Three Results on the Nonlinear Differential Equations and Differential-Difference Equations

Jianxun Rong and Junfeng Xu *

School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, China; yungginfun@163.com
* Correspondence: xujunf@gmail.com or jfxu@wyu.edu.cn; Tel.: +86-136-3189-7728

Received: 21 May 2019; Accepted: 11 June 2019; Published: 13 June 2019

Abstract: We mainly study the transcendental entire solutions of the differential equation

$$f^n(z) + P(f) = p_1 e^{\alpha_1 z} + p_2 e^{\alpha_2 z},$$

where p_1, p_2, α_1 and α_2 are nonzero constants satisfying $\alpha_1 \neq \alpha_2$ and $P(f)$ is a differential polynomial in f of degree $n - 1$. We improve Chen and Gao’s results and partially answer a question proposed by Li (J. Math. Anal. Appl. 375 (2011), pp. 310–319).

Keywords: entire solution; Nevanlinna theory; difference equation; differential-difference equation

MSC: 34M05; 39A10; 39B32

1. Introduction and Main Results

In the past several decades, a great deal of mathematical effort in complex analysis has been devoted to studying differential equations, differential-difference equations and difference equations. The essential reason is penetration and application of Nevanlinna theory for the difference operator, see [1–4]. In this study, we assume readers are familiar with the standard notations and fundamental results used in the theory such as the characteristic function $T(r, f)$, the proximity function $m(r, f)$ and the counting function $N(r, f)$, see [5–8]. Moreover, we use the notations $\rho(f)$ and $\rho_2(f)$ to denote the order and the hyper-order of f, respectively.

Many scholars recently have had tremendous interest in developing solvability and existence of solutions of non-linear differential equations and differential-difference equations in the complex plane, see [9–15].

In 2011, Li [16] considered to find all entire solutions of the following nonlinear differential equation

$$f^n(z) + P(f) = p_1 e^{\lambda z} + p_2 e^{-\lambda z}$$

and obtained the following result.

Theorem 1. (see [16]) Let $n \geq 2$ be an integer, $P(f)$ be a differential polynomial in f of degree at most $n - 1$ and λ, p_1, p_2 be three nonzero constants. If f is a meromorphic function of Equation (1) satisfying $N(r, f) = S(r, f)$, then there exist two nonzero constants c_1, c_2 ($c_1^{\#} = p_1$) and a small function c_0 of f such that

$$f = c_0 + c_1 e^{\frac{\lambda z}{n}} + c_2 e^{-\frac{\lambda z}{n}}.$$

Li [16] also investigated $p_1 e^{\alpha_1 z} + p_2 e^{\alpha_2 z}$ for two distinct constants α_1 and α_2 instead of $p_1 e^{\lambda z} + p_2 e^{-\lambda z}$ in the right side of Equation (1) and obtained the following results.
Theorem 2. (see [16]) Let \(n \geq 2 \) be an integer, \(P(f) \) be a differential polynomial in \(f(z) \) of degree at most \(n - 2 \) and \(\alpha_1, \alpha_2, p_1, p_2 \) be nonzero constants satisfying \(\alpha_1 \neq \alpha_2 \). If \(f(z) \) is a transcendental meromorphic solution of the following equation

\[
f''(z) + P(f) = p_1 e^{\alpha_1 z} + p_2 e^{\alpha_2 z}
\]

(2)

satisfying \(N(r, f) = S(r, f) \), then one of the following relations holds:

1. \(f(z) = c_0(z) + c_1 e^{\frac{\alpha_1}{2} z} \);
2. \(f(z) = c_0(z) + c_2 e^{\frac{\alpha_2}{2} z} \);
3. \(f(z) = c_1 e^{\frac{\alpha_1}{2} z} + c_2 e^{\frac{\alpha_2}{2} z} \) and \(\alpha_1 + \alpha_2 = 0 \),

where \(c_0(z) \) is a small function of \(f \) and constants \(c_1 \) and \(c_2 \) satisfy \(c_1^0 = p_1 \) and \(c_2^0 = p_2 \), respectively.

For further study, Li proposed a related question:

Question 1. How to find the solutions of Equation (2) if \(\deg P(f) = n - 1 \)?

The question was studied by Chen and Gao [17]. They partially answered it and obtained the following result.

Theorem 3. (see [17]) Let \(a(z) \) be a nonzero polynomial and \(p_1, p_2, \alpha_1, \alpha_2 \) be nonzero constants such that \(\alpha_1 \neq \alpha_2 \). If \(f(z) \) is a transcendental entire solution of finite order of the differential equation

\[
f^2(z) + a(z)f'(z) = p_1 e^{\alpha_1 z} + p_2 e^{\alpha_2 z}
\]

(3)

satisfying \(N(r, \frac{1}{f}) = S(r, f) \), then \(a(z) \) must be a constant and one of the following relations holds:

1. \(f(z) = c_1 e^{\frac{\alpha_1}{2} z}, ac_1 \alpha_1 = 2p_2 \) and \(\alpha_1 = 2\alpha_2 \);
2. \(f(z) = c_2 e^{\frac{\alpha_2}{2} z}, ac_2 \alpha_2 = 2p_1 \) and \(\alpha_2 = 2\alpha_1 \),

where \(c_1 \) and \(c_2 \) are constants satisfying \(c_1^2 = p_1 \) and \(c_2^2 = p_2 \), respectively.

Now, we remove the condition that \(f(z) \) is a finite-order function, improve Theorem 3 and obtain the following result.

Theorem 4. Let \(a(z) \) be a nonzero polynomial and \(p_1, p_2, \alpha_1, \alpha_2 \) be nonzero constants such that \(\alpha_1 \neq \alpha_2 \). Suppose that \(f(z) \) is a transcendental entire solution of the differential Equation (3) satisfying \(N(r, \frac{1}{f}) = S(r, f) \). Then \(a(z) \) must be a constant and one of the following relations holds:

1. \(f(z) = c_1 e^{\frac{\alpha_1}{2} z}, ac_1 \alpha_1 = 2p_2 \) and \(\alpha_1 = 2\alpha_2 \);
2. \(f(z) = c_2 e^{\frac{\alpha_2}{2} z}, ac_2 \alpha_2 = 2p_1 \) and \(\alpha_2 = 2\alpha_1 \),

where \(c_1 \) and \(c_2 \) are constants satisfying \(c_1^2 = p_1 \) and \(c_2^2 = p_2 \), respectively.

Next we consider the general case in Question 1 and obtain the following theorem.

Theorem 5. Let \(n \geq 2 \) be an integer. Suppose that \(P(f) \) is a differential polynomial in \(f(z) \) of degree \(n - 1 \) and that \(\alpha_1, \alpha_2, p_1 \) and \(p_2 \) are nonzero constants such that \(\alpha_1 \neq \alpha_2 \). If \(f(z) \) is a transcendental meromorphic solution of the differential Equation (2) satisfying \(N(r, f) = S(r, f) \), then \(\rho(f) = 1 \) and one of the following relations holds:

1. \(f(z) = c_1 e^{\frac{\alpha_1}{2} z} \) and \(c_1^0 = p_1 \);
2. \(f(z) = c_2 e^{\frac{\alpha_2}{2} z} \) and \(c_2^0 = p_2 \), where \(c_1 \) and \(c_2 \) are constants;
We can easily verify the inequality $T(r, f) \leq N_1(r, \frac{1}{f}) + T(r, \varphi) + S(r, f)$, where $N_1(r, \frac{1}{f})$ denotes the counting function corresponding to simple zeros of f and $\varphi(\neq 0)$ is equal to $\alpha_1 + \alpha_2 f^2 - n(a_1 + a_2)ff' + n(n - 1)(f')^2 + nf''$.

Three examples are shown to illustrate the cases (1)–(3) of Theorem 5.

Example 1. Let $f(z) = e^z$ be an entire solution of the differential equation

$$f^2(z) + f'(z) = e^{2z} + e^z,$$

where $c_1 = 1$ and $p_1 = 1$. It implies the case (1) occurs.

Example 2. Let $f(z) = 2e^{2z}$ be an entire solution of the differential equation

$$f^2(z) + \frac{1}{2}f''(z) = e^{2z} + 4e^{4z},$$

where $c_2 = 2$ and $p_2 = 4$. It implies case (2) occurs.

Example 3. Let $f(z) = e^z - 1$ be an entire solution of the differential equation

$$f^2(z) + (f' - 1) = e^{2z} - e^z.$$

We can easily verify the inequality $T(r, f) \leq N_1(r, \frac{1}{f}) + T(r, \varphi) + S(r, f)$, where $\varphi = 2f^2 - 6ff' + 2(f')^2 + 2f'' = 2$. It implies case (3) occurs.

Remark 1. From Theorem 4 and Example 3, we conjecture that case (3) in Theorem 5 can be removed if $N(r, 1/f) = S(r, f)$.

In [18], Wang and Li investigated the following differential-difference equation

$$f^n(z) + q(z)f^{(k)}(z + c) = ae^{ibz} + de^{-ibz}$$

and obtained the existence of entire solutions when $n \geq 3$.

In 2018, Chen and Gao went far to study Equation (4) with $n = 2$. They obtained the following theorem.

Theorem 6. (see [17]) Let $a(z)$ be a nonzero polynomial, $k \geq 0$ be an integer and p_1, p_2, λ, c be nonzero constants. If $f(z)$ is a transcendental entire solution of finite order of the differential-difference equation

$$f^2(z) + a(z)f^{(k)}(z + c) = p_1 e^{\lambda z} + p_2 e^{-\lambda z},$$

then $a(z)$ must be a constant and one of the following relations holds:

1. $f(z) = \pm \frac{1}{2}a\left(\frac{1}{2}\right)^k + c_1 e^{\lambda z} + c_2 e^{-\lambda z}$ and $e^{\alpha c} = -1$, when k is odd;
2. $f(z) = \pm \frac{1}{2}a\left(\frac{1}{2}\right)^k + c_1 e^{\lambda z} + c_2 e^{-\lambda z}$ and $e^{\alpha c} = 1$, when k is even and $k > 0$, where a, c_1 and c_2 are constants with $\frac{1}{2}\alpha^4 d^4(\lambda z)^k = p_1 p_2$ and $c_1^2 = p_1 (i = 1, 2)$;
3. $f(z) = \pm \frac{1}{2}a + c_1 e^{\lambda z} + c_2 e^{-\lambda z}$ and $e^{\alpha c} = 1$, when $k = 0$, where a, c_1 and c_2 are constants with $\frac{1}{2}\alpha^4 d^4 = p_1 p_2$ or $\frac{2}{2}\alpha^2 d^4 = p_1 p_2$ and $c_1^2 = p_1 (i = 1, 2)$.

For the right side of Equations (4) and (5), a question to be raised is how to find the existence of solutions if $e^{\lambda z}$ and $e^{-\lambda z}$ can be replaced by a linear combination of $e^{\alpha_1 z}$ and $e^{\alpha_2 z}$ for two distinct constants α_1 and α_2. We consider the question and obtain the following result.
Theorem 7. Let $\alpha_1, \alpha_2, p_1, p_2$ and h be nonzero constants satisfying $\alpha_1 \neq \alpha_2$. Suppose that $k \geq 0$ and $n \geq 2$ are integers and that $q(z)$ is a nonzero polynomial. If $f(z)$ is a transcendental entire solution with $p_2(f) < 1$ of the differential-difference equation

$$f''(z) + q(z)f^{(k)}(z + h) = p_1 e^{\alpha_1 z} + p_2 e^{\alpha_2 z},$$

then we have $\rho(f) = 1$, $q(z)$ must be a constant and one of the following relations holds:

1. $f(z) = c_1 e^{\alpha_1 z}, \quad q c_1 \left(\frac{\alpha_1}{n}\right)^k e^{\alpha_1 h} = p_2, \quad \alpha_1 = n \alpha_2$ and $c_1 = p_1$;
2. $f(z) = c_2 e^{\alpha_2 z}, \quad q c_2 \left(\frac{\alpha_2}{n}\right)^k e^{\alpha_2 h} = p_1, \quad \alpha_2 = n \alpha_1$ and $c_2^2 = p_2$;
3. If $n = 2$, we have $T(r, f) \leq N_{11}(r, 1/f) + T(r, q) + S(r, f)$, where $N_{11}(r, 1/f)$ and q are the same as defined in Theorem 5. If $n = 3$, we have $T(r, f) = N_{11}(r, 1/f) + S(r, f)$. If $n \geq 4$, we only have the cases (1) and (2).

Next we give three examples to show existence of solutions of Equation (6).

Example 4. Let $f(z) = e^z$. Then f is a transcendental entire solution of the following differential-difference equation

$$f^3(z) + f'(z + 2\pi i) = e^{2z} + e^z,$$

where $\alpha_1 = 3 = 3\alpha_2$, $c_1 = 1$, $q = 1$ and $p_1 = p_2 = 1$. Thus, case (1) occurs.

Example 5. Let $f(z) = \sqrt{2} e^z$. Then f is a transcendental entire solution of the following differential-difference equation

$$f^2(z) + \sqrt{2} f^{(3)}(z + 2\pi i) = 2e^{2z} + 2e^{2z},$$

where $\alpha_2 = 2 = 2 \alpha_1$, $c_2 = \sqrt{2}$, $q = \sqrt{2}$ and $p_1 = p_2 = 2$. Thus, case (2) occurs.

Example 6. Let $f(z) = e^z - 1$. Then f is a transcendental entire solution of the following equation

$$f^2(z) + f(z + \pi i) = e^{2z} - 3e^z.$$

A routine computation yields $T(r, f) \leq N_{11}(r, \frac{1}{f}) + T(r, q) + S(r, f)$, where $q = 2f^2 - 6ff' + 2(f')^2 + 2ff'' = 2$. Thus, case (3) occurs.

Example 7. Let $f(z) = e^z + e^{-z}$. Then f is a transcendental entire solution of the following differential-difference equation

$$f^3(z) + f''(z + \pi i) = e^{3z} + e^{-3z}.$$

A routine computation yields $T(r, f) = N_{11}(r, \frac{1}{f}) + S(r, f)$.

Remark 2. From Examples 6 and 7, we conjecture that case (3) in Theorem 7 can be removed if $N(r, 1/f) = S(r, f)$ for $n = 2, 3$.

Remark 3. In Theorem 3, our result holds for $\alpha_1 \neq \alpha_2$. However, if $\alpha_1 + \alpha_2 = 0$, we just know the solutions satisfy case (3) for $n = 2, 3$. The expression of solutions can be obtained when $n = 2$ in Theorem 6.

2. Some Lemmas

In this section, we introduce several lemmas to prove three theorems.
Lemma 1. (see [5]) Let $f(z)$ be an entire function and k be a positive integer. Then

$$m\left(r, \frac{f^k(z)}{f(z)}\right) = S(r, f).$$

Lemma 2. (see [3]) Let $c \in \mathbb{C}\setminus\{0\}$, $\epsilon > 0$ and $f(z)$ be a meromorphic function of $\rho_2(f) < 1$. Then

$$m\left(r, \frac{f(z + c)}{f(z)}\right) = o\left(\frac{T(r, f)}{1 - \rho_2(f)^{-\epsilon}}\right)$$

outside of an exceptional set of finite logarithmic measures.

Lemma 3. (see [8]) Suppose that $f_1(z), f_2(z), \ldots, f_n(z) (n \geq 2)$ are meromorphic functions and that $g_1(z), g_2(z), \ldots, g_n(z) (n \geq 2)$ are entire functions satisfying the following conditions:

1. $f_1(z)e^{g_1(z)} + f_2(z)e^{g_2(z)} + \cdots + f_n(z)e^{g_n(z)} \equiv 0$;
2. $g_j(z) - g_k(z)$ are not constants for $1 \leq j < k \leq n$;
3. For $1 \leq j \leq n$ and $1 \leq h < k \leq n$, $T(r, f_j(z)) = o(T(r, e^{g_h(z) - g_k(z)}))(r \to \infty, r \notin E)$, where $E \subset [1, \infty)$ is a finite linear measure or finite logarithmic measure.

Then $f_j(z) \equiv 0$ ($j = 1, 2, \ldots, n$).

Applying Lemmas 1 and 2 to Theorem 2.3 of [19], we get the following lemma, which is a version of the difference analogue of the Clunie lemma.

Lemma 4. Let f be a transcendental meromorphic solution of $\rho_2(f) < 1$ of a difference equation of the form

$$H(z, f)P(z, f) = Q(z, f),$$

where $H(z, f)$, $P(z, f)$, $Q(z, f)$ are difference polynomials in f such that the total degree of $H(z, f)$ in f and its shifts is n, and that the corresponding total degree of $Q(z, f)$ is $\leq n$. If $H(z, f)$ contains just one term of maximal total degree, then for any $\epsilon > 0$

$$m(r, P(z, f)) = S(r, f)$$

possibly outside of an exceptional set of finite logarithmic measure.

3. Proof of Theorem 4

Proof. Denote $P_1(f) := a(z)f'(z)$. Suppose $f(z)$ be a transcendental entire solution of Equation (3). Differentiating Equation (3), we obtain

$$2ff'' + P_1' = a_1p_1e^{a_1z} + a_2p_2e^{a_2z}.$$ \hfill (7)

Eliminating e^{a_2z} from Equations (3) and (7) gives

$$a_2f^2 - 2ff' + a_2P_1 - P_1' = (a_2 - a_1)p_1e^{a_1z}.$$ \hfill (8)

Differentiating Equation (8) yields

$$2a_2ff' - 2(f')^2 - 2ff'' + a_2P_1' - P_1'' = a_1(a_2 - a_1)p_1e^{a_1z}.$$ \hfill (9)

It follows from Equations (8) and (9) that

$$\varphi = Q.$$
where
\[
\varphi = a_1a_2f^2 - 2(a_1 + a_2)ff' + 2(f')^2 + 2ff''
\]
and
\[
Q = -a_1a_2P_1 + (a_1 + a_2)P_1' - P_1''.
\]

Here we distinguish two cases below.

Case 1. \(\varphi \neq 0 \).

Similar to the proof of Theorem 3 [17], we can obtain a contradiction.

Case 2. \(\varphi \equiv 0 \).

By taking \(n = 2 \), we use the method of Case 1 of Theorem 5 to obtain \(t_1 = \frac{a_1}{2} \) and \(t_2 = \frac{a_2}{2} \), where \(t_i = \frac{f}{r} \) (\(i = 1, 2 \)).

Now if \(t_1 = \frac{a_1}{2} \), then \(f(z) = c_1e^{\frac{a_1}{2}z} \), where \(c_1 \) is a constant satisfying \(c_1^2 = P_1 \). Substituting these formulas into Equation (3), we have \(a(z)c_1a_1 = 2P_2 \) and \(a_1 = 2a_2 \), where \(a(z) \) must be a constant. Let \(a := a(z) \).

Similarly, if \(t_2 = \frac{a_2}{2} \), then we have \(f(z) = c_2e^{\frac{a_2}{2}z} \), \(a_2a_2 = 2P_1 \) and \(a_2 = 2a_1 \), where \(c_2 \) is a constant satisfying \(c_2^2 = P_2 \).

4. Proof of Theorem 5

Proof. Assume that \(f(z) \) is a transcendental meromorphic solution of Equation (2) with \(N(r,f) = S(r,f) \).

A differential polynomial \(P(f) \) with \(\deg P(f) = n - 1 \) can be written in the following form
\[
P(f) = \sum_{i=1}^{n-1} a_iM_i(f) = a_1M_1(f) + a_2M_2(f) + \cdots + a_{n-1}M_{n-1}(f),
\]
where \(a_i \) are the small functions of \(f \) and \(M_i(f) = f^{n_0}(f')^{n_1} \cdots (f^{(k)})^{n_k} \) are the differential monomials such that \(\deg M_i(f) = n_0 + n_1 + \cdots + n_k = i \leq n - 1 \).

We can represent \(P(f) \) as
\[
P(f) = \frac{a_1M_1(f)}{f}f + \frac{a_2M_2(f)}{f^2}f^2 + \cdots + \frac{a_{n-1}M_{n-1}(f)}{f^{n-1}}f^{n-1}.
\]

By Lemma 1, we derive
\[
m\left(r, \frac{a_iM_i(f)}{f^i} \right) = m\left(r, \frac{a_if^{n_0}(f')^{n_1} \cdots (f^{(k)})^{n_k}}{f^i} \right) = S(r,f)
\]
for \(1 \leq i \leq n - 1 \). Furthermore, we have
\[
m(r, P(f)) \leq (n - 1)m(r, f) + S(r, f).
\]

Since \(N(r, f) = S(r, f) \)
\[
T(r, P(f)) \leq (n - 1)T(r, f) + S(r, f)
\]
holds.

By Equation (10), we obtain
\[T(r, p_1e^{\alpha_1 z} + p_2e^{\alpha_2 z}) = T(r, f^n(z) + P(f)) \]
\[\leq T(r, f^n(z)) + T(r, P(f)) + O(1) \]
\[\leq nT(r, f) + (n - 1)T(r, f) + S(r, f) \]
\[= (2n - 1)T(r, f) + S(r, f) \] (11)

and

\[T(r, p_1e^{\alpha_1 z} + p_2e^{\alpha_2 z}) = T(r, f^n(z) + P(f)) \]
\[\geq T(r, f^n(z)) - T(r, P(f)) + O(1) \]
\[\geq nT(r, f) - (n - 1)T(r, f) + S(r, f) \]
\[= T(r, f) + S(r, f). \] (12)

It follows from Equations (11) and (12) that

\[T(r, f) + S(r, f) \leq T(r, p_1e^{\alpha_1 z} + p_2e^{\alpha_2 z}) \leq (2n - 1)T(r, f) + S(r, f), \]

which implies \(\rho(f) = 1 \).

We next turn to proving conclusions (1)–(3).

Differentiating Equation (2), we have

\[nf^{n-1}f' + P' = \alpha_1p_1e^{\alpha_1 z} + \alpha_2p_2e^{\alpha_2 z}. \] (13)

Eliminating \(e^{\alpha_2 z} \) from Equations (2) and (13) gives

\[\alpha_2f^n - nf^{n-1}f' + \alpha_2P - P' = (\alpha_2 - \alpha_1)p_1e^{\alpha_1 z}. \] (14)

Differentiating Equation (14) yields

\[n\alpha_2f^{n-1}f' - n(n - 1)f^{n-2}(f')^2 - nf^{n-1}f'' + \alpha_2P' - P'' = \alpha_1(\alpha_2 - \alpha_1)p_1e^{\alpha_1 z}. \] (15)

By Equations (14) and (15), we have

\[f^{n-2}\varphi = Q, \]

where

\[\varphi = \alpha_1\alpha_2f^2 - n(\alpha_1 + \alpha_2)ff' + n(n - 1)(f')^2 + nf'' \] (16)

and

\[Q = -\alpha_1\alpha_2P + (\alpha_1 + \alpha_2)P' - P''. \]

We still consider two cases below.

Case 1. \(\varphi \equiv 0 \).

Dividing with \(f^2 \) on both sides in Equation (16) and recalling \(\frac{f''}{f} = \left(\frac{f}{f'} \right)' + \left(\frac{f}{f'} \right)^2 \), we get a Riccati equation

\[t' + nt^2 - (\alpha_1 + \alpha_2)t + \frac{\alpha_1\alpha_2}{n} = 0 \]

where \(t = \frac{f}{f'} \). A routine computation yields two constant solutions \(t_1 = \frac{\alpha_1}{n} \) and \(t_2 = \frac{\alpha_2}{n} \).

Given that \(t \neq t_1 \) and \(t \neq t_2 \) hold, we have

\[\frac{1}{t_1 - t_2} \left(\frac{t'}{t - t_1} - \frac{t'}{t - t_2} \right) = -n. \]

Integrating it on both sides gives

\[\ln \frac{t - t_1}{t - t_2} = n(t_2 - t_1)z + C, \quad C \in \mathbb{C}, \]
which is equivalent to
\[\frac{t - t_1}{t - t_2} = e^{n(t_2 - t_1)z + C}. \]

It immediately yields
\[t = t_2 + \frac{t_2 - t_1}{e^{n(t_2 - t_1)z + C} - 1} = \frac{f'}{f}. \]

Note that zeros of \(e^{n(t_2 - t_1)z + C} - 1 \) are the zeros of \(f \). If \(z_0 \) is a zero of \(f \) with multiplicity \(k \), then
\[k = \text{Res} \left[\frac{f'}{f}, z_0 \right] = \text{Res} \left[t_2 + \frac{t_2 - t_1}{e^{n(t_2 - t_1)z + C} - 1}, z_0 \right] = \frac{1}{n} \]
is a contradiction.
If \(t_1 = \frac{\alpha_1}{2} \), then \(f(z) = c_1 e^{\frac{\alpha_1 z}{2}} \), where \(c_1 \) is a constant satisfying \(c_1^2 = p_1 \).
Similarly, if \(t_2 = \frac{\alpha_2}{2} \), then we have \(f(z) = c_2 e^{\frac{\alpha_2 z}{2}} \), where \(c_2 \) is a constant satisfying \(c_2^2 = p_2 \).

Case 2. \(\varphi \not\equiv 0 \).

Equation (16) can be written as
\[\frac{1}{f^2} = \frac{1}{\varphi} \left[\alpha_1 \alpha_2 - n(\alpha_1 + \alpha_2) \left(\frac{f'}{f} \right) + n(n - 1) \left(\frac{f'}{f} \right)^2 + n \left(\frac{f''}{f} \right) \right]. \]

Using Lemma 1, we have
\[2m \left(r, \frac{1}{f} \right) = m \left(r, \frac{1}{\varphi} \right) \leq m \left(r, \frac{1}{f} \right) + S(r, f). \tag{17} \]

From Equation (16), if \(z_0 \) is a multiple zero of \(f \), then \(z_0 \) must be a zero of \(\varphi \). Thus, it follows that
\[N_{f_2} \left(r, \frac{1}{f} \right) \leq N \left(r, \frac{1}{\varphi} \right) + S(r, f), \tag{18} \]
where \(N_{f_2} \left(r, \frac{1}{f} \right) \) denotes the counting function of multiple zeros of \(f \). Equations (17) and (18) and the first fundamental theorem give
\[T(r, f) \leq N_{f_1} \left(r, \frac{1}{f} \right) + T(r, \varphi) + S(r, f). \tag{19} \]

\[\square \]

5. Proof of Theorem 7

Proof. Assume that \(f(z) \) is a transcendental entire solution with \(\rho_2(f) < 1 \) of Equation (6). Applying Lemmas 1 and 2 to Equation (6), we have
\begin{align*}
T(r, p_1 e^{\alpha_1 z} + p_2 e^{\alpha_2 z}) &= T(r, f^n(z) + q(z) f^k(z + h)) \\
&\leq T(r, f^n) + T(r, q(z) f^k(z + h)) + O(1) \\
&\leq T(r, f^n) + m \left(r, \frac{f(z + h)}{f(z)} \right) + m(r, f) + O(1) \\
&\leq T(r, f^n) + m \left(r, q(z) \frac{f(z + h)}{f(z)} \right) + m \left(r, \frac{f(z + h)}{f(z)} \right) + m(r, f) + O(1) \\
&\leq (n + 1) T(r, f) + S(r, f). \tag{20}
\end{align*}
On the other hand, we deduce
\[
T(r, p_1 e^{a_1 z} + p_2 e^{a_2 z}) = T(r, f^n(z) + q(z) f^{(k)}(z + h))
\]
\[\geq T(r, f^n) - T(r, q(z) f^{(k)}(z + h)) + O(1)\]
\[\geq nT(r, f) - m \left(r, \frac{q(z) f^{(k)}(z + h)}{f(z)} \right) - m(r, f) + O(1)\]
\[\geq nT(r, f) - m \left(r, \frac{q(z) f^{(k)}(z + h)}{f(z)} \right) - m(r, f) + O(1)\]
\[\geq nT(r, f) - T(r, f) + S(r, f)\]
\[= (n - 1)T(r, f) + S(r, f) .\]

Combining Equations (20) and (21), it follows that
\[(n - 1)T(r, f) + S(r, f) \leq T(r, p_1 e^{a_1 z} + p_2 e^{a_2 z}) \leq (n + 1)T(r, f) + S(r, f), \]
which implies \(\rho(f) = 1 \).

Denoting \(P_2(f) := q(z) f^{(k)}(z + h) \) and differentiating Equation (6), we have
\[nf^{n-1} f' + P_2' = a_1 p_1 e^{a_1 z} + a_2 p_2 e^{a_2 z}. \]
(22)

Eliminating \(e^{a_2 z} \) from Equations (6) and (22) gives
\[a_2 f^n - n f^{n-1} f' + a_2 P_2 - P_2' = (a_2 - a_1) p_1 e^{a_1 z}. \]
(23)

Differentiating Equation (23) yields
\[na_2 f^{n-1} f' - n(n - 1) f^{n-2} (f')^2 - n f^{n-1} f'' + a_2 P_2' - P_2'' = a_1 (a_2 - a_1) p_1 e^{a_1 z}. \]
(24)

It follows from Equations (23) and (24) that
\[f^{n-2} \varphi = Q , \]
where
\[\varphi = a_1 a_2 f^2 - n(a_1 + a_2) f f' + n(n - 1) (f')^2 + n f f'' \]
and
\[Q = -a_1 a_2 P_2 + (a_1 + a_2) P_2' - P_2''. \]

Next we discuss two cases below.

Case 1. \(\varphi \equiv 0 \).

This case can be completed by the same method as employed in Case 1 of Theorem 5. We obtain \(f(z) = c_2 e^{\frac{a_2 z}{1}} \), where \(c_2 \) is a constant satisfying \(c_2^n = p_2 \). Substituting these formulas into Equation (6), we have
\[q(z) c_2 \left(\frac{a_2 z}{n} \right)^k e^{\frac{a_2 k}{n}} e^{\frac{a_2 z}{n}} - p_1 e^{a_1 z} = 0. \]

According to \(a_1 \neq a_2 \) and Lemma 3, we have
\[a_2 = n a_1 \text{ and } q(z) c_2 \left(\frac{a_2 z}{n} \right)^k e^{\frac{a_2 k}{n}} = p_1. \]
which implies that \(q(z) \) is a constant. Set \(q := q(z) \).

Similarly, we proceed to obtain \(f(z) = c_1 e^{\frac{a_1 z}{1}} \), \(q c_1 \left(\frac{a_1 z}{n} \right)^k e^{\frac{a_1 k}{n}} = p_2 \). Substituting these formulas into Equation (6), we have
\[a_1 = n a_2 \text{ and } c_1^n = p_1. \]

Case 2. \(\varphi \neq 0 \).
For $n \geq 4$, we shall derive a contradiction. In fact, Q is a difference-differential polynomial in f and its degree at most is 1. By Equation (25) and Lemma 4, we have $m(r, \varphi) = S(r, f)$ and $T(r, \varphi) = S(r, f)$. On the other hand, we can rewrite Equation (25) as $f^{n-3}(f\varphi) = Q$, which implies $m(r, f\varphi) = S(r, f)$ and $T(r, f\varphi) = S(r, f)$. If $\varphi \neq 0$, then $T(r, f) = T(r, \frac{Le}{\varphi}) = S(r, f)$ and this is impossible.

For $n = 3$, since Q is a difference-differential polynomial in f and its degree at most is 1, it follows from Equation (25) and Lemma 4 that $m(r, \varphi) = S(r, f)$ and

$$T(r, \varphi) = S(r, f).$$ (26)

We still use the same method in Case 2 of Theorem 5 to obtain the inequality of Equation (19). Equations (19) and (26) and the first fundamental theorem result in

$$T(r, f) = N_{1}(r, \frac{1}{f}) + S(r, f).$$

For $n = 2$, we just obtain the inequality of Equation (19). \square

6. Conclusions

In this study, we consider two questions. Firstly, the first question posed by Li in [16] is how to find the solutions of Equation (2) if $\deg P(f) = n - 1$. Since the degree of $P(f)$ is bigger than $n - 2$, one cannot use Clunie’s lemma which is a key in the proof in Theorem 2. It is very difficult to resolve the question. Chen and Gao considered the entire solution f of Equation (2) with the order $\rho(f) < \infty$ and $N(r, 1/f) = S(r, f)$ when $n = 2$ and partially answered the question. We remove the condition that the order $\rho(f) < \infty$ by a different method and improve the result of Chen and Gao in Theorem 4. For the general case of Li’s question, we use the method of Theorem 4 and give a partial answer in Theorem 5.

Secondly, motivated by Theorem 2, a question to be raised is how to find the existence of solutions to Equation (5) if $e^{\lambda z}$ and $e^{-\lambda z}$ can be replaced by a linear combination of $e^{\alpha_1 z}$ and $e^{\alpha_2 z}$ for two distinct constants α_1 and α_2. We consider the general case by the similar method with Theorem 5 and give the partial solutions of Equation (6).

For further study, we conjecture that the inequality $T(r, f) \leq N_{1}(r, \frac{1}{f}) + T(r, \varphi) + S(r, f)$ or $T(r, f) = N_{1}(r, \frac{1}{f}) + S(r, f)$ can be removed if $N(r, 1/f) = S(r, f)$ in Theorems 5 and 7.

Author Contributions: Conceptualization, J.R. and J.X.; Writing Original Draft Preparation, J.R.; Writing Review and Editing, J.R.; Funding Acquisition, J.X.

Funding: This research was supported by National Natural Science Foundation of China (No. 11871379), National Natural Science Foundation of Guangdong Province (No. 2016A030313002, 2018A0303130058) and Funds of Education Department of Guangdong (2016KTSCX145).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chiang, Y.M.; Feng, S.J. On the Nevanlinna characteristic of $f(z + \eta)$ and difference equations in the complex plane. Ramanujan J. 2008, 16, 105–129. [CrossRef]