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Abstract: The resolvent is a fundamental concept in studying various operator splitting algorithms.
In this paper, we investigate the problem of computing the resolvent of compositions of operators
with bounded linear operators. First, we discuss several explicit solutions of this resolvent operator
by taking into account additional constraints on the linear operator. Second, we propose a fixed point
approach for computing this resolvent operator in a general case. Based on the Krasnoselskii–Mann
algorithm for finding fixed points of non-expansive operators, we prove the strong convergence of
the sequence generated by the proposed algorithm. As a consequence, we obtain an effective iterative
algorithm for solving the scaled proximity operator of a convex function composed by a linear
operator, which has wide applications in image restoration and image reconstruction problems.
Furthermore, we propose and study iterative algorithms for studying the resolvent operator of a finite
sum of maximally monotone operators as well as the proximal operator of a finite sum of proper,
lower semi-continuous convex functions.

Keywords: maximally monotone operators; Krasnoselskii–Mann algorithm; Yoshida approximation;
resolvent; Douglas–Rachford splitting algorithm
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1. Introduction

Let H be a real Hilbert space, the associated product is denoted by 〈·, ·〉 and the corresponding
norm is ‖ · ‖. Let T : H → 2H be a maximally monotone operator with its domain and range denoted
by Dom(T) and R(T). Let I be the identity operator. We consider the simplest monotone inclusion
problem:

find x ∈ H, such that 0 ∈ Tx. (1)

Many problems in variational inequalities, partial differential equations, signal and image
processing can be solved via the monotone inclusion problem (1). See, for example, [1–4]. It is well
known that x is a solution of (1) if and only if x = JλTx, for any λ > 0. Here and in what follows, let I be
the identity operator, the resolvent of T with parameter λ > 0 is defined by JλT = (I + λT)−1, and the
Yoshida approximation of T with index λ is denoted by λT = 1

λ (I − JλT), respectively. The proximal
point algorithm (PPA) is the most popular method to solve (1).

Let ϕ : H → (−∞,+∞] be a proper, lower semi-continuous convex function. By Fermat lemma,
the following convex minimization problem

min
x∈H

ϕ(x) (2)
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is equivalent to the monotone inclusion problem (1), where T = ∂ϕ. Here, ∂ϕ is the classical
subdifferential of ϕ. For any λ > 0 and x0 ∈ H, the PPA for solving the convex minimization
problem (2) is defined as

xk+1 = proxλϕ(xk), k ≥ 0. (3)

In fact, the resolvent of ∂ϕ is equivalent to the proximity operator proxϕ, which was first
introduced by Moreau [5]. More precisely, we have

J∂ϕ(x) = proxϕ(x) = arg min
u

{
1
2
‖u− x‖2 + ϕ(u)

}
. (4)

The proximity operators play an important role in studying various operator splitting algorithms
for solving convex optimization problems. See, for example, [6–8]. In particular, Combettes et al. [9]
proposed a forward-backward splitting algorithm for solving the dual of the proximity operator
of a sum of composed convex functions. Adly et al. [10] provided an explicit decomposition of
the proximity operator of the sum of two closed convex functions. Since the resolvent operator is
a natural generalization of the proximity operators, Bauschke and Combettes [11] extended the Dykstra
algorithm [12] for computing the projection onto the intersection of two closed convex sets to compute
the resolvent of the sum of two maximally monotone operators. Combettes [13] generalized the
Douglas–Rachford splitting and Dykstra-like algorithm to solve the resolvent of a sum of maximally
monotone operators. Very recently, Artacho and Campoy [14] generalized the averaged alternating
modified reflection algorithm [15] to compute the resolvent of the sum of two maximally monotone
operators. On the other hand, in order to compute the resolvent of composed operators A∗TA, where
H1 and H2 are two Hilbert spaces, A : H1 → H2 is a continuous linear operator and its adjoint is A∗,
and T : H2 → 2H2 is a maximally monotone operator. Fukushima [16] proved that, if AA∗ is invertible,
then A∗TA is maximally monotone. Moreover, Fukushima [16] showed that

JλA∗TA(x) = x− λA∗(T−1 + λAA∗)−1(Ax), (5)

and
JλA∗TA(x) = x− λA∗(AA∗)−1(Ax− z), (6)

where z is the unique solution of 0 ∈ 1
λ (AA∗)−1(z− Ax) + Tz. The difference between (5) and (6) is

that the former requires evaluating T−1, while the latter has to calculate (AA∗)−1. In Proposition 23.25
of [17], Bauschke and Combettes proved that, if AA∗ = µI, for some µ > 0, then

JλA∗TA(x) = x− λA∗ µT(Ax). (7)

Since the computation of the resolvent of composed operators in (5)–(7) are restricted,
Moudafi [18] developed a fixed point approach for computing the resolvent of the composed operators
A∗TA without the requirement of (AA∗)−1 and T−1. The basic assumption is that the operator A∗TA
is maximally monotone. This is true if 0 ∈ ri(R(A)− Dom(T)) [19,20], where ri stands for the relative
interior of a set; otherwise, cone(R(A)− Dom(T)) = span(R(A)− Dom(T)) [17], where cone denotes
conical hull of a set and span stands for closed span of a set. The most general condition for the
maximal monotonicity of the composition A∗TA can be found in [21].

Let T = ∂ϕ; then, the resolvent of A∗TA is equivalent to evaluating the proximity operator
proxϕ◦A. More precisely, we have

JA∗TA(x) = proxϕ◦A(x) = arg min
u

{
1
2
‖u− x‖2 + ϕ(Au)

}
. (8)
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This convex optimization problem (8) is a general extension of the famous Rudin–Osher–Fatemi
(ROF) image denoising model [22]. It is worth mentioning that Micchelli et al. [23] proposed a fixed
point algorithm to solve the proximity operator (8). The work of Moudafi [18] is a generalization of
Micchelli et al. [23].

In recent years, Newton-type methods have been combined with the forward-backward splitting
(FBS) algorithm to accelerate the speed of the original FBS algorithm. See, for example, [24–26].
Argyriou et al. [27] considered the following convex optimization problem:

min
u∈Rn

1
2

u>Uu− b>u + ϕ(Au), (9)

where b ∈ Rn, A : Rn → Rm is a linear transformation, U ∈ Rn×n is a symmetric positive definite
matrix, and ϕ : Rm → (−∞,+∞] is a proper, lower semi-continuous convex function. They proved
that the minimizer of (9) can be found via a fixed point equation. In particular, when U = I, the
convex optimization problem (9) is equivalent to the problem of computing the proximity operator
of ϕ ◦ A in (8). In [28], Chen et al. proposed an accelerated primal-dual fixed point (PDFP2O)
algorithm based on an adapted metric method for solving the convex optimization of the sum of
two convex functions, where one of which is differentiable and the other is composed by a linear
transformation. This algorithm could be viewed as a combination of the original PDFP2O [29] with
a Quasi-Newton method. This convex optimization problem (9) could be viewed as the proximity
operator of ϕ ◦ A relative to the metric induced by U. Recall that the proximity operator of a proper,
lower semi-continuous convex function f (x) from Rn to (−∞,+∞] relative to the metric induced by U
is defined by,

proxU
f : Rn → Rn : x 7→ arg min

u∈Rn

{
1
2
‖u− x‖2

U + f (u)
}

, (10)

which was introduced in [30]. See also [31]. Thus, (9) is equivalent to

min
u∈Rn

1
2
‖u− x‖2

U + ϕ(Au), (11)

where x ∈ Rn, A, U and ϕ are the same as (9). Let A = I in (11); it becomes the scaled proximal
operators of (10). By the first-order optimality condition, the convex optimization problem (11) is
equivalent to the following monotone inclusion problem:

0 ∈ u− x + U−1 A∗∂ϕ(Au), (12)

which means that u = (I + U−1 A∗∂ϕA)−1(x). It is worth mentioning that the scaled proximity
operator (10) was extensively used in [32,33] for deriving effective iterative algorithms to solve
structural convex optimization problems. However, these works didn’t consider the general scaled
proximity operator of ϕ ◦ A and the related resolvent operator problem.

For this purpose, in this paper, we investigate the solution of the resolvent of composed operators
U−1 A∗TA, where A : H1 → H2 is a continuous linear operator, T : H2 → 2H2 is a maximally monotone
operator, and U is a self-adjoint strongly positive definite operator. In particular, when T = ∂ϕ,
the resolvent of composed operators U−1 A∗TA is equivalent to the proximity operator as follows:

JU−1 A∗TA(x) = proxU
ϕ◦A(x) = arg min

u

{
1
2
‖u− x‖2

U + ϕ(Au)
}

. (13)

The convex minimization problem (13) is an extension of the convex minimization problem (8).
In this paper, we always assume that A∗TA is maximally monotone under some qualification
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conditions. According to Minty’s theorem, if A∗TA is maximally monotone, then R(I + λA∗TA) = H1,
for any λ > 0. Thus, the resolvent JλA∗TA(x) is single-valued, for any x ∈ H1. To study the solution of
the resolvent of composed operators U−1 A∗TA, we divide our work into two parts. First, we present
an explicit solution of the resolvent of composed operators under some conditions on A and U. Second,
we develop a fixed point algorithm to solve the resolvent of composed operators. As an application,
we discuss the resolvent of a finite sum of maximally monotone operators. Furthermore, we employ
the obtained results to solve the problem of computing scaled proximity operators of a convex function
composed by a linear operator and a finite sum of proper, lower semi-continuous convex functions,
respectively.

The rest of the paper is organized as follows. In Section 2, we review some backgrounds on
monotone operator theory. In Section 3, we first investigate the solution of the resolvent of composed
operators U−1 A∗TA. Second, we propose a fixed point approach for solving the resolvent of U−1 A∗TA.
Finally, we employ the proposed fixed point algorithm to compute the resolvent of the sum of a finite
number of maximally monotone operators with U. In Section 4, we apply the obtained results to
solve the problem of computing scaled proximity operators of a convex function composed by a linear
operator and a finite sum of proper, lower semi-continuous convex functions, respectively. We give
some conclusions and future work in the last section.

2. Preliminaries

In this section, we review some definitions and lemmas in monotone operator theory and convex
analysis, which are used throughout the paper. Most of them can be found in [17].

Let H, H1 and H2 be real Hilbert spaces with inner product 〈·, ·〉 and induced norm ‖ · ‖ :=
√
〈·, ·〉,

respectively. xk ⇀ x stands for {xk} converging weakly to x, and xk → x stands for {xk} converging
strongly to x. I denotes the identity operator. Let A : H1 → H2 be a continuous linear operator and its
adjoint be A∗ : H2 → H1 such that 〈Ax, y〉 = 〈x, A∗y〉, for any x ∈ H1 and y ∈ H2.

Let T : H → 2H be a set-valued operator. We denote by its domain Dom(T) = {x ∈ H : Tx 6= ∅},
by its range R(T) = {y ∈ H : ∃x ∈ H, y ∈ Tx}, by its graph gra(T) = {(x, y) ∈ H × H : y ∈ Tx},
and by its set of zeros zer(T) = {x ∈ H : 0 ∈ Tx} . We say that T is monotone if 〈x− y, u− v〉 ≥ 0,
for all (x, u), (y, v) ∈ gra(T). T is said to be maximally monotone if its graph is not contained in the
graph of any other monotone operator. Letting λ > 0, the resolvent of λT is defined by

JλT = (I + λT)−1, (14)

and the Yoshida approximation of T with index λ is

λT =
1
λ
(I − JλT). (15)

The resolvent and Yoshida approximation of λT have the following relationship:

λT ∈ T(JλT). (16)

We follow the notation as [31]. Let B(H1, H2) be the space of bounded linear operators from H1

to H2, and B(H) = B(H, H). We set S(H) = {U ∈ B(H) | U = U∗}, where U∗ denotes the adjoint of
U. In the S(H), the Loewner partial ordering is defined by

(∀U, V ∈ S(H)) U < V ⇔ (∀x ∈ H) 〈x, Ux〉 ≥ 〈x, Vx〉. (17)
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Let α > 0. We set
Pα(H) = {U ∈ S(H) | U < αI}. (18)

Let P be a orthogonal matrix and its inverse be P−1. Let PUP−1 = Λ, where Λ = diag(λ1, · · · , λn)

and λi (i = 1, · · · , n) is the eigenvalue of U. In addition, let Λ1 = diag(
√

λ1, · · · ,
√

λn). Then,√
U = P−1Λ1P, so

√
U is defined as the square root of U ∈ Pα(H). For every U ∈ Pα(H), we define a

scalar product and a norm by

(∀x ∈ H)(∀y ∈ H) 〈x, y〉U = 〈x, Uy〉 and ‖x‖U =
√
〈x, Ux〉. (19)

Let T : H → H be a single-valued operator. We say that T is non-expansive if ‖Tx− Ty‖ ≤ ‖x−
y‖, ∀x, y ∈ H. T is firmly non-expansive if ‖Tx− Ty‖2 + ‖(I− T)x− (I− T)y‖2 ≤ ‖x− y‖2, ∀x, y ∈ H.
T is β− cocoercive for some β ∈ (0,+∞) if for every x ∈ H and y ∈ H, 〈x− y, Tx− Ty〉 ≥ β‖Tx− Ty‖2.
T is averaged if there exists a non-expansive operator R : H → 2H such that T = (1− α)I + αR or for
every x ∈ H and y ∈ H, ‖Tx− Ty‖2 ≤ ‖x− y‖2 − 1−α

α ‖(I − T)x− (I − T)y‖2.
We collect several useful lemmas.

Lemma 1. ([17]) Let T : H → 2H be a maximally monotone operator and λ > 0. Then, the following hold:
(i) JλT : H → H and I − JλT : H → H are firmly non-expansive and maximally monotone;
(ii) the Yoshida approximation λT is λ-cocoercive and maximally monotone.

Lemma 2. ([17]) Let C be a nonempty subset of H and let T : C → H. We have
(i) T is non-expansive if and only if I − T is 1

2 − cocoercive;
(ii) T is firmly non-expansive if and only if I − T is firmly non-expansive;
(iii) T is 1

2ν − averaged if and only if I − T is ν− cocoercive, where ν > 1
2 .

Lemma 3. ([34,35]) Let S be a nonempty subset of H, let T1 : S→ H be α1-averaged and let T2 : S→ H be
α2-averaged. Then, T1T2 is α1+α2−2α1α2

1−α1α2
-averaged.

Lemma 4. ([31]) Let T : H → 2H be a maximally monotone operator, let α > 0 and let U ∈ Pα(H). The scalar
product of H is defined by 〈x, y〉U = 〈x, Uy〉, for any x, y ∈ H. Then, the following hold:
(i) U−1T is maximally monotone;
(ii) JU−1T is firmly non-expansive;
(iii) JU−1T = (U + T)−1 ◦U.

The Kransnoselskii–Mann algorithm is a popular iterative algorithm for finding fixed points of
non-expansive operators. The convergence of it is summarized in the following theorem.

Theorem 1. ([17]) (Kransnoselskii–Mann algorithm) Let C be a nonempty closed convex subset of H, let T :
C → C be a non-expansive operator such that Fix(T) 6= ∅, where Fix(T) denotes the fixed point set of T.
Let λk ∈ (0, 1) such that ∑∞

k=0 λk(1− λk) = +∞. For any x0 ∈ C, define

xk+1 = (1− λk)xk + λkTxk, k ≥ 0. (20)

Then, the following hold:
(i) {xk} is Fejer monotone with respect to Fix(T), i.e., ‖xk+1 − p‖ ≤ ‖xk − p‖, for any p ∈ Fix(T);
(ii) ‖xk+1 − Txk‖ converges strongly to 0;
(iii) {xk} converges weakly to a fixed point in Fix(T).
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3. Computing Method for the Resolvent of Composed Operators

In this section, we consider the problem of computing the resolvent of composed operators (13).
The obtained results extend and generalize the corresponding results of Fukushima [16] and Bauschke
and Combettes [17], respectively. Second, we develop a fixed point approach for computing the
resolvent of U−1 A∗TA. We also propose a simple and efficient iterative algorithm to approximate
the fixed point. The convergence of this algorithm is established in general Hilbert spaces. Finally,
we apply the fixed point method to solve the resolvent of the sum of a finite family of maximally
monotone operators.

3.1. Analytic Approach Method of Resolvent Operator

The following proposition is a direct generalization of Proposition 23.25 of [17].

Proposition 1. Let α > 0 and U ∈ Pα(H). Let T : H2 → 2H2 is a maximally monotone operator, and let
A : H1 → H2 be a continuous linear operator and its adjoint is A∗. Suppose that AU−1 A∗ is invertible.
Let λ > 0, Then, the following hold:
(i) We have

JλU−1 A∗TA(x) = x− λU−1 A∗u with u = (T−1 + λAU−1 A∗)−1(Ax). (21)

(ii) Suppose that AU−1 A∗ = νI, for some ν > 0. Then,

JλU−1 A∗TA(x) = x− λU−1 A∗ νT(Ax). (22)

Proof. By Lemma 4, we know that λU−1 A∗TA is maximally monotone, if λA∗TA is maximally
monotone. Thus, JλU−1 A∗TA(x) is single-valued, for any x ∈ H1.

(i) Let x ∈ H1. Define S := (T−1 + λAU−1 A∗)−1. Notice that Dom(S) = H2, then u = S(Ax) =
(T−1 + λAU−1 A∗)−1(Ax) is well defined. Set p = x− λU−1 A∗u. Then, Ax ∈ (T−1u + λAU−1 A∗u)
and Ap = A(x− λU−1 A∗u) ∈ T−1u. This leads to u ∈ T(Ap). Therefore,

x− p = λU−1 A∗u ∈ λU−1 A∗T(Ap),

which means that
p = (I + λU−1 A∗TA)−1(x) = JλU−1 A∗TA(x).

(ii) Bringing νI = AU−1 A∗ into u of (21), we can find that u = (T−1 + λνI)−1(Ax). Then,
we have

Ax ∈ (T−1 + λνI)u

=⇒ u ∈ T(Ax− λνu)

=⇒ Ax ∈ Ax− λνu + λνT(Ax− λνu)

=⇒ Ax− λνu = (I + λνT)−1(Ax)

=⇒ u =
1

λν
(I − (I + λνT)−1)(Ax),

which is equivalent to
u = λνT(Ax).

Then,
JλU−1 A∗TA(x) = x− λU−1 A∗ λνT(Ax).
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In the Formula (21), T−1 needs to be calculated. However, it is sometimes difficult to evaluate it.
Inspired by the method introduced by Fukushima [16], we provide an alternative way to compute the
resolvent of composed operators, which avoids computing the inverse of operator T.

Proposition 2. Let α > 0 and U ∈ Pα(H). Let T : H2 → 2H2 be a maximally monotone operator, and let
A : H1 → H2 be a continuous linear operator and its adjoint is A∗. Suppose that AU−1 A∗ is invertible.
Then, the resolvent of λU−1 A∗TA is

JλU−1 A∗TA(x) = x− λU−1 A∗u with u =
1
λ
(AU−1 A∗)−1(Ax− z), (23)

where z is the unique solution of 0 ∈ 1
λ (AU−1 A∗)−1(z− Ax)− Tz.

Proof. Let ω = x− λU−1 A∗u. By (21), we have

u = (T−1 + λAU−1 A∗)−1(Ax)⇐⇒ Ax ∈ (T−1 + λAU−1 A∗)u⇐⇒ A(x− λU−1 A∗u) ∈ T−1u

⇐⇒ Aω ∈ T−1u⇐⇒ u ∈ T(Aω). (24)

Let z = Ax− λAU−1 A∗u; then,
z = Aω. (25)

By (25) and ω, we obtain

z = Ax− λAU−1 A∗u⇐⇒ u =
1
λ
(AU−1 A∗)−1(Ax− z). (26)

It follows from (24) and (25) that u ∈ Tz. Taking into account that u ∈ Tz and (26), we get

0 = u− u ∈ 1
λ
(AU−1 A∗)−1(Ax− z)− Tz.

Finally, we come to the conclusion that

JλU−1 A∗TA(x) = x− λU−1 A∗u with u =
1
λ
(AU−1 A∗)−1(Ax− z).

3.2. Fixed-Point Approach Method of Resolvent Operator

In Propositions 1 and 2, the resolvent of composed operators U−1 A∗TA is computed either with
T−1 or requiring AU−1 A∗ to satisfy additional conditions. In practice, it is still difficult to evaluate
it without these conditions. To overcome this difficulty, in this subsection, we propose a fixed point
algorithm to compute the resolvent of U−1 A∗TA. Our method discards these conditions on T−1

and AU−1 A∗.

Lemma 5. Let α > 0 and U ∈ Pα(H). Let T : H2 → 2H2 be a maximally monotone operator, and let
A : H1 → H2 be a continuous linear operator. Let x ∈ H1. Then, the following hold:

JU−1 A∗TA(x) ∈ x−U−1 A∗T(A(JU−1 A∗TA(x))), (27)

and
y ∈ U−1 A∗TA(x)⇐⇒ x = JU−1 A∗TA(x + y). (28)
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Proof. (1) Let x ∈ H1; then, we have

JU−1 A∗TA(x) = (I + U−1 A∗TA)−1x ⇐⇒ x ∈ JU−1 A∗TA(x) + U−1 A∗TA(JU−1 A∗TA(x))

⇐⇒ JU−1 A∗TA(x) ∈ x−U−1 A∗T(A(JU−1 A∗TA(x))).

(2) Let x ∈ H1, we have

y ∈ U−1 A∗TA(x)⇐⇒ x + y ∈ x + U−1 A∗TA(x)

⇐⇒ x = JU−1 A∗TA(x + y).

In the next lemma, we provide a fixed point characterization of the resolvent of composed
operators U−1 A∗TA. To achieve this goal, we define two operators F : H2 → H2 and Q : H2 → H2.
Let x ∈ H1 and λ > 0. Let y ∈ H2, and define

Fy := Ax + (I − λAU−1 A∗)y, (29)

and
Qy := (I − J 1

λ T)Fy. (30)

Lemma 6. Let α > 0 and U ∈ Pα(H). Let T : H2 → 2H2 be a maximally monotone operator, and let
A : H1 → H2 be a continuous linear operator and its adjoint is A∗. Let λ > 0. Then, we have

JU−1 A∗TA(x) = x− λU−1 A∗y (31)

if and only if y is a fixed-point of Q.

Proof. ” =⇒ ” Let JU−1 A∗TA(x) = x − λU−1 A∗y. By (27), we have y ∈ 1
λ T(A(JU−1 A∗TAx)).

Then, y ∈ 1
λ T(A(x− λU−1 A∗y)).

From (28), we obtain

y ∈ 1
λ

T(A(x− λU−1 A∗y))⇐⇒ Ax− λAU−1 A∗y = J 1
λ T(Ax + (I − λAU−1 A∗)y),

thus
Ax− λAU−1 A∗y = J 1

λ T(Ax + (I − λAU−1 A∗)y). (32)

By (29), (30) and (32), we get

Q(y) = (I − J 1
λ T)Fy

= (I − J 1
λ T)(Ax + (I − λAU−1 A∗)y)

= Ax + y− λAU−1 A∗y− J 1
λ T(Ax + (I − λAU−1 A∗)y)

= Ax + y− λAU−1 A∗y− Ax + λAU−1 A∗y = y,

which implies that y is a fixed-point of Q.
”⇐= ” Let y be a fixed-point of Q. Then, we can get (32) via the above.
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According to (32), we have

Ax− λAU−1 A∗y = (I +
1
λ

T)−1(Ax + (I − λAU−1 A∗)y)

⇐⇒ Ax + y− λAU−1 A∗y ∈ (I +
1
λ

T)(Ax− λAU−1 A∗y)

⇐⇒ y ∈ 1
λ

T(Ax− λAU−1 A∗y)

⇐⇒ λy ∈ T(Ax− λAU−1 A∗y),

that is,
λy ∈ T(Ax− λAU−1 A∗y). (33)

Hence, (33) at both ends and at the same time multiplied by U−1 A∗, we obtain

λU−1 A∗y ∈ U−1 A∗T(Ax− λAU−1 A∗y), (34)

and finally
x− λU−1 A∗y ∈ x−U−1 A∗T(Ax− λAU−1 A∗y). (35)

By comparing (35) to (27), it is easy to find that JλU−1 A∗TA(x) = x − λU−1 A∗y. The proof
is completed.

Lemma 7. Let α > 0 and U ∈ Pα(H). Let T : H2 → H2 be a maximally monotone operator, and let
A : H1 → H2 be a continuous linear operator and its adjoint is A∗. Let λ > 0, define operatorW : H2 → H2,
y 7→ −A(x− λU−1 A∗y); then, the following hold:
(i) The operatorW is α

λ‖A‖2 -cocoercive;

(ii) For any λ ∈ (0, 2α
‖A‖2 ), F = I −W is λ‖A‖2

2α -averaged; furthermore, the operator Q = (I − J 1
λ T) ◦ F is

2α
4α−λ‖A‖2 -averaged.

Proof. (i) Let y1, y2 ∈ H2, we have

〈y1 − y2,W(y1)−W(y2)〉 = 〈y1 − y2,−A(x− λU−1 A∗y1) + A(x− λU−1 A∗y2)〉
= 〈A∗y1 − A∗y2,−(x− λU−1 A∗y1) + (x− λU−1 A∗y2)〉

=
1
λ
〈−λA∗y1 + λA∗y2, (x− λU−1 A∗y1)− (x− λU−1 A∗y2)〉.

In virtue of U = U∗ and UU−1 = I, we have

1
λ
〈−λA∗y1 + λA∗y2, (x− λU−1 A∗y1)− (x− λU−1 A∗y2)〉

=
1
λ
〈−λU−1 A∗y1 + λU−1 A∗y2, U(x− λU−1 A∗y1)−U(x− λU−1 A∗y2)〉

=
1
λ
〈(x− λU−1 A∗y1)− (x− λU−1 A∗y2), U(x− λU−1 A∗y1)−U(x− λU−1 A∗y2)〉.
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Because U ∈ Pα(H1) and for any x ∈ H1, 〈x, Ux〉 ≥ α‖x‖2, we obtain

1
λ
〈(x− λU−1 A∗y1)− (x− λU−1 A∗y2), U(x− λU−1 A∗y1)−U(x− λU−1 A∗y2)〉

≥ α

λ
‖(x− λU−1 A∗y1)− (x− λU−1 A∗y2)‖2

≥ α

λ‖A‖2 ‖ − A(x− λU−1 A∗y1)− (−A(x− λU−1 A∗y2))‖2

=
α

λ‖A‖2 ‖W(y1)−W(y2)‖2.

Thus, the operatorW is α
λ‖A‖2 -cocoercive.

(ii) BecauseW = I − F is α
λ‖A‖2 -cocoercive, by Lemma 2 (iii), for any λ ∈ (0, 2α

‖A‖2 ), we have that

F is λ‖A‖2

2α -averaged.
On the other hand, because I − J 1

λ T is firmly non-expansive, it is also 1/2-averaged. Let α1 = 1
2

and α2 = λ‖A‖2

2α , and, by Lemma 3, we find that (I− J 1
λ T) ◦ F is α1+α2−2α1α2

1−α1α2
-averaged also α1+α2−2α1α2

1−α1α2
=

2α
4α−λ‖A‖2 and λ ∈ (0, 2α

‖A‖2 ). We also have

λ ∈ (0,
2α

‖A‖2 )⇐⇒
2α

4α− λ‖A‖2 ∈ (
1
2

, 1).

Then, Q is 2α
4α−λ‖A‖2 -averaged. This completes the proof.

Lemma 6 tells us that the resolvent of composed operators U−1 A∗TA can be computed via the
fixed point of operator Q. Furthermore, Lemma 7 shows that Q is an averaged operator. Therefore,
we can define an iterative algorithm to approximate the fixed point of Q. For any y0 ∈ H2, let the
sequences {uk} and {yk} be defined by{

uk = x− λU−1 A∗yk,

yk+1 = (1− αk)yk + αkQyk,
(36)

where αk ∈ (0, 4α−λ‖A‖2

2α ) and λ ∈ (0, 2α
‖A‖2 ).

Now, we are ready to prove the convergence of the iterative scheme (36).

Theorem 2. Let α > 0 and U ∈ Pα(H). Let T : H2 → 2H2 be a maximally monotone operator, and let
A : H1 → H2 be a continuous linear operator and its adjoint is A∗. Let the sequences {yk} and {uk} be
generated by (36). Assume that ∑+∞

k=0 αk(1− 2α
4α−λ‖A‖2 αk) = +∞. Then, the following hold:

(i) {yk} converges weakly to a fixed-point of Q;
(ii) Furthermore, if inf αk > 0, then {uk} converges strongly to the resolvent JU−1 A∗TA(x).

Proof. (i) By Lemma 7, Q is 2α
4α−λ‖A‖2 -averaged. Then, there exists an non-expansive operator C

such that
Q = (1− β)I + βC,
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where β = 2α
4α−λ‖A‖2 . Therefore, the iterative sequence {yk+1} in (36) can be rewritten as

yk+1 = (1− αk)yk + αkQyk

= (1− αk)yk + αk((1− β)yk + βCyk)

= (1− αkβ)yk + αkβCyk. (37)

The condition on {αk} implies that αkβ ∈ (0, 1) and ∑+∞
k=0 αkβ(1− αkβ) = +∞. It follows from

Lemma 6 that Fix(Q) 6= ∅, and we observe that Fix(Q) = Fix(C). Then, Fix(C) 6= ∅.
According to Theorem 1, we can conclude that (a) limk→+∞ ‖yk − y‖ exists, for any y ∈ Fix(Q) =

Fix(C); (b) limk→+∞ ‖yk − Cyk‖ = 0, and limk→+∞ ‖yk −Qyk‖ = 0; (c) {yk} converges weakly to a
fixed point of C, which is also a fixed point of Q.

(ii) Let y ∈ Fix(Q). By using F as λ‖A‖2

2α -averaged, and I − J 1
λ T as non-expansive, we have

‖Qyk − y‖2 = ‖(I − J 1
λ T)(Ax + (I − λAU−1 A∗)yk)− (I − J 1

λ T)(Ax + (I − λAU−1 A∗)y)‖2

≤ ‖(Ax + (I − λAU−1 A∗)yk)− (Ax + (I − λAU−1 A∗)y)‖2

≤ ‖yk − y‖2 − (
2α

λ‖A‖2 − 1)‖ − A(x− λU−1 A∗yk)− (−A(x− λU−1 A∗y))‖2. (38)

For yk+1 and y, we have

‖yk+1 − y‖2 = ‖(1− αk)(yk − y) + αk(Qyk − y)‖2

= (1− αk)‖yk − y‖2 + αk‖Qyk − y‖2 − αk(1− αk)‖Qyk − yk‖2. (39)

Combining (38) with (39), we obtain

‖yk+1 − y‖2 ≤ (1− αk)‖yk − y‖2 + αk(‖yk − y‖2 − (
2α

λ‖A‖2 − 1)‖ − A(x− λU−1 A∗yk)

− (−A(x− λU−1 A∗y))‖2)− αk(1− αk)‖Qyk − yk‖2

= ‖yk − y‖2 − (
2α

λ‖A‖2 − 1)αk‖A(x− λU−1 A∗yk)− A(x− λU−1 A∗y)‖2

− αk(1− αk)‖Qyk − yk‖2. (40)

Hence, we arrive

(
2α

λ‖A‖2 − 1)αk‖A(x− λU−1 A∗yk)− A(x− λU−1 A∗y)‖2

≤ ‖yk − y‖2 − ‖yk+1 − y‖2 − αk(1− αk)‖Qyk − yk)‖2. (41)

We notice that limk→+∞ ‖yk − y‖ exists, and limk→+∞ ‖yk − Qyk‖ = 0. By letting k → +∞,
the right of inequality (41) is equal to zero. Together with the condition inf αk > 0, and 2α

λ‖A‖2 − 1 > 0.
Then, we obtain

lim
k→+∞

‖A(x− λU−1 A∗yk)− A(x− λU−1 A∗y)‖ = 0. (42)
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By virtue of JλU−1 A∗TA(x) = x− λU−1 A∗y, y ∈ Fix(Q). Then, we have

‖uk − JλU−1 A∗TAx‖2
U = ‖x− λU−1 A∗yk − (x− λU−1 A∗y)‖2

U

= λ〈A∗y− A∗yk, (x− λU−1 A∗yk)− (x− λU−1 A∗y)〉
= λ〈y− yk, A(x− λU−1 A∗yk)− A(x− λU−1 A∗y)〉
≤ ‖yk − y‖‖A(x− λU−1 A∗yk)− A(x− λU−1 A∗y)‖.

Taking into account the fact that limk→+∞ ‖yk − y‖ exists and (42), we obtain from the above
inequality that

lim
k→+∞

‖uk − JλU−1 A∗TAx‖U = 0.

Since the two norms ‖ · ‖ and ‖ · ‖U are equivalent, we have limk→+∞ ‖uk − JλU−1 A∗TAx‖ = 0.
Hence, {uk} converges strongly to the resolvent operator JλU−1 A∗TA. This completes the proof.

Remark 1. Let U = I in (36); then, it reduced to the iterative algorithm introduced in Moudafi [18]. Therefore,
the corresponding result of Moudafi [18] is a special case of ours. At the same time, the proposed iterative
algorithm (36) provides a larger range of relaxation parameters than [18].

3.3. Resolvent of a Sum of m Maximally Monotone Operators with U

In this subsection, we apply the fixed-point approach method that was proposed in Section 3.2 to
solve the resolvent of the sum of a finite number of maximally monotone operators.

Problem 1. Let α > 0 and U ∈ Pα(H). Let m ≥ 2 be an integer. For any i ∈ {1, · · · , m}, let Ti : H → 2H

be a maximally monotone operator. Letting x ∈ H, the problem is to solve the resolvent operator of the form,

y := JU−1 ∑m
i=1 Ti

x. (43)

To solve the resolvent operator (43), we formally reformulate it as a special case of the resolvent
operator (13), which was studied in the previous section. More precisely, we obtain the following
convergence theorem.

Theorem 3. Let α > 0 and U ∈ Pα(H). Let m ≥ 2. For any i ∈ {1, · · · , m}, let Ti : H → 2H be a
maximally monotone operator. Let x ∈ H and let y0

i ∈ H, i = 1, · · · , m. Let the sequences {uk} and {yk
i }m

i=1
be generated by the following:

uk = x− λU−1(
m

∑
i=1

yk
i ),

yk+1
i = (1− αk)yk

i + αk(I − J 1
λ Ti

)(x− yk
i − λU−1

m

∑
i=1

yk
i ), i = 1, · · · , m,

(44)

where αk ∈ (0, 4α−λm
2α ) and λ ∈ (0, 2α

m ) satisfy the following conditions:
(a) ∑ αk(

4α−λ
2α − αk) = +∞;

(b) inf αk > 0.
Then, the sequence {uk} converges strongly to the resolvent operator (43).

Proof. LetH = H × H × · · · × H. The inner product ofH is defined by

〈x, y〉H =
m

∑
i=1
〈xi, yi〉, ∀x = (x1, · · · , xm) ∈ H, y = (y1, · · · , ym) ∈ H.
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The associated norm is

‖x‖H =

√
m

∑
i=1
‖xi‖2, ∀x = (x1, · · · , xm) ∈ H.

Let us introduce the operators:

A : H → H : x 7→ (x, · · · , x),

and
T : H → H : (x1, · · · , xm) 7→ (T1x1, · · · , Tmxm).

Therefore, T is a maximally monotone operator, and A is a bounded linear operator
with ‖A‖ =

√
m.

Let y ∈ H, x ∈ H, by the definition of A, we have

〈y, Ax〉H =
m

∑
i=1
〈yi, x〉 = 〈

m

∑
i=1

yi, x〉 = 〈A∗y, x〉.

Hence, we have ∀y ∈ H

A∗y =
m

∑
i=1

yi. (45)

In addition, letting x ∈ H, we have

U−1 A∗TA(x) = U−1 A∗(T1x, · · · , Tmx) = U−1
m

∑
i=1

Tix. (46)

Let yk = (yk
1, · · · , yk

m) ∈ H. Then, the iterative scheme (44) can be rewritten as uk = x− λU−1 A∗yk,

yk+1 = (1− αk)yk + αk(I − J 1
λ T)(y

k + A(x− λU−1 A∗yk)).
(47)

According to Theorem 2 (ii), we can conclude that the sequence {uk} converges strongly to the
resolvent operator (43).

4. Applications

In this section, we apply the obtained results in the last section to solve the problem of computing
proximity operators of convex functions.

The first problem is a generalization of the proximity operator of a convex function consists of a
linear transformation. Before we state our main problems, let’s introduce some notation. Let f : H →
(−∞,+∞], f is proper, if dom f = {x ∈ H | f (x) < +∞} 6= ∅. We denote by Γ0(H) the class of proper,
lower semi-continuous convex functions from H to (−∞,+∞].

Problem 2. Let α > 0 and U ∈ Pα(H). Let A ∈ B(H, G). Let ϕ ∈ Γ0(G) and let x ∈ H. We consider the
following scaled proximity operator:

proxU
ϕ◦A(x) = arg min

u∈H

{
1
2
‖u− x‖2

U + ϕ(Au)
}

. (48)
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Theorem 4. For Problem 2, let y0 ∈ G, and set uk = x− λU−1 A∗yk,

yk+1 = (1− αk)yk + αk(I − prox 1
λ ϕ)(yk + A(x− λU−1 A∗yk)),

(49)

where αk ∈ (0, 4α−λ‖A‖2

2α ) and λ ∈ (0, 2α
‖A‖2 ) such that ∑+∞

k=0 αk(1− 2α
4α−λ‖A‖2 αk) = +∞ and inf αk > 0.

Then, the sequence {uk} converges strongly to the proximity operator proxU
ϕ (x).

Proof. Because the proximity operator proxU
ϕ◦A(x) is equivalent to the resolvent operator

JU−1 A∗◦∂ϕ◦A(x). In Theorem 2, let T = ∂ϕ, we can conclude that the sequence {uk} generated by (49)
converges strongly to the proximity operator proxU

ϕ◦A(x).

Next, we consider the problem of computing scaled proximity operators of a finite sum of
convex functions.

Problem 3. Let α > 0 and U ∈ Pα(H). Let m ≥ 2 be an integer. For any i ∈ {1, · · · , m}, let fi ∈ Γ0(H)

and let x ∈ H. We consider the problem of a computing scaled proximity operator:

proxU
∑m

i=1 fi
(x) = arg min

u∈H

{
1
2
‖u− x‖2

U +
m

∑
i=1

fi(u)

}
. (50)

Theorem 5. For Problem 3, let y0
i ∈ H and set


uk = x− λU−1(

m

∑
i=1

yk
i ),

yk+1
i = (1− αk)yk

i + αk(I − prox 1
λ fi

)(x− yk
i − λU−1

m

∑
i=1

yk
i ) i = 1, · · · , m,

(51)

where αk ∈ (0, 4α−λ‖A‖2

2α ) and λ ∈ (0, 2α
‖A‖2 ) such that ∑+∞

k=0 αk(1− 2α
4α−λ‖A‖2 αk) = +∞ and inf αk > 0.

Then, the sequence {uk} converges strongly to the proximity operator proxU
∑m

i=1 fi
(x).

Proof. Let Ti = ∂ fi, i = 1, · · · , m. We know that the proximity operator (50) is equivalent to the
resolvent operator (43), that is,

proxU
∑m

i=1 fi
(x) = JU−1 ∑m

i=1 Ti
(x). (52)

Since J 1
λ Ti

= prox 1
λ fi

, for any i = 1, · · · , m. By Theorem 3, we can conclude that the sequence

{uk} generated by (51) converges strongly to the proximity operator proxU
∑m

i=1 fi
(x).

5. Conclusions

Inspired and motivated by the work of Moudafi [18], in this paper, we discussed the resolvent
of composed operators U−1 A∗TA. Under some additional conditions, we obtained explicit solutions
of the resolvent of composed operators. The obtained results generalized and extended the classical
results of Fukushima [16] and Bauschke and Combettes [17]. On the other hand, we presented a
fixed point algorithm approach for computing the resolvent of composed operators. By virtue of the
Krasnoselskii–Mann algorithm for finding fixed points of non-expansive operators, we proved that the
strong convergence of the proposed fixed-point iterative algorithm. As applications, we employed the
proposed algorithm to solve the scaled proximity operator of a convex function composed of a linear
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operator (48), and the proximity operator of a finite sum of proper, lower semi-continuous convex
functions (50).

We observed that the considered resolvent of composed operators (13) is closely related to
Newton’s method to non-smooth sparse optimization problems. However, how to choose the
symmetric positive definite matrix in finite dimensional spaces for implementing the proposed
algorithm more efficiently is not clear now. We will discuss it in future work.
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