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Abstract: In this paper, the Lax pair of the modified nonlinear Schrödinger equation (mNLS) is
derived by means of the prolongation structure theory. Based on the obtained Lax pair, the mNLS
equation on the half line is analyzed with the assistance of Fokas method. A Riemann-Hilbert
problem is formulated in the complex plane with respect to the spectral parameter. According to the
initial-boundary values, the spectral function can be defined. Furthermore, the jump matrices and
the global relations can be obtained. Finally, the potential q(x, t) can be represented by the solution of
this Riemann-Hilbert problem.

Keywords: prolongation structure; mNLS equation; Riemann-Hilbert problem; initial-boundary
value problem

1. Introduction

In mathematics and physics, nonlinear partial differential equations play an important role
due to their abundant mathematical structure and properties. Many works on nonlinear evolution
equations have been studied, such as the Hamiltonian structure [1,2], the infinite conservation
laws [3,4], the Bäcklund transformation [5,6] and so on [7–9]. Besides, the exact solution of these
equations, which can be expressed in various forms by different methods, is also a significant subject
of soliton research [10–22]. In recent years, with the development of soliton theory, more and more
researchers pay attention to the Riemann-Hilbert approach. The Riemann-Hilbert approach was
introduced by Fokas to analyze the initial-boundary values problem for linear and nonlinear partial
differential equations [23,24]. In the past 20 years, many researchers have discussed a lot of nonlinear
integrable equations for the initial-boundary values problem [25–32,32–41]. They have all made a
great contribution to the development of this method. The core idea of this method is to construct
the associated Riemann-Hilbert problem by the Lax pair of the integrable equation, and then in
addition to the initial-boundary values problem, the long-time asymptotic behavior of the solution
can be analyzed [42–46]. However, as we all know, it is difficult to determine whether a nonlinear
evolution equation possesses a Lax pair or not. As far as we are concerned, the prolongation structure
method is an efficient way to obtain the Lax pair, which was firstly proposed in 1975 by Wahlquist and
Estabrook [47]. In recent years, a large number of scholars have improved this method, for example,
Hermann deduced the prolongation structure method connection in 1976 [48], Deconinck applied the
prolongation structure method to semi-discrete systems firstly [49], Wang used this approach to get
the integrability of many nonlinear wave equation [50] and so on [51,52]. In this way, we can get the
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Lax pair of the nonlinear evolution equation easily as long as it is integrable.
In this paper, we mainly talk about the modified nonlinear Schrödinger(mNLS) equation

iqt + qxx + i(|q|2q)x + 2ρ|q|2q = 0, (1)

which is very important in plasma physics. Recently, many properties of this equation have been
studied, such as the Hamiltonian structure [53], the Darboux transformation [54], the numerical
solutions [55,56] and so on [57,58]. Actually, it can become the derivative NLS equation by certain
gauge transformation [59]. In this paper, we mainly discuss the mNLS equation on the half line.
For simplicity, we let ρ = 1. Supposing that the solution q(x, t) of the mNLS equation exists, and the
initial-boundary values are defined as follows,
Initial values:

q0(x) = q(x, 0), 0 < x < ∞, (2)

Boundary values:
g0(t) = q(0, t), g1(t) = qx(0, t), 0 < t < T. (3)

In order to formulate a Riemann-Hilbert problem, we need to reconstruct the Lax pair of
Equation (1). Based on the initial-boundary values, the corresponding spectral functions can be
defined. Eventually, the potential function q(x, t) can be expressed in terms of the solution of this
Riemann-Hilbert problem.

This paper is divided into four sections. The construction of the prolongation structure for the
mNLS equation is in Section 2 and then in Section 3, we reconstruct the Lax pair to formulate the
Riemann-Hilbert problem and some conditions and relations are derived. In the last section, we define
the spectral functions according to the initial-boundary values and the Riemann-Hilbert problem is
investigated.

2. The Prolongation Structures of the mNLS Equation

In order to obtain the Lax pair of the mNLS equation, we analyze the prolongation structure of
this equation. This process mainly involves a fundamental theorem in Lie algebra [51].

Theorem 1. Suppose X and Y are two elements of Lie algebra g = sl(n+ 1, C) with [X, Y] = aY, (a 6= 0) and
X ∈ range ad Y, it means that there exist Z ∈ g such that [Y, Z] = X, so we obtain Y = e± and X = ± 1

2 ah,
where e± are the nilpotent and h is the neutral elements of g.

In the beginning, we introduce these variables

ū = p, ux = v, ūx = px = q. (4)

Then Equation (1) is equivalent to this set of equations as follows
ux − v = 0,

px − q = 0,

iut + vx + 2iuuxū + iu2ūx + 2u2ū = 0,

ipt − qx + 2iūūxu + iū2ux − 2ū2u = 0.

(5)
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We define the set of two-forms I = {α1, α2, α3, α4},where
α1 = du ∧ dt + vdt ∧ dx,

α2 = dp ∧ dt + qdt ∧ dx,

α3 = idu ∧ dx− dv ∧ dt + (2iuvp + iu2q + 2u2 p)dt ∧ dx,

α4 = idp ∧ dx + dq ∧ dt + (ip2v + 2ipqu− 2p2u)dt ∧ dx.

(6)

It is easy to find that I is a closed ideal, actually, dI ⊂ I. After that, we define the differential
one-forms

ωi = dyi − Fi(u, v, p, q; yi)dx− Gi(u, v, p, q; yi)dt. (7)

At the same time, we suppose Fi = Fi
j yj, Gi = Fi

j yj. According to the general theory of exterior

differential systems, if Ĩ = I
⋃

ωi is a closed ideal, it must satisfy

dωi =
4

∑
i=1

( f i
j αj) + ni

j ∧ω j. (8)

Combining (5)–(8), we obtain

Fv = Fq = 0,

iGv + Fu = 0,

iGq − Fp = 0,

− Guv− Gpq + (2iuvp + iqu2 + 2u2 p)Gv

− (2ipqu + ip2v− 2p2u)Gq + [F, G] = 0.

(9)

where the bracket [, ] denotes the Lie bracket, namely [F, G] = FG− GF.
After a lengthy calculation, one solution of this set of equations can be derived

F = x0 + ux1 + px2,

G = ix1v− ix2q− u2 px1 − p2ux2 + iux3 − ipx4 − ipux5 + x6.
(10)

with the integrability conditions

2ix1 − x3 − i[x1, x5] = 0, 2ix2 + x4 + i[x2, x5] = 0,

i[x0, x3] + [x1, x6] = 0,−i[x0, x4] + [x2, x6] = 0,

[x0, x5] + [x1, x4]− [x2, x3] = 0, [x1, x3] = 0, [x2, x4] = 0, [x0, x6] = 0.

(11)

where all {xi}, i = {1, 2, ..., 6.} are pending matrices. Here {x1, x2, ..., x6} depend on an incomplete Lie
algebra, called prolongation algebra.

The next step is to embed the prolongation algebra in sl(n+ 1, C). According to (11) and Theorem 1,
we deduce that x1 and x2 is nilpotent and x5 is neutral element. So we have

x1 =

(
0 ξ

0 0

)
, x2 =

(
0 0
−ξ 0

)
, x5 =

(
−ξ2 0

0 ξ2

)
. (12)
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Bringing the above results into (11), we obtain

x0 =

(
−iξ2 + i 0

0 iξ2 − i

)
, x3 =

(
0 −2iξ3 + 2iξ
0 0

)
,

x4 =

(
0 0

−2iξ3 + 2iξ 0

)
, x6 =

(
−2iξ4 − 2i + 4iξ2 0

0 2iξ4 + 2i + 4iξ2

)
.

(13)

where ξ is spectral parameter. Hence, the expressions of F and G can be presented eventually

F =

(
−iξ2 + i ξq
−ξ q̄ iξ2 − i

)
,

G =

(
−2iξ4 − 2i + 4iξ2 + iξ2|q|2 2ξ3q− 2ξq− ξ|q|2q + iξqx

−2ξ3q̄ + 2ξ q̄ + ξ|q|2q̄ + iξ q̄x 2iξ4 + 2i− 4iξ2 − iξ2|q|2

)
.

(14)

So, the mNLS equation admits Lax pair

ψx = Fψ, ψt = Gψ, (15)

where ψ = (v1, v2)
T .

3. Spectral Analysis

From the previous paragraph, we know the Lax pair of the mNLS equation. By introducing

Q =

(
0 q
−q̄ 0

)
, σ3

(
1 0
0 −1

)
. (16)

where the q̄ denotes the conjugation of q, the Lax pair (15) can be rewritten in this form{
ψx + iξ2σ3ψ− iσ3ψ = ξQψ,

ψt + 2iξ4σ3 + 2iσ3 − 4iξ2σ3 = −iξ2Q2 + 2iξ3Q− 2ξQ + ξQ3 + iξσ3Qx.
(17)

In our analysis, we assume that q decays to zero sufficiently fast as x → ±∞. So, it is correct
to extend the column vector ψ to a 2× 2 matrix. For simplicity, we substitute λ2 for ξ2 − 1. Letting
ψ = Ψe−i(ξ2x+2ξ4t)σ3 , then the Lax pair (17) becomes

Ψx + iξ2[σ3, Ψ] = ξQΨ,

Ψt + 2iξ4[σ3, Ψ] = (−iξ2Q2σ3 + 2ξ3Q− 2ξQ + ξQ3 + iξσ3Qx)Ψ
(18)

We can write (18) in full derivative form

d(ei(ξ2x+2ξ4t)σ̂3 Ψ(x, t; ξ)) = ei(λ2x+2λ4t)σ̂3U(x, t; ξ)Ψ. (19)

where
U = U1dx + U2dt

= ξQdx + (−iξ2Q2σ3 + 2ξ3Q− 2ξQ + ξQ3 + iξσ3Qx)dt.
(20)

and σ̂3 denotes the operator to matrix by σ̂3M = [σ3, M], hence it is easy to prove eσ̂3 M = eσ3 Me−σ3 ,
where M is a 2× 2 matrix.
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3.1. The Reconstruction of Lax Pair

Expanding the solution of (19) in this way

Ψ = D +
Ψ1

ξ
+

Ψ2

ξ2 +
Ψ3

ξ3 +O( 1
ξ4 ), ξ → ∞, (21)

where D, Ψ1, Ψ2, Ψ3 are independent of ξ. Bringing this equation into the first equation of (18), and
comparing the same order of ξ’s frequency, we obtain the following equations

O(1) : Dx + i[σ3, Ψ2]− i[σ3, D] = QΨ1;

O(ξ) : i[σ3, Ψ1] = QD;

O(ξ2) : i[σ3, D] = 0.

(22)

Using the same method, taking (21) into another equation of (18), we have

O(1) : Dt − 4i[σ3, Ψ2] + 2i[σ3, D] = −iQ2σ3Ψ2 + 2QΨ3 − 2QΨ1 + Q3Ψ1 + iσ3QxΨ1;

O(ξ) : 2i[σ3, Ψ3]− 4i[σ3, Ψ1] = −iQ2σ3Ψ1 + 2QΨ2 − 2QD + Q3D + iσ3QxD;

O(ξ2) : 2i[σ3, Ψ2]− 4i[σ3, D] = −iQ2σ3D + 2QΨ1;

O(ξ3) : 2i[σ3, Ψ1] = 2QD;

O(ξ4) : 2i[σ3, D] = 0.

(23)

For (22), We find that D is a diagonal matrix from O(ξ2). Without loss of generality, we suppose

D =

(
D11

0 0
0 D22

0

)
. (24)

From O(ξ) we have

Ψo
1 =

i
2

QDσ3. (25)

where Ψo
1 denotes the off-diagonal part of Ψ1. So, we can get Dx from O(1) easily

Dx =
i
2

Q2σ3D. (26)

For (23), after a lengthy calculation, we get

Dt =
3i
4

Q4σ3D +
1
2

QQxD− 1
2

QxQD

= (
3i
4
|q|4 + q̄qx − qq̄x)σ3D.

(27)

The mNLS equation admits the conservation law

2(|q|2)t = (2iqx q̄− 3|q|4 − 2iqq̄x)x. (28)

From the above results, we find (26) and (27) admit the conservation law. Define

D(x, t) = ei
∫ (x,t)
(0,0) ∆(x,t)σ3 . (29)

where ∆ is the differential one-form, and it is given by

∆(x, t) = ∆1dx + ∆2dt = −1
2

qq̄dx + [
3
4

q2q̄2 +
i
2
(qq̄x − qx q̄)]dt. (30)
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It is not difficult to find that the integral is path independent. So, we introduce

Ψ(x, t; ξ) = ei
∫ (x,t)
(0,0) ∆σ̄3 µ(x, t; ξ)D(x, t), 0 < x < ∞, 0 < t < T. (31)

Then the form of the Lax pair (18) can be replaced with

d(ei(λ2x+2λ4t)σ̂3 µ(x, t; ξ)) = W(x, t; ξ). (32)

where
W(x, t; ξ) = ei(λ2x+2λ4t)σ̂3 V(x, t; ξ)µ,

V = V1dx + V2dt = e−i
∫ (x,t)
(0,0) ∆σ̂3(U − i∆σ3).

(33)

Considering the definitions of U and ∆, we have

V1(x, t; ξ) =

 i
2 qq̄ ξqe−2i

∫ (x,t)
(0,0) ∆

−ξ q̄e2i
∫ (x,t)
(0,0) ∆ − i

2 qq̄

 ,

V2(x, t; ξ) =

(
V11

2 (x, t; ξ) V12
2 (x, t; ξ)

V21
2 (x, t; ξ) V22

2 (x, t; ξ)

)
.

(34)

where

V11
2 (x, t; ξ) = iξ2qq̄− 3i

4
q2q̄2 +

1
2
(qq̄x − qx q̄),

V12
2 (x, t; ξ) = (2ξ3 − 2ξq− ξq|q|2 + iξqx)e

−2i
∫ (x,t)
(0,0) ∆,

V21
2 (x, t; ξ) = (−2ξ3q̄ + 2ξ q̄ + ξ q̄|q|2 + iξ q̄x)e

2i
∫ (x,t)
(0,0) ∆,

V22
2 (x, t; ξ) = −iξ2qq̄ +

3i
4

q2q̄2 − 1
2
(qq̄x − qx q̄).

Thus, (32) changes into {
µx + iλ2[σ3, µ] = V1µ,

µt + 2iλ4[σ3, µ] = V2µ.
(35)

3.2. The Riemann-Hilbert Problem And Some Relations

Supposing that q(x, t) is smooth function in the domain D = {0 < x < ∞, 0 < t < T}. Then we
define the eigenfunctions µj(x, t, ; ξ)(j = 1, 2, 3) of (34) as follows

µj(x, t; ξ) = I +
∫ (x,t)

(xj ,tj)
e−i(λx+2λ2t)σ̂3W(x′, t′; ξ), 0 < x < ∞, 0 < t < T. (36)

The integral curve is from (xj, tj) to (x, t), where (x1, t1) = (0, T), (x2.t2) = (0, 0) and (x3, t3) =

(∞, t). Furthermore, the point (x, t) is an arbitrary point in the domain D. We know that the integral of
(36) is independent of the path of integration. Without loss of generality, we will consider the particular
integral paths as follows, see Figure 1.
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Figure 1. Integral paths.

By this method, we get

µ1(x, t; ξ) = I +
∫ x

0
eiλ2(x′−x)σ̂3(V1µ1)(x′, t; λ)dx′

− e−iλ2xσ̂3

∫ T

t
e2iλ4(t′−t)σ̂3(V2µ1)(0, t′; ξ)dt′,

µ2(x, t; ξ) = I +
∫ x

0
eiλ2(x′−x)σ̂3(V1µ2)(x′, t; ξ)dx′

− e−iλ2xσ̂3

∫ t

0
e2iλ4(t′−t)σ̂3(V2µ2)(0, t′; ξ)dt′,

µ3(x, t, ; ξ) = I −
∫ x

∞
eiλ2(x′−x)σ̂3(V1µ3)(x′, t; ξ)dx′.

(37)

Noting that the first column of µj includes e−2i[λ2(x′−x)+2λ4(t′−t)]. So, in different integral paths,
we have the following inequalities

`1 : (x1, t1)→ (x, t) : 0 < x′ < x, t < t′ < T,

`2 : (x2, t2)→ (x, t) : 0 < x′ < x, 0 < t′ < t,

`3 : (x3, t3)→ (x, t) : x < x′ < ∞.

(38)

Due to the exponential function decaying sufficiently, these inequalities imply that the first of the
functions µj(x, t; ξ), (j = 1, 2, 3) are analytic if

µ
(1)
1 (x, t; ξ) : ξ ∈ {Imξ2 ≥ 0} ∩ {Imξ4 ≤ 0},

µ
(1)
2 (x, t; ξ) : ξ ∈ {Imξ2 ≥ 0} ∩ {Imξ4 ≥ 0},

µ
(1)
3 (x, t; ξ) : ξ ∈ {Imξ2 ≤ 0}.

(39)

At the same time, the second column of the functions µj(x, t; ξ), (j = 1, 2, 3) are analytic if

µ
(2)
1 (x, t; ξ) : ξ ∈ {Imξ2 ≤ 0} ∩ {Imξ4 ≥ 0},

µ
(2)
2 (x, t; ξ) : ξ ∈ {Imξ2 ≤ 0} ∩ {Imξ4 ≤ 0},

µ
(2)
3 (x, t; ξ) : ξ ∈ {Imξ2 ≥ 0}.

(40)

Hence, we get
µ1(x, t; ξ) = (µD2

1 (x, t; ξ), µD3
1 (x, t; ξ)),

µ2(x, t; ξ) = (µD1
2 (x, t; ξ), µD4

2 (x, t; ξ)),

µ3(x, t; ξ) = (µD3∪D4
3 (x, t; ξ), µD1∪D2

3 (x, t; ξ)).

(41)

where µ
Di
j stands for µj is analytic if ξ ∈ Di, where Di = ωi ∪ (−ωi),−ωi = {−ξ ∈ C|ξ ∈ ωi}, ωi =

{ξ ∈ C| i−1
4 π < ξ < i

4 π}, see Figure 2.
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Figure 2. Dj, j = 1, 2, 3, 4.

The eigenfunctions µj(j = 1, 2, 3) possess these properties.

• detµ1(x, t; ξ) = detµ2(x, t; ξ) = detµ3(x, t; ξ) = 1;
• µ11

j (x, t; ξ) = µ22
j (x, t; ξ̄), µ12

j (x, t; ξ) = µ21
j (x, t; ξ̄);

• µ11
j (x, t;−ξ) = µ11

j (x, t; ξ), µ12
j (x, t;−ξ) = −µ12

j (x, t; ξ),

µ21
j (x, t;−ξ) = −µ21

j (x, t; ξ), µ22
j (x, t;−ξ) = µ22

j (x, t; ξ).

where the eigenfunctions µj(x, t; ξ) =

(
µ11

j (x, t; ξ) µ12
j (x, t; ξ)

µ21
j (x, t; ξ) µ22

j (x, t; ξ)

)
(j = 1, 2, 3).

For the purpose of formulating a Riemann-Hilbert problem, our main task is to find the jump
matrices for every Di(i = 1, 2, 3, 4) to any other regions. Then we define the spectral functions s(ξ)
and S(ξ)  µ3(x, t; ξ) = µ2(x, t; ξ)e−i(λ2x+2λ4t)σ̂3 s(ξ),

µ1(x, t; ξ) = µ2(x, t; ξ)e−i(λ2x+2λ4t)σ̂3 S(ξ).
(42)

According to the above definition, we have

µ1(x, t; ξ) = µ3(x, t; ξ)e−i(λ2x+2λ4t)σ̂3(s(ξ))−1S(ξ). (43)

Combining (37) with (42), we acquire

s(ξ) = µ3(0, 0; ξ), S(ξ) = (e2iλ4Tσ̂3 µ2(0, T; ξ))−1. (44)

Owing to (37), it is clear to see that

µ1(0, t; ξ) = I −
∫ T

t
e2iλ4(t′−t)σ̂3(V2µ1)(0, t′; ξ)dt′,

µ2(0, t; ξ) = I +
∫ t

0
e2iλ4(t′−t)σ̂3(V2µ2)(0, t′; ξ)dt′,

µ3(x, 0; ξ) = I +
∫ x

∞
eiλ2(x′−x)σ̂3(V1µ3)(x′, 0; ξ)dx′,

µ2(x, 0; ξ) = I +
∫ x

0
eiλ2(x′−x)σ̂3(V1µ2)(x′, 0; ξ)dx′,

(45)

Considering the initial values q(x, 0) = u0(x), q(0, t) = g0(t), boundary values q(0, t) = g0(t) and
qx(0, t) = g1(t). For convenience, the initial-boundary values of q̄(x, t) can be written in this form,
namely q̄(x, 0) = ū0(x), q̄(0, t) = ḡ0(t), and q̄x(0, t) = ḡ1(t). Then V2(0, t; ξ) and V1(x, 0; ξ) can be
expressed with
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V1(x, 0; ξ) =

(
i
2 |u0|2 ξu0ei

∫ x
0 |u0|2dx′

−ξū0e−i
∫ x

0 |u0|2dx′ − i
2 |u0|2

)
,

V2(0, t; ξ) =

(
V11

2 (0, t; ξ) V12
2 (0, t; ξ)

V21
2 (0, t; ξ) V22

2 (0, t; ξ)

)
.

(46)

where

V11
2 (0, t; ξ) = iξ2|g0|2 −

3i
4
|g0|4 −

1
2
(g0 ḡ1 − g1 ḡ0) = −V22

2 (x, t; ξ),

V12
2 (0, t; ξ) = (2ξ3g0 − 2ξg0 − ξg0|g0|2 + iξg1)e−2i

∫ t
0 ∆2(0,t′)dt′ ,

V21
2 (0, t; ξ) = (−2ξ3 ḡ0 + 2ξ ḡ0 + ξ ḡ0|g0|2 + iξ ḡ1)e2i

∫ t
0 ∆2(0,t′)dt′ .

with

∆2(0, t′) = 3
4 |g0|4 + i

2 (g0 ḡ1 − g1 ḡ0).

Due to µj have symmetry, the s(ξ) and S(ξ) also have symmetry

s11(ξ) = s22(ξ̄), s21(ξ) = s12(ξ̄),
S11(ξ) = S22(ξ̄), S21(ξ) = S12(ξ̄).

Without loss of generality, we assume

s(ξ) =

(
a(ξ̄) b(ξ)
b(ξ̄) a(ξ)

)
, S(ξ) =

(
A(ξ̄) B(ξ)
B(ξ̄) A(ξ)

)
. (47)

According to (42) and (44), we have

s(ξ) = I −
∫ 0

∞
eiλ2(x′−x)σ̂3(V1µ3)(x′, 0; ξ)dx′,

S(ξ) = (I +
∫ T

0
e2iλ4t′ σ̂3(V2µ2)(0, t′; ξ)dt′)−1.

(48)

The spectral functions s(ξ), S(ξ) have the following properties

•
(

b(ξ)
a(ξ)

)
=

(
µ12

3 (0, 0; ξ)

µ22
3 (0, 0; ξ)

)
= µ

(2)
3 (0, 0; ξ),(

e−4iλ4T B(ξ)
A(ξ̄)

)
=

(
µ12

2 (0, T; ξ)

µ22
2 (0, T; ξ)

)
= µ

(2)
2 (0, T; ξ).

• a(−ξ) = a(ξ), b(−ξ) = −b(ξ),
A(−ξ) = A(ξ), B(−ξ) = −B(ξ).

• dets(ξ) = detS(ξ) = 1.
• a(ξ) = 1 + O( 1

ξ ), b(ξ) = O( 1
ξ ), ξ → ∞, Imξ2 ≥ 0,

A(ξ) = 1 + O( 1
ξ ), B(ξ) = O( 1

ξ ), ξ → ∞, Imξ4 ≥ 0.

These spectral functions do not exist independently, but depend on each other and satisfy certain
relationships, we call it global relation

B(ξ)a(ξ)− A(ξ)b(ξ) = e4iλ4Tc+(ξ), Imξ2 ≥ 0. (49)

where

c+(ξ) =
∫ ∞

0 e2iλ2x′(V1µ3)(x′, T; ξ)dx′.
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For simplicity, we define M(x, t; ξ)

M+ = (
µD1

2
a(ξ)

, µD1∪D2
3 ), ξ ∈ D1,

M− = (
µD2

1
d(ξ)

, µD1∪D2
3 ), ξ ∈ D2,

M+ = (µD3∪D4
3 ,

µD3
1

d(ξ̄)
), ξ ∈ D3,

M− = (µD3∪D4
3 ,

µD4
2

a(ξ̄)
), ξ ∈ D4.

(50)

where
d(ξ) = a((ξ)A(ξ̄)− b(ξ)B(ξ̄), ξ ∈ D̄2. (51)

Synthesizing the above definitions, we can get

detM(x, t; ξ) = 1, (52)

and
M(x, t; ξ) = I + O(

1
ξ
), ξ → ∞. (53)

Theorem 2. Given a smooth function q(x, t). Define M(x, t; ξ) as (50), and define µj(x, t; ξ)(j = 1, 2, 3) like
(37). Then the jump matrices can be derived through

M+(x, t; ξ) = M−(x, t; ξ)J(x, t; ξ), ξ4 ∈ R, (54)

where

J =



J1(x, t; ξ), argξ2 = 0,

J2(x, t; ξ), argξ2 =
π

2
,

J3(x, t; ξ) = J2 J−1
1 J4, argξ2 = π,

J4(x, t; ξ), argξ2 =
3
2

π.

(55)

and

J1 =

(
1
aā

b
ā e−2iθ(ξ)

b̄
a e2iθ(ξ) 1

)
,

J2 =

(
1 0

−Γ(ξ)e2iθ(ξ) 1

)
,

J4 =

(
1 Γ(ξ̄)e2iθ(ξ)

0 1

)
.

(56)

with
θ(ξ) = λ2x + 2λ4t = (ξ2 − 1)x + 2(ξ2 − 1)2t,

Γ(ξ) =
B(ξ̄)

a(ξ)d(ξ)
.

(57)

According to definition, we have to consider the residue conditions of M(x, t; ξ). By analyzing,
we can know that both a(ξ) and d(ξ) have an even zero. Hence, we suppose that

1. a(ξ) has 2n simple zeros {ε j}2n
j=1, 2n = 2n1 + 2n2. Furthermore, ε j(j = 1, 2, ..., 2n1) lie in D1,

ε̄ j(j = 1, 2, ..., 2n2) lie in D2.
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2. d(ξ) has 2N simple zeros {γj}2N
j=1, 2N = 2N1 + 2N2. In addition, γj(j = 1, 2, ..., 2N1) lie in D3,

γ̄j(j = 1, 2, ..., 2N2) lie in D4.
3. a(ξ) and d(ξ) do not have any of the same zeros.

Theorem 3. For convenience, the mark [M(x, t; ξ)]1 denotes the first column of M(x, t; ξ). Similarly,
[M(x, t; ξ)]2 denotes the second column. At the same time, we let ȧ(ξ) = da

dξ . Then, we get the residue
condition as follows:

(i) Res{[M(x, t; ξ)]1, ε j} =
1

ȧ(ε j)b(ε j)
e2iθ(ε j)[M(x, t; ε j)]2, j = 1, 2, ..., 2n1,

(ii) Res{[M(x, t; ξ)]2, ε̄ j} =
1

ȧ(ε̄ j)b(ε̄ j)
e−2iθ(ε̄ j)[M(x, t; ε̄ j)]1, j = 1, 2, ..., 2n2,

(iii) Res{[M(x, t; ξ)]1, γj} =
B(γ̄j)

a(γj)ḋ(γj)
e2iθ(γj)[M(x, t; γj)]2, j = 1, 2, ..., 2N1,

(iv) Res{[M(x, t; ξ)]2, γ̄j} =
B(γ̄j)

a(γ̄j)ḋ(γ̄j)
e2iθ(γ̄j)[M(x, t; γ̄j)]1, j = 1, 2, ..., 2N2.

(58)

Proof. Just prove (i), and the other proof can be proved in the same way. Firstly, we take account of

M(x, t; ξ) = (
µ

D1
2 a(ξ)

, µD1∪D2
3 ), the simple zeros ε j(j = 1, 2, ..., 2n1) of a(ξ) are the simple poles of µ

D1
2

a(ξ) .
Then we get

Res{ µ
D1
2 (x,t;ξ)

a(ξ) , ε j} = lim
ξ→ε j

(ξ − ε j)
µ

D1
2 (x,t;ξ)

a(ξ) = lim
ξ→ε j

µ
D1
2 (x,t;ε j)
a(ξ)−a(ε j)

ξ−ε j

=
µ

D1
2 (x,t;ε j)

ȧ(ε j)
,

Then taking ξ = ε j into the equation

µD1∪D2
3 = e−2iθ(ξ)b(ξ)µD1

2 + a(ξ)µD4
2 ,

we obtain

µD1∪D2
3 (x, t; ε j) = e−2iθ(ε j)b(ε j)µ

D1
2 (x, t; ε j) + a(ε j)µ

D4
2 (x, t; ε j),

Finally,

Res{ µ
D1
2

a(ξ) , ε j} = e2iθ(ε j)

ȧ(ε j)b(ε j)
µD1∪D2

3 (x, t; ε j).

Now, we discuss how to derive the potential q(x, t) from the spectral functions µj(x, t; ξ)(j =
1, 2, 3). Reviewing what we did before, when (21) is a solution of (19), we have Ψo

1 = i
2 QDσ3. Suppose

µ = I + m(1)

ξ + m(2)

ξ2 + m(3)

ξ3 + O(ξ4), ξ → ∞,

is a solution of (32).
As ξ → ∞, letting m(x, t) = m(1)

12 (x, t), namely

m(x, t) = lim
ξ→∞

(ξµj(x, t; ξ))12.

By direct calculation, we have

q(x, t) = 2im(x, t)e2i
∫ (x,t)
(0,0) ∆m(x, t), (59)

After that, it is clear to find that

qq̄ = 4|m|2, qq̄x − qx q̄ = 4(mm̄x −mxm̄)− 32i|m|4. (60)



Mathematics 2019, 7, 170 12 of 17

and
∆ = −2|m|2dx + [2i(mm̄x −mxm̄) + 28|m|4]dt. (61)

Eventually, we can get the final form of the potential q(x, t).

4. The Spectral Map and the Regular Riemann-Hilbert Problem

4.1. The Spectral Map

Definition 1. For initial values q0(x) = q(x, 0), the map S can be defined by

S : {q0(x)} → {a(ξ), b(ξ)}

with (
b(ξ)
a(ξ)

)
= µ

(2)
3 (x, 0; ξ), Imξ2 ≥ 0,

where µ3(x, 0; ξ) is the unique solution of the Volterra linear integral equation

µ3(x, 0; ξ) = I +
∫ x

∞ eiλ2(x′−x)σ̂3 V1(x′, 0; ξ)µ3(x′, 0; ξ)dx′

and V1(x, 0; ξ) is given by Equation (46).

Proposition 1. a(ξ) and b(ξ) possess these properties.

(i) a(ξ) and b(ξ) are analytic for {ξ ∈ C|Imξ2 > 0} and continuous for {ξ ∈ C|Imξ2 ≥ 0},
(ii) a(ξ)a(ξ̄)− b(ξ)b(ξ̄) = 1, ξ2 ∈ R,
(iii) a(ξ) = 1 + O( 1

ξ ), b(ξ) = O( 1
ξ ), ξ → ∞, Imξ2 ≥ 0,

(iv) a(−ξ) = a(ξ), b(−ξ) = −b(ξ), Imξ2 ≥ 0,
(v) We define Q : {a(ξ), b(ξ)} → {q0(x)}, as the inverse of map S, with

q0(x) = 2im(x)e4i
∫ x

0 |m(x′)|2dx′ , m(x) = lim
ξ→∞

(ξM(x)(x, ξ))12. (62)

where M(x)(x, ξ) is the unique solution of the following Riemann-Hilbert problem.

• M(x)(x, ξ) =

M(x)
− (x, ξ), Imξ2 ≤ 0

M(x)
+ (x, ξ), Imξ2 ≥ 0

is a meromorphic function.

• M(x)
+ (x, ξ) = M(x)

− (x, ξ)J(x)(x, ξ), ξ2 ∈ R,
where

J(x)(x, ξ) =

 1
a(ξ)a(ξ̄)

b(ξ)
a(ξ) e−2iλ2x

− b(ξ̄)
a(ξ) e2iλ2x 1

 , ξ2 ∈ R. (63)

• M(x)(x, ξ) = I + O( 1
ξ ), ξ → ∞.

• a(ξ) has 2n simple zeros {ε j}2n
j=1, 2n = 2n1 + 2n2, such that ε j, (j = 1, 2, ..., 2n1) lie in D1, and

ε̄ j, (j = 1, 2, ..., 2n2) lie in D2.

• The first column of M(x)
+ has simple poles at ξ = ε j, j = 1, 2, ..., 2n1. Furthermore, the second column of

M(x)
− has simple poles at ξ = ε̄ j, j = 1, 2, ..., 2n2. The relevant residues are given by

Res{[M(x)(x, ξ)]1, ε j} =
e2i(ε2

j−1)x
ȧ(ε j)b(ε j)

[M(x)(x, ε j)]2, j = 1, 2, ..., 2n1, (64)

Res{[M(x)(x, ξ)]2, ε̄ j} =
e−2i(ε̄2

j−1)x
ȧ(ε̄ j)b(ε̄ j)

[M(x)(x, ε̄ j)]1, j = 1, 2, ..., 2n2. (65)
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Definition 2. For boundary values g0(t) = q(0, t), g1(t) = qx(0, t), the map S̃ can be defined by

S̃ : {g0(t), g1(t)} → {A(ξ), B(ξ)}

with (
B(ξ)
A(ξ)

)
= µ

(2)
1 (0, t; ξ), Imξ2 ≥ 0,

where µ1(0, t; ξ) is the unique solution of the Volterra linear integral equation

µ1(0, t; ξ) = I −
∫ T

t e2iλ4(t′−t)σ̂3 V2(0, t′; ξ)µ1(0, t′, ξ)dt′

and V2(0, t; ξ) is given by (46).

Proposition 2. A(ξ) and B(ξ) possess these properties.

(i) A(ξ) and B(ξ) are analytic for {ξ ∈ C|Imξ4 > 0} and continuous {ξ ∈ C|Imξ4 ≥ 0} ,

(ii) A(ξ)A(ξ̄)− B(ξ)B(ξ̄) = 1, ξ4 ∈ R,
(iii) A(ξ) = 1 + O( 1

ξ ), B(ξ) = O( 1
ξ ), ξ → ∞, Imξ4 ≥ 0,

(iv) A(−ξ) = A(ξ), B(−ξ) = −B(ξ), Imξ4 ≥ 0,
(v) We define Q̃ : {A(ξ), B(ξ)} → {g0(t), g1(t)}, as the inverse of map S̃, with

g0(t) = 2im(1)
12 (t)e2i

∫ t
0 ∆2(t′)dt′ ,

g1(t) = (4m(2)
12 + |g0(t)|2m(1)

12 (t))e2i
∫ t

0 ∆2(t′)dt′ + ig0(t)(2m(2)
22 (t) + |g0(t)|2),

(66)

where

∆2(t) = 4|m(1)
12 |4 + 8(Re[m(1)

12 m̄(3)
12 ]− |m(1)

12 |2Re[m(2)
22 ]),

with the functions m(i)(t)(i = 1, 2, 3.) are depend on

M(t)(t, ξ) = I + m(1)(t)
ξ + m(2)(t)

ξ2 + m(3)(t)
ξ3 + O( 1

ξ4 ), ξ → ∞,

where Mt(t, ξ) is the unique solution of the following Riemann-Hilbert problem

• M(t)(t, ξ) =

M(t)
− (t, ξ), Imξ4 ≤ 0

M(t)
+ (t, ξ), Imξ4 ≥ 0

is a meromorphic function.

• M(t)
+ (t, ξ) = M(t)

− (t, ξ)J(t)(t, ξ), ξ4 ∈ R,
where

J(t)(t, ξ) =

 1
A(ξ)A(ξ̄)

B(ξ)
A(ξ̄)

e−4iλ4t

− B(ξ̄)
A(ξ)

e4iλ4t 1

 , ξ4 ∈ R. (67)

• M(t)(t, ξ) = I + O( 1
ξ ), ξ → ∞.

• A(ξ) has 2N simple zeros {γj}2N
j=1, 2N = 2N1 + 2N2, such that γj(j = 1, 2, ..., 2N1) lie in D3, and

γ̄j(j = 1, 2, ..., 2N2) lie in D4.

• The first column of M(t)
+ has simple poles at ξ = γj, j = 1, 2, ..., 2N1. And the second column of M(t)

− has
simple poles at ξ = γ̄j, j = 1, 2, ..., 2N2. The relevant residues are given by

Res{[M(t)(t, ξ)]1, γj} =
e4i(γ2

j−1)2t

Ȧ(γj)B(γj)
[m(t)(t, γj)]2, j = 1, 2, ..., 2N1, (68)

Res{[M(t)(t, ξ)]2, γ̄j} =
e−4i(γ̄2

j−1)2t

Ȧ(γ̄j)b(γ̄j)
[M(t)(t, γ̄j)]1, j = 1, 2, ..., 2N2. (69)
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4.2. The Regular Riemann-Hilbert Problem

Theorem 4. Given the smooth function q0(x), which is compatible with g0(t) and g1(t). The spectral functions
a(ξ),b(ξ),A(ξ), and B(ξ) are defined according to the previous definitions. Furthermore, they satisfy the global
relation (49). Clearly, it becomes B(ξ)a(ξ)− A(ξ)b(ξ) = 0 when ξ → ∞. Define the M(x, t; ξ) as the solution
of this following Riemann-Hilbert problem.

• M(x, t; ξ) is a sectionally meromorphic function in {ξ ∈ C|ξ4 ∈ R}.
• The residue condition of M(x, t; ξ) satisfies Theorem 3
• M(x, t; ξ) satisfies the jump condition

M+(x, t; ξ) = M−(x, t; ξ)J(x, t; ξ), ξ4 ∈ R,

where the jump matrices are defined by (55)–(57).
• M(x, t; ξ) = I + O( 1

ξ ), ξ → ∞.

Then, M(x, t; ξ) not only exists but is unique. In this way, the solution of the mNLS equation can be
derived, which can be defined by

q(x, t) = 2im(x, t)e2i
∫ (x,t)
(0,0) ∆,

m(x, t) = lim
ξ→∞

(ξµj(x, t; ξ))12,

∆ = −2|m|2dx + [2i(mm̄x −mxm) + 28|m|4]dt.

(70)

Besides, q(x, t) also satisfies the initial-boundary values condition

q(x, 0) = q0(x), q(0, t) = g0(t), and qx(0, t) = g1(t).

Proof. Actually, if there are no zeros of a(ξ) and d(ξ), then the 2× 2 function M(x, t; ξ) satisfies a
non-singular Riemann-Hilbert problem. Due to the jump matrices J(x, t; ξ) possessing symmetry,
we can find that this problem has a unique solution. On the other hand, when a(ξ) and d(ξ) have
a certain number of zeros, by specific mapping, the singular Riemann-Hilbert problem can become
no zeros with a system of algebraic equations; the unique solvability can be proved by the following
theorem.

Theorem 5. The Riemann-Hilbert problem in Theorem 4 with the vanishing boundary condition

M(x, t; ξ)→ 0, ξ → ∞,

has only the zero solution.

Proof. Firstly, we suppose that the matrix function M(x, t; ξ) is a solution of the Riemann-Hilbert
problem in Theorem 4. At the same time, A† means the complex conjugate transpose of A, where A is
a 2× 2 matrix. We define

H+(ξ) = M+(ξ)M†
−(−ξ̄), Imξ4 ≥ 0,

H−(ξ) = M−(ξ)M†
+(−ξ̄), Imξ4 ≤ 0,

(71)

where the x and t are dependent with each other. H+(ξ) and H−(ξ) are analytic in {ξ ∈ C|Imξ4 > 0}
and {ξ ∈ C|Imξ4 < 0}, respectively. Due to the symmetry, we can obtain from (54) and (55)

J†
1 (−ξ̄) = J1(ξ), J†

3 (−ξ̄) = J3(ξ), J†
2 (−ξ̄) = J4(ξ). (72)

Then
H+(ξ) = M−(ξ)J(ξ)M†

−(−ξ̄), Imξ4 ∈ R,

H−(ξ) = M−(ξ)J†(−ξ̄)M†
−(−ξ̄), Imξ4 ∈ R.

(73)



Mathematics 2019, 7, 170 15 of 17

From the above two equations, it is easy to find that H+(ξ) = H−(ξ). This means that H+(ξ) and
H−(ξ) define an entire function decaying at infinity, hence the H+(ξ) ≡ 0 and H−(ξ) ≡ 0. Finding
J3(ih̄)(h̄ ∈ R) is a 2× 2 unit Hermitian matrix for any h̄ ∈ R. It is not difficult to see that J3(ih̄)(h̄ ∈ R)
is a positive definite matrix. Now that H−(h̄) = 0 for h̄ ∈ iR, we have

M+(ih̄)J3(ih̄)M†
+(ih̄) = 0. (74)

After simple calculation, we have M+(ih̄) = 0 for h̄ ∈ R. Therefore, M+(ξ) = 0, M−(ξ) = 0.

Remark 1. q(x, t) satisfies the mNLS equation.
In fact, if M(x, t; ξ) is the solution of the Riemann-Hilbert problem defined by Theorem 4 and q(x, t) is

defined as the previous definition, with the help of the dressing method [45], we can find that q(x, t) satisfies the
Lax pair (18). Hence, q(x, t) satisfies the mNLS equation.

Remark 2. Using the same proof method in Reference [32] can we prove that q(x, t) satisfies the initial values
q(x, 0) = q0(x) and boundary values q(0, t) = g0(t), qx(0, t) = g1(t), so in this paper, we leave this proof out.

5. Conclusions

In this paper, we mainly studied the initial-boundary values problem for the mNLS equation on
the half line. Before we did this, with the help of prolongation structure theory, the Lax pair of this
equation was derived. Then we reconstructed the Lax pair to obtain a Riemann-Hilbert problem, and
therefore, the potential function has been represented by its solution. In future work, the long time
asymptotic behavior for the solutions will be analyzed.
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