9)

where Lp is the predicted length and La is the actual length.

3. Results and Discussion

The results achieved with the ANN1 are reported in Figure 5, where E% committed for each
pattern included in the validation set is reported.
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Figure 5. Validation results of the ANN1.

The mean percentage error committed by the network was 4.01%, which resulted in a difference
between the actual and predicted lengths of about a hundredth of a millimetre the error committed by
the network was not constant on the entire validation set. The validation featured a standard deviation
of 2.16 with examples featuring errors up to 8%. Additionally, the regression plot of the model was
performed and reported in Figure 6, which confirms the indication obtained by the E% analysis. Indeed,
a rather low value of R2 = 0.67109 indicates the model does not represent a generalisation of the refining
process under analysis.

These results may be caused by the presence of inaccurate patterns within the dataset due to
the lack of information technologies. Indeed, the inaccurate data within the training set did not
allow for the evaluation of a precise model. Therefore, the ANN created cannot replicate the actual
manufacturing process and then offers an insufficient generalisation ability with a consequent high
standard deviation of the mean percentage error. Furthermore, the outliers in the validation set may be
responsible for those patterns featuring the highest error. Indeed, being outliers, those patterns cannot
fit the model built in the training phase and, when the network is interrogated with the unknown data,
produce elevated errors.

As mentioned, both the problems were addressed with statistical analysis methods, HC and PCA.
The statistical analysis comprised the evaluation of the correlation coefficient, reported in Table 2, and
a scatterplot analysis, reported in Figure 7. The correlation coefficient showed that no linear correlation
characterised the dataset. The same occurred with the scatterplot analysis, as no trend was highlighted,
and the data were plotted as a cloud of points. Therefore, a nonlinear correlation was detected.
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Table 2. Correlation coefficients.

Pulp Flow Fillers Power Time Length

Pulp flow rate 1 0.061 0.272 0.081 −0.300
Fillers amount 0.061 1 0.029 0.080 −0.334

Power 0.272 0.029 1 −0.261 −0.010
Operation hours 0.081 0.080 −0.261 1 −0.148

Length −0.300 −0.334 −0.010 −0.148 1
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Therefore, the dataset analysis proceeded with a PCA, of which the results are reported in Figures 8
and 9.
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Figure 9. Patterns distribution in the principal components space.

Figure 8 highlights the results of the analysis, which was the variance explained by the principal
components. Particularly, 82% the principal components can be compressed with the exploitation of
three principal components; therefore, the variables included in the study were substituted by the first,
second and third principal components.

At a later stage, the distribution of the patterns among the principal component space was analysed.
As reported in Figure 9, despite a central core of examples, aseveral patterns spreading to the

boundary of the cloud of data analysed can be individuated. These patterns could be the outliers, and
with the aim of detecting them, an HC was performed. The result is reported in Figure 10.
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In the HC clustering reported while the horizontal axis represents the patterns or groups of patterns
within the dataset, the vertical axis represents their geometrical distances in the multidimensional
space of the variables. The shorter are the vertical segments connecting the patterns, and the closer
and more similar are the examples analysed. It is evident how the dataset could be divided into four
similar groups, where the distances among the examples are comparable. They can be associated to
four similar kinds of paper produced in the paper mill during the study performed. Four subgroups of
examples were characterised by an elevated distance from the other groups. These subgroups, which
counted a total number of 19 patterns, were considered as outliers and not included in the dataset for
the network training.

With the new dataset comprising the principal components instead of the actual variables and
without the outliers detected, the training of ANN2 was performed. The validation results obtained
are reported in Figure 11.
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Figure 11. Validation results of the ANN2.

It is evident the error committed was reduced. The network featured a mean error of 1.07% with a
standard deviation of 0.5. Differently from the previous network implemented, the error was constant
among the entire validation set, with a peak error comparable with the mean error of the previous
network. It is inferable that the problems related to the dataset and the complexity of the system
under examination were correctly addressed with the statistical analysis. The reduction of the input
variables led to the definition of a simplified error surface, which allowed for the creation of a precise
model capable to give a low mean percentage error with a reduced standard deviation. This is also
visible considering the reduced number of neurons in the hidden layer necessary for the creation of an
accurate model of the refining system. Additionally, the elimination of the outliers allowed obtaining a
homogeneous dataset that led to the elimination of the highest error in the validation set. To validate
the results obtained with the ANN2, a regression plot was performed to assess the similarity of the
neural model built with the experimental data. It is reported in Figure 12.

An R2 value of 0.98 indicates the goodness of the model built, and therefore the model produced
by ANN2 can be considered highly reliable. This is confirmed by the ANOVA, of which the results are
reported in Table 3, which state the significance of the ANN model produced.

Table 3. ANOVA for the neural network model.

Source DF SS MS F-value P-value

Model 1 0.021407 0.021407 387.57 1.3317 × 10−11

Residual 14 0.00077327 5.5234 × 10−5

Total 15 0.02218 0.0014787



Materials 2019, 12, 3730 11 of 13

Later, the results of the network were analysed, considering not only the prediction accuracy but
also the overall effect of the refining on the fibres. Particularly, the interest was to state the network
ability in detecting cutting or stretching phenomena. For this reason, the difference between the initial
and final lengths of the fibres was computed with the actual and predicted values to verify if they
featured the same sign. In Table 4, the validation examples with a nonconcordant length difference
are reported.
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Table 4. Validation examples with a nonconcordant length difference.

Input
(mm)

Target
(mm)

Prediction
(mm)

Actual Delta
(mm)

Predicted Delta
(mm)

0.883 0.872 0.892 −0.009 +0.009
0.951 0.950 0.965 −0.001 +0.014
0.867 0.867 0.862 0 −0.005

The example with a difference between the actual and predicted lengths concerned the process
where the fibres were untreated. Indeed, all these examples feature a delta in the order of a thousandth
of a millimetre. The accuracy of the network is in the order of a hundredth of a millimetre, and the
variation of the length in a smaller range was not evaluated correctly. However, it is inferable that the
networks have a great capacity in predicting the overall effect of refining on fibres.

4. Conclusions

In the present paper, a case study with the development of a machine learning system for
optimising a cellulose-refining system was proposed. An ANN was implemented and trained to model
the fibres refining, a critical stage of paper manufacturing affecting both the paper mill effectiveness
and the final product performance. On the basis of the process parameters exploited in the production
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process management, the ANN proposed allows for the prediction of the fibres length caused by the
mechanical refining. The experimental dataset was treated by means of statistical tools; this led to the
achievement of outstanding results in fibres length prediction. As this parameter is critical to achieve
specific paper properties, its prediction allows for the optimisation of the additives amount and the
process parameter to obtain specific properties of the final product.
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