Article

Variational Methods for an Impulsive Fractional Differential Equations with Derivative Term

Yulin Zhao 1, Jiafa Xu 2,* and Haibo Chen 3

1 School of Science, Hunan University of Technology, Zhuzhou 412007, China; zhaoylch@hut.edu.cn
2 School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China;
3 School of Mathematics and Statistics, Central South University, Changsha 410083, China;
math_chb@cqnu.edu.cn

Correspondence: 20150028@cqnu.edu.cn

Received: 30 August 2019; Accepted: 20 September 2019; Published: 21 September 2019

Abstract: This paper is devoted to studying the existence of solutions to a class of impulsive fractional differential equations with derivative dependence. The used technical approach is based on variational methods and iterative methods. In addition, an example is given to demonstrate the main results.

Keywords: impulsive fractional differential equations; mountain pass theorem; variational methods; critical points; iterative methods

1. Introduction and Main Results

In this paper we are interested in the solvability of solutions for the following impulsive fractional differential equations with derivative dependence

\[
\begin{cases}
\alpha D_T^{\alpha} (u(t)) + b(t)u(t) = f(t, u(t)) D_T^{\alpha-1} (u(t)), & t \neq t_j, a.e \ t \in [0, T] \\
u(0) = u(T) = 0,
\end{cases}
\]

where \(\alpha \in (\frac{1}{2}, 1] \), \(a \in C^1([0, T], \mathbb{R}) \) with \(a_0 := \text{ess inf}_{[0, T]} a(t) > 0 \), and \(\alpha D_T^{\alpha} \) denotes the right Riemann–Liouville fractional derivative of order \(\alpha \); \(0 = t_0 < t_1 < t_2 < \cdots < t_l < T \), the operator \(\Delta \) is defined as \(\Delta(\alpha D_T^{\alpha-1} (u(t))) = \alpha D_T^{\alpha-1} (u(t)) - \alpha D_T^{\alpha-1} (u(t^-)) \), where \(\alpha D_T^{\alpha-1} (u(t^-)) = \lim_{t \rightarrow t^-} (\alpha D_T^{\alpha-1} (u)(t)) \), and \(\alpha D_T^{\alpha-1} \) is the right Riemann–Liouville fractional derivative of order \(1 - \alpha \); \(\alpha D_T^{\alpha-1} \) is the left Caputo fractional derivatives of order \(\alpha \). Suppose that:

(C1) \(f : [0, T] \times \mathbb{R}^2 \rightarrow \mathbb{R} \) and \(I_j(j = 1, 2, \cdots, l) : \mathbb{R} \rightarrow \mathbb{R} \) are continuous functions, \(b \in C([0, T]) \) and there exist positive constants \(b_1, b_2 \) such that \(0 < b_1 \leq b(t) \leq b_2 \).

Fractional calculus is a generalization of the traditional calculus to arbitrary noninteger order. Fractional differential equations (FDEs) have played an important role in various fields [1,2] such as electricity, biology, electrical networks, mechanics, chemistry, rheology and probability, etc. With the help of fractional calculus, the natural phenomena and mathematical model can be more accurately described. As a consequence there was a rapid development of the theory and application concern with fractional differential equations. In particular, the solvability, attractivity, and multiplicity of solutions for FDEs have been greatly discussed. We refer to the monographs of Podlubny [1], Kilbas et al. [2], Diethelm [3], Zhou [4], the papers [5–19] and the references therein.

More recently, starting with the pioneering work of Jiao and Zhou [20], the variational methods have been applied to investigate the existence and multiplicity of solutions for fractional differential
equations, which possess the variational structures in some suitable functional spaces under certain boundary conditions in many papers, see [21–30] and the references therein. For instance, Sun and Zhang [21] by establishing a variational structure and applying Mountain Pass theorem and iterative technique, investigated the solvability of solutions to the following nonlinear fractional differential equations

\[
\begin{aligned}
\begin{cases}
\frac{d}{dt}(p_0 D_t^{-\alpha}(u'(t)) + q_1 D_t^{-\alpha}(u'(t))) + f(t,u(t)) = 0, & t \in [0,1], \\
u(0) = u(1) = 0,
\end{cases}
\end{aligned}
\]

where \(\alpha \in (0, 1) \), \(0 < p = 1 - q < 1 \), \(f : \mathbb{R} \to \mathbb{R} \) is a continuous function, \(pD_t^{-\alpha} \) and \(qD_t^{-\alpha} \) denote left and right Riemann–Liouville fractional integrals of order \(\alpha \) respectively. In case \(\alpha \in (\frac{1}{2}, 1] \), Galewski and Molica Bisci in [22] by using variational methods, proved that the following fractional boundary problems

\[
\begin{aligned}
\begin{cases}
\frac{d}{dt}(\eta_0 D_t^{\alpha-1}(\eta_1 D_t^{\alpha}u(t)) - \eta_1 D_t^{\alpha-1}(\eta_2 D_t^{\alpha}u(t))) + f(t,u(t)) = 0, & \text{a.e. } t \in [0,T], \\
u(0) = u(T) = 0
\end{cases}
\end{aligned}
\]

has at least a nontrivial solution under some suitable conditions.

On the other hand, boundary value problems for impulsive differential equations are intensively discussed. Such problems arising from the real world appear in mathematical models with sudden and discontinuous changes of their states in biology, population dynamics, physics, engineering, etc. [31,32]. For their significance, it is very important and interesting to discuss the solvability of solutions for impulsive differential equations. Recently, the existence and multiplicity of solutions for impulsive differential equations are treated by using topological methods, critical point theory and the coincidence degree theory, for example see [33–43] and the references therein. Taking an impulsive fractional Dirichlet problem as a model, Bonanno et al. [33], and Rodríguez-López and Tersian [34] by applying variational methods, investigated the existence results of at least one and three solutions for the following impulsive fractional boundary value problems

\[
\begin{aligned}
\begin{cases}
\Delta(\eta_1 D_t^{\alpha-1}(\eta_2 D_t^{\alpha}u(t))(t_j)) = \mu I_j(u(t_j)), & j = 1, 2, \ldots, m, \\
u(0) = u(T) = 0,
\end{cases}
\end{aligned}
\]

where \(\lambda, \mu \in (0, +\infty) \).

Motivated by [21,33,44], in this paper we shall deal with the solvability of solutions for the problem (1) by using the variational methods and iterative methods. The characteristic of problem (1) is the presence of fractional derivative in the nonlinearity term. To the best of our knowledge, there is no result concerned with the solvability of solutions for impulsive FDEs, such as problem (1), by applying the variational methods and iterative methods. We know, contrary to those equations in [33,34,39,40,42,43,45], the problem (1) is of no the variational structure and it cannot be studied by directly using the well-developed critical point theory. Furthermore, due to the appearance of left and right Riemann–Liouville fractional integral and impulsive effect, the calculation of problem (1) will be more complicated.

Throughout the paper, we assume that \(f(t,u,v) \) and \(I_j(u) \) satisfies the following conditions:

\begin{itemize}
\item[(C2)] \(\lim_{u \to 0} \frac{f(t,u,v)}{|u|^{p-1}} = 0 \) uniformly for all \(t \in [0,T] \) and \(v \in \mathbb{R} \) and \(f(t,u,0) \neq 0 \) for \(t \in [0,T] \) and \(u \in \mathbb{R} \).
\item[(C3)] There exists a constant \(\theta > 2 \) such that \(\lim_{|u| \to +\infty} \frac{f(t,u,v)}{|u|^{\theta-1}} = 0 \) uniformly for all \(t \in [0,T] \) and \(v \in \mathbb{R} \).
\item[(C4)] There are constants \(\mu > 2 \) and \(\varpi > 0 \) such that
We will deal with a family of impulsive fractional boundary value problem without the fractional

Suppose that the hypotheses of Theorem 1 are satisfied. In addition, if (C6) and (I2) hold with

Theorem 2.

Let

Lipschitz conditions:

following assumptions:

on the solvability of problem (2). To obtain the solvability of problem (1), we also need the

the present paper:

there exists a solution for problem (1) via iterative methods. Now let us give the preliminary result of

Remark 1. According to assumptions (C2) and (C3), it is easy to obtain that for given

According to assumptions (C2) and (C3), it is easy to obtain that for given

Remark 1. According to assumptions (C2) and (C3), it is easy to obtain that for given

Due to the fact that problem (1) is not variational, according to the idea be borrowed from [21,44],

we will deal with a family of impulsive fractional boundary value problem without the fractional
derivative of the solution; that is, we consider the following problems:

\[
\begin{align*}
0 < \mu F(t, u, v) & \leq uf(t, u, v), \forall t \in [0, T], |u| \geq \zeta, v \in \mathbb{R}. \\
(C5) & \text{There exists two constants } k_1, k_2 > 0 \text{ such that } F(t, u, v) := \int_0^u f(t, s, v)ds \geq k_1|u|^p - k_2, \forall t \in [0, T], u, v \in \mathbb{R}. \\
(I1) & \text{There is a positive constant } \beta < \mu \text{ such that } 0 < uI_j(u) \leq \beta \int_0^{u(t_j)} I_j(s)ds, \forall u \in \mathbb{R} \setminus \{0\}, j = 1, 2, \cdots, l.
\end{align*}
\]

For each \(\omega \in E^\alpha_0 \), where the space \(E^\alpha_0 \) will be introduced in Section 2. Obviously, problem (2) is

of the variational structure and can be solved by applying the variational methods. Hence, for any

\(\omega \in E^\alpha_0 \), we can deduce a unique solution \(u_\omega \in E^\alpha_0 \) with some bounds. Furthermore, we can prove that

there exists a solution for problem (1) via iterative methods. Now let us give the preliminary result of

the present paper:

Theorem 1. Let \(\omega \in E^\alpha_0 \). Suppose that the hypotheses (C1)–(C5) and (I1) are satisfied; then there exist

positive constants \(A_1 \) and \(A_2 \) independent of \(\omega \) such that problem (2) has at least one solution \(u_\omega \) satisfying

\(A_1 \leq \|u_\omega\|_\alpha \leq A_2 \).

We will established the main results of the paper by an iterative method which depends on the solvability of problem (2). To obtain the solvability of problem (1), we also need the following assumptions:

(C6) There exist constants \(L_1, L_2 > 0 \) and \(\xi > 0 \) such that the function \(f \) satisfies the following

Lipschitz conditions:

\[
|f(t, u_2, v_2) - f(t, u_1, v_1)| \leq L_1|u_2 - u_1| + L_2|v_2 - v_1|, \forall t \in [0, T], u_1, u_2 \in [-\xi, \xi], v_1, v_2 \in \mathbb{R}.
\]

(I2) There exist constants \(\rho_j > 0, j = 1, 2, \cdots, l \) such that

\[
|I_j(x) - I_j(y)| \leq \rho_j|x - y|, \forall x, y \in [-\xi, \xi].
\]

Theorem 2. Suppose that the hypotheses of Theorem 1 are satisfied. In addition, if (C6) and (I2) hold with

\(L^* < 1 \), we can obtain the solution \(u_\omega \) of problem (2) is unique in \(E^\alpha_0 \), where

\[
L^* := \frac{L_1T^{2\alpha}}{a_0[\Gamma(\alpha + 1)]^2} + \frac{T^{(2\alpha - 1)}}{[\Gamma(\alpha)]^2a_0(2\alpha - 1)} \cdot \sum_{j=1}^{l} \rho_j < 1.
\]
Theorem 3. Assume conditions (C1)–(C6) and (I1), (I2) hold. Then problem (1) has at least one nontrivial solution provided

\[\hat{L} := \frac{L_2 T^a (2\alpha - 1) \Gamma(\alpha + 1) [\Gamma(\alpha)]^2}{a_0 (2\alpha - 1) [\Gamma(\alpha) \Gamma(\alpha + 1)]^2 - L_1 T^{2\alpha} (2\alpha - 1) [\Gamma(\alpha)]^2 - T^{2\alpha - 1} [\Gamma(\alpha + 1)]^2 \sum_{i=1}^{i=p} \rho_i} \in (0, 1). \]

The article is organized as follows. In Section 2, we shall give some definitions and lemmas that will be helpful to discuss our main results. In Section 3, we will prove the solvability of the problem (2) and the existence of at least one nontrivial solution to the problem (1).

2. Preliminaries

In this paper we need the following definitions and properties of the fractional calculus. Let \(D_0^{-\gamma} f(t) \) and \(D_T^{-\gamma} f(t) \) be the left and right fractional integrals of order \(\gamma \) as follows

\[D_0^{-\gamma} f(t) = \frac{1}{\Gamma(\gamma)} \int_0^t (t-s)^{\gamma-1} f(s) ds, \quad D_T^{-\gamma} f(t) = \frac{1}{\Gamma(\gamma)} \int_t^T (t-s)^{\gamma-1} f(s) ds, \quad \gamma > 0. \]

Definition 1 (see [2,4]). Let \(f \) be a function defined on \([a, b]\). Then the left and right Riemann–Liouville fractional derivatives of order \(\gamma \) for function \(f \) denoted by \(D_a^\gamma f(t) \) and \(D_b^\gamma f(t) \), are represented by

\[a D_a^\gamma f(t) = \frac{d^n}{dt^n} D_a^{\gamma-n} f(t) = \frac{1}{\Gamma(n-\gamma)} \frac{d^n}{dt^n} \int_a^t (t-s)^{n-\gamma-1} f(s) ds, \]

and

\[b D_b^\gamma f(t) = (-1)^n \frac{d^n}{dt^n} D_b^{\gamma-n} f(t) = \frac{(-1)^n}{\Gamma(n-\gamma)} \frac{d^n}{dt^n} \int_t^b (t-s)^{n-\gamma-1} f(s) ds, \]

for every \(t \in [a, b] \), where \(n-1 \leq \gamma < n \) and \(n \in \mathbb{N} \).

From [2,4], we have

Proposition 1 (See [2,4]). If \(f \in L^p([a, b], \mathbb{R}^N), g \in L^q([a, b], \mathbb{R}^N) \) and \(p \leq 1, q \leq 1, 1/p + 1/q \leq 1 + \gamma \) or \(p \neq 1, q \neq 1, 1/p + 1/q = 1 + \gamma \). Then

\[\int_a^b u_i D_i^{-\gamma} f(t) g(t) dt = \int_a^b [D_i^{-\gamma} g(t)] f(t) dt, \quad \gamma > 0. \]

For any fixed \(t \in [0, T] \) and \(1 \leq p < \infty \), let

\[\|x\|_\infty = \max_{t \in [0, T]} |x(t)|, \quad \|x\|_{L^p} = \left(\int_0^T |x(t)|^p dt \right)^{1/p}. \]

Definition 2. Let \(0 < \alpha \leq 1 \). Then the fractional derivative space \(E_0^\alpha \) is defined by the closure of \(C_0^\infty([0, T], \mathbb{R}) \) that is

\[E_0^\alpha = C_0^\infty([0, T], \mathbb{R}) \]

with respect to the weighted norm

\[\|u\|_\alpha = \left(\int_0^T a(t) \| D_0^\alpha u(t) \|^2 dt + \int_0^T |u(t)|^2 dt \right)^{1/2}, \quad \forall u \in E_0^\alpha. \]

From [20], \(E_0^\alpha \) is a reflexive and a separable Banach space. Furthermore, \(E_0^\alpha \) is the space of functions \(u \in L^2([0, T], \mathbb{R}) \) with an \(\alpha \)-order Caputo fractional derivative \(\hat{D}_0^\alpha u \in L^2([0, T], \mathbb{R}) \) and \(u(0) = u(T) = 0 \). For \(u \in E_0^\alpha \), we have (see [8,33])

\[\hat{D}_0^\alpha u(t) = D_0^\alpha u(t), \quad \hat{D}_T^\alpha u(t) = D_T^\alpha u(t). \]

Lemma 1 (See [24]). Let \(0 < \alpha \leq 1 \). For any \(u \in E_0^\alpha \), one has
\[
\|u\|_{12} \leq \frac{T^\alpha}{1 - (\alpha - 1)\sqrt{\alpha}} \left(\int_0^T a(t) \|D_t^\alpha u(t)\|^2 dt \right)^{1/2},
\]

moreover, if \(\alpha > \frac{1}{2}\), then
\[
\|u\|_{\infty} \leq \frac{T^{\alpha - \frac{1}{2}}}{1 - (\alpha - 1)\sqrt{\alpha}} \left(\int_0^T a(t) \|D_t^\alpha u(t)\|^2 dt \right)^{1/2}.
\]

Note that if \(b \in C([0, T])\) is such that \(0 < b_1 \leq b(t) \leq b_2\), and by (i) of Lemma 1, we can consider \(E_0^\alpha\) with the following norm
\[
\|u\|^2_{E_0^\alpha} = \int_0^T (a(t) \|\nabla^{\alpha} u(t)\|^2 + b(t) \|u(t)\|^2) dt, \quad \forall u \in E_0^\alpha,
\]
which is equivalent to (4) and we still denote by \(\| \cdot \|_\alpha\) for short.

Proposition 2 ([4], Proposition 5.6). Assume that \(\frac{1}{2} < \alpha \leq 1\) and the sequence \(\{u_n\}\) converges weakly to \(u\) in \(E_0^\alpha\), i.e., \(u_n \rightharpoonup u\) in \(C([0, T])\), that is, \(\|u_n - u\|_{\infty} \to 0\) as \(n \to \infty\).

Definition 3. A function \(u \in E_0^\alpha\) is called a solution of problem (1), if

(i) the limits \(iD_T^{\alpha - 1}(D_t^\alpha u)(t_j^-), iD_T^{\alpha - 1}(D_t^\alpha u)(t_j^+), j = 1, \ldots, l\), exist and satisfy the following impulsive condition
\[
\Delta(iD_T^{\alpha - 1}(D_t^\alpha u)(t_j)) = iD_T^{\alpha - 1}(D_t^\alpha u)(t_j^+) - iD_T^{\alpha - 1}(D_t^\alpha u)(t_j^-) = I_j(u(t_j))
\]

(ii) \(u\) satisfies the Equation (1) a.e. on \([0, T] \setminus \{t_1, t_2, \ldots, t_l\}\), and the boundary condition \(u(0) = u(T) = 0\).

Definition 4. A function \(u \in E_0^\alpha\) is said to be a weak solution of problem (1), if
\[
\int_0^T (a(t) \|\nabla^{\alpha} u(t)\|^2 + b(t) \|u(t)\|^2) dt + \sum_{j=1}^l I_j(u(t_j)) x(t_j)
\]
\[
- \int_0^T f(t, u(t), \nabla^{\alpha} u(t)) x(t) dt = 0
\]

for every \(x \in E_0^\alpha\).

Associated to the boundary value problem (2) for given \(\omega \in E_0^\alpha\) we have the functional \(\Phi_\omega : E_0^\alpha \to \mathbb{R}\) defined by
\[
\Phi_\omega(u) = \frac{1}{2} \int_0^T (a(t) \|\nabla^{\alpha} u(t)\|^2 + b(t) \|u(t)\|^2) dt + \sum_{j=1}^l \int_0^{u(t_j)} I_j(s) ds
\]
\[
- \int_0^T F(t, u(t), \nabla^{\alpha} u(t)) dt,
\]

where \(F(t, u, \omega) = \int_0^u f(t, s, \omega) ds\) and \(f \in C([0, T] \times \mathbb{R} \times \mathbb{R})\). Obviously, using the hypothesis (C1) we deduce that \(\Phi_\omega\) is continuous, differentiable and
\[
\langle \Phi_\omega(u), x \rangle = \int_0^T (a(t) \|\nabla^{\alpha} u(t)\|^2 \|\nabla^{\alpha} x(t)\|^2 + b(t) \|u(t)\|^2 \|x(t)\|^2) dt + \sum_{j=1}^l I_j(u(t_j)) x(t_j)
\]
\[
- \int_0^T F(t, u(t), \nabla^{\alpha} u(t)) x(t) dt
\]

for any \(x \in E_0^\alpha\). Moreover, the critical point of \(\Phi_\omega\) is a solution of the problem (2).
Lemma 2 (see [46]). Let E be a real Banach space. If any sequence $\{u_n\} \subset E$ for which $\Phi(u_n)$ is bounded and $\Phi'(u_n) \to 0$ as $n \to \infty$ possesses a convergent subsequence of $\{u_n\}$. Then we say Φ satisfies Palais-Smale (PS) condition in E.

Lemma 3 (see [46]). Let E be a real Banach space and $\Phi \in C^1(E, \mathbb{R})$ satisfy the (PS) condition. Suppose that $\Phi(0) = 0$ and

(i) there exist constants $\rho, \xi_0 > 0$ such that $\Phi|_{\partial B_\rho(0)} \geq \xi_0$, and

(ii) there exists an $e \in E \setminus B_\rho(0)$ such that $\Phi(e) \leq 0$.

Then, Φ possesses a critical value $c \geq \xi_0$. Moreover, c can be characterized as

$$c = \inf_{\gamma \in \Lambda} \max_{\alpha \in [0,1]} \Phi(\gamma(s)),$$

where $B_\rho(0)$ is an open ball in E of radius ρ centered at 0 and $\Lambda = \{ \gamma \in C([0,1], E) : \gamma(0) = 0, \gamma(1) = e \}$.

3. Proof of Theorems 1–3

Proof of Theorem 1. The proof will be divided into four steps. We prove that the energy functional Φ_ω has the mountain pass geometric structure, that it is satisfies the (PS)-condition and finally that the obtained solutions have the uniform bounds.

(I) For $\omega \in E_0^\alpha$, we show that there exist positive numbers ρ and ξ_0 such that for $\|u\|_{\alpha} = \rho, \Phi_\omega(u) \geq \xi_0 > 0$ uniformly for $\omega \in E_0^\alpha$.

In fact, By (C2), (C3) and Remark 1, we have for any $u \in E_0^\alpha$

$$|F(t, u, \nu)| \leq \varepsilon |u|^2 + k(\varepsilon)|u|^\theta.$$

Thanks to (I1), one has

$$\sum_{j=1}^{l} \int_0^{u(t_j)} I_j(s)ds \geq 0.$$

Thus for any $u \in E_0^\alpha$, by (10), (11) and Lemma 1, one has

$$\Phi_\omega(u) = \frac{1}{2}\|u\|_\alpha^2 + \sum_{j=1}^{l} \int_0^{u(t_j)} I_j(s)ds - \int_0^T F(t, u(t), \dot{\omega}(t))dt$$

$$\geq \frac{1}{2}\|u\|_\alpha^2 - \frac{\varepsilon T^{2\alpha}}{a_0[\Gamma(\alpha + 1)]^2} \int_0^T a(t)|\dot{\omega}(t)|^2dt$$

$$- \frac{k(\varepsilon)T^{(\alpha - \frac{1}{2})\theta + 1}}{[\Gamma(\alpha)\sqrt{a_0(2\alpha - 1)}]^\theta} \left(\int_0^T a(t)|\dot{\omega}(t)|\theta dt \right)^{\theta/2}$$

$$\geq \left(\frac{1}{2} - \frac{\varepsilon T^{2\alpha}}{a_0[\Gamma(\alpha + 1)]^2} \right)\|u\|_\alpha^2 - \frac{k(\varepsilon)T^{(\alpha - \frac{1}{2})\theta + 1}}{[\Gamma(\alpha)\sqrt{a_0(2\alpha - 1)}]^\theta} \|u\|_\alpha^\theta$$

Choosing $\varepsilon = a_0[\Gamma(\alpha + 1)]^2/(4T^{2\alpha}) := \varepsilon_0$, and let $\|u\|_{\alpha} = \rho > 0$. We may take ρ sufficiently small such that

$$\frac{1}{4} - k(\varepsilon_0)T^{(\alpha - \frac{1}{2})\theta + 1}\rho^{\theta - 2} =: \theta^* > 0.$$

Hence $\Phi_\omega(u) \geq \rho^2\theta^* := \xi_0 > 0$. This implies that Φ_ω satisfies assumption (i) of Lemma 3.
(II) Fix \(\omega \in E_0^d \). We show that there exists \(e \in E_0^d \) such that \(\|e\|_a > \rho \) and \(\Phi_\omega(e) < 0 \), where \(\rho \) is given in (I).

Using (I), we obtain that there is \(\beta_0 > 0 \) such that the following inequalities

\[
\int_0^{u(t_j)} I_j(s)ds \leq \beta_0 |u|^\beta, \quad \forall u \in \mathbb{R}, \; j = 1, 2, \ldots, l, \tag{13}
\]

hold. In fact, for any \(x \in \mathbb{R} \setminus \{0\} \) and set \(\varphi(t) = I^*(tx) = \int_0^{tx} I(s)ds \), then

\[
\varphi'(t) = I(tx)x = \frac{1}{t} I(tx)(tx) \leq \frac{\beta}{t} \int_0^{tx} I(s)ds = \frac{\beta}{t} \varphi(t),
\]

which implies that

\[
\int_1^t \frac{d\varphi}{\varphi(s)} \leq \beta \int_1^t \frac{ds}{s}.
\]

So we have

\[
\varphi(t) \leq |t|^\beta \int_0^t I(s)ds,
\]

and

\[
\int_0^x I(s)ds = I^*(x) = I^*(|x| \cdot \frac{x}{|x|}) \leq I^*(\frac{x}{|x|})|x|^\beta < \beta_0 |x|^\beta,
\]

where \(\beta_0 := \sup_{x \in \mathbb{R} \setminus \{0\}} I^*(\frac{x}{|x|}) \). This implies (13) is satisfied.

From (C5) and (13), we obtain that for

\[
\Phi_0(x) = \frac{1}{2} \|u^*\|_a^2 + \sum_{j=1}^l \int_0^{T \tau_j} I_j(s)ds - \int_0^T F(t, \tau u^*(t), \tau D_t^a \omega(t))dt
\]

\[
\leq \frac{1}{2} \|u^*\|_a^2 + \beta_0 |\tau|^\beta \|u^*\|_E^a - k_1 |\tau|^\mu \int_0^T |u^*(t)|^\mu dt - k_2 T \tag{14}
\]

where \(K_1, K_2 \) are positive constants independent of \(\omega \). Choosing \(u^* \in E_0^d \) with \(\|u^*\|_a = 1 \). Since \(\mu > \beta \), (14) implies that there is large enough \(\tau_1 \neq 0 \) such that \(\|e\|_a > \rho \) and \(\Phi_\omega(e) < 0 \) if we take \(e = \tau_1 u^* \).

So \(\Phi_\omega \) satisfies assumption (ii) of Lemma 3. The energy functional \(\Phi_\omega \) has the mountain pass geometric structure.

(III) Fix \(\omega \in E_0^d \). We prove that \(\Phi_\omega \) satisfies the Palais–Smale condition on the space \(E_0^d \).

For any sequence \(\{u_n\}_n \subset E_0^d \) such that \(\Phi_\omega(u_n) \) is a bounded sequence and \(\Phi_\omega'(u_n) \to 0 \) as \(n \to \infty \). Then, there are two positive constants \(K_3, K_4 > 0 \) such that for \(n \) sufficiently large

\[
|\Phi_\omega(u_n)| \leq K_3, \quad |\Phi_\omega'(u_n)| \leq K_4.
\]

Thus, it follows from (C4) and (I) that

\[
\left(\frac{1}{2} - \frac{1}{p} \right) \|u_n\|_a^2 = \Phi_\omega(u_n) - \frac{1}{p} \Phi_\omega'(u_n)u_n - \sum_{j=1}^l \int_0^{u_n(t_j)} I_j(s)ds - \frac{1}{p} \int_0^{u_n(t_j)} I_j(s)ds \cdot u_n(t_j)
\]

\[
\leq \Phi_\omega(u_n) - \frac{1}{p} \Phi_\omega'(u_n)u_n - \sum_{j=1}^l \int_0^{u_n(t_j)} I_j(s)ds - \frac{1}{p} I_j(u_n(t_j))u_n(t_j)
\]

\[
+ \int_{|u_n| \geq \delta} F(t, u_n(t), \tau D_t^a \omega(t)) - \frac{1}{p} f(t, u_n(t), \tau D_t^a \omega(t))u_n(t) dt
\]

\[
+ \int_{|u_n| \leq \delta} F(t, u_n(t), \tau D_t^a \omega(t)) - \frac{1}{p} f(t, u_n(t), \tau D_t^a \omega(t))u_n(t) dt
\]

\[\leq K_5 + \frac{\tau^{p-2} \frac{1}{2} K_4}{p \Gamma(a) \sqrt{\alpha(2a-1)}} \|u_n\|_a,
\]
where K_δ is a positive constant independent of ω and n. Therefore, $\{u_n\}$ is bounded in E_0^n.

Since E_0^n is a reflexive Banach space. It follows from Lemma 1 and Proposition 2 that $\{u_n\}$ is bounded in $C([0, T])$, and $\lim_{n \to \infty} \|u_n - u\|_\infty = 0$. Hence, we can assume that there exists some $u \in E_0^n$ such that the sequence $u_n \to u$ in E_0^n, and $u_n \to u$ in $L^2(0, T)$ and

$$\{u_n\}$$ converges uniformly to u on $[0, T]$.

Notice that

$$\begin{align*}
(\Phi_{\omega}'(u_n) - \Phi_{\omega}'(u_m))(u_n - u_m) &= \|u_n - u_m\|_\alpha^2 + \sum_{j=1}^{I} |I_j(u_n(t_j)) - I_j(u_m(t_j))|(u_n(t_j) - u_m(t_j)) \\
&- \int_0^T [f(t, u_n(t), \frac{\partial}{\partial t} D^\alpha \omega(t)) - f(t, u_m(t), \frac{\partial}{\partial t} D^\alpha \omega(t))] dt.
\end{align*}$$

(15)

Since

$$A_{n,m} := \int_0^T \left[|I_j(u_n(t_j)) - I_j(u_m(t_j))| |u_n(t_j) - u_m(t_j)| + |I_j(u_n(t_j)) - I_j(u_m(t_j))| \right] dt \to 0$$

as $n, m \to \infty$. According to Remark 1, we get

$$\begin{align*}
A_{n,m} &:= \int_0^T \left[|f(t, u_n(t), \frac{\partial}{\partial t} D^\alpha \omega(t)) - f(t, u_m(t), \frac{\partial}{\partial t} D^\alpha \omega(t))]| |u_n(t_j) - u_m(t_j)| dt \\
&\leq \int_0^T |f(t, u_n(t), \frac{\partial}{\partial t} D^\alpha \omega(t))| + |f(t, u_m(t), \frac{\partial}{\partial t} D^\alpha \omega(t))| |u_n(t_j) - u_m(t_j)| dt \\
&\leq k_0 \int_0^T \left(2\epsilon |u_n| + k(\epsilon) \theta |u_n|^{\theta-1} + 2\epsilon |u_m| + k(\epsilon) \theta |u_m|^{\theta-1} \right) |u_n(t_j) - u_m(t_j)| dt \to 0
\end{align*}$$

as $n, m \to \infty$. Thus, the third term of (15)

$$\begin{align*}
\int_0^T [f(t, u_n(t), \frac{\partial}{\partial t} D^\alpha \omega(t)) - f(t, u_m(t), \frac{\partial}{\partial t} D^\alpha \omega(t))] dt \to 0
\end{align*}$$

as $n, m \to \infty$.

Since

$$\begin{align*}
(\Phi_{\omega}'(u_n) - \Phi_{\omega}'(u_m))(u_n - u_m) &= \Phi_{\omega}'(u_n)(u_n - u_m) - \Phi_{\omega}'(u_m)(u_n - u_m) \\
&\leq |\Phi_{\omega}'(u_n)||u_n - u_m|_\alpha - |\Phi_{\omega}'(u_m)|(u_n - u_m) \to 0
\end{align*}$$

as $n, m \to \infty$.

Consequently,

$$\|u_n - u_m\|_\alpha = (\Phi_{\omega}'(u_n) - \Phi_{\omega}'(u_m))(u_n - u_m) - I_{n,m} + A_{n,m} \to 0$$

as $n, m \to \infty$. That is, $\{u_n\}$ is a Cauchy sequence in E_0^n. This implies that $\{u_n\}$ has a convergent sequence in E_0^n. Thus Φ_{ω} satisfies (PS) condition.

Obviously, $\Phi_{\omega}(0) = 0$. Therefore, applying Lemma 3, we deduce that Φ_{ω} admits a nontrivial critical points u_{ω} in E^n with
where $\Lambda = \{ \gamma \in C([0,1], E^a) : \gamma(0) = 0, \gamma(1) = \epsilon \}$ and $\epsilon = \tau_1 u^*$ has been given in (II). So problem (2) has at least one weak solution $u_\omega \neq 0$ for any $\omega \in E^a$.

(IV) Fix $\omega \in E^a_0$. We prove that there exist positive constants A_1 and A_2 independent of ω such that $A_1 \leq \| u_\omega \|_a \leq A_2$.

Since u_ω is the solution of problem (2), then one has

$$
\| u_\omega \|_a^2 + \sum_{j=1}^{l} I_j(u_\omega(t_j))u_\omega(t_j) = \int_0^T f(t,u_\omega(t),\omega(t))u_\omega(t) dt.
$$

By Remark 1, (I1) and Lemma 1, we have

$$
\| u_\omega \|_a^2 + \sum_{j=1}^{l} I_j(u_\omega(t_j))u_\omega(t_j) \leq 2\epsilon \int_0^T |u_\omega(t)|^2 dt + k(\epsilon) \int_0^T \theta|u_\omega(t)|^\sigma dt
$$

$$
\leq \frac{2\epsilon T^{2a}}{\alpha_0(\Gamma(a+1))^2} \int_0^T a(t)\|D^\alpha u_\omega(t)\|^2 dt + \frac{k(\epsilon)\theta T^{(a-\frac{1}{2})\sigma+1}}{\Gamma(a)\sqrt{a_0(2a-1)}} \left(\int_0^T a(t)\|D^\alpha u_\omega(t)\|^2 dt \right)^{\sigma/2}
$$

$$
\leq \frac{2\epsilon T^{2a}}{\alpha_0(\Gamma(a+1))^2} \| u_\omega \|_a^2 + \frac{k(\epsilon)\theta T^{(a-\frac{1}{2})\sigma+1}}{\Gamma(a)\sqrt{a_0(2a-1)}} \| u_\omega \|_a^{\sigma/2},
$$

for any $\epsilon > 0$. So

$$
\left(1 - \frac{2\epsilon T^{2a}}{\alpha_0(\Gamma(a+1))^2} \right) \| u_\omega \|_a^2 \leq \frac{k(\epsilon)\theta T^{(a-\frac{1}{2})\sigma+1}}{\Gamma(a)\sqrt{a_0(2a-1)}} \| u_\omega \|_a^{\sigma/2}.
$$

Combined with $\theta > 2$, by choosing $\epsilon > 0$ small enough such that $a_0(\Gamma(a+1))^2 - 2\epsilon T^{2a} > 0$, we obtain

$$
\| u_\omega \|_a \geq \left(\frac{\Gamma(a)\sqrt{a_0(2a-1)}}{\alpha_0(\Gamma(a+1))^2} \left(a_0(\Gamma(a+1))^2 - 2\epsilon T^{2a} \right) \right)^{1/(\theta-2)} : = \alpha_1 > 0.
$$

Notice that u_ω satisfying (16), then taking a special pass $\gamma^*(s) = su^*$, we have

$$
\left(\frac{\mu}{2} - 1 \right) \| u_\omega \|_a^2 \leq \mu \Phi_{u_\omega} - <\Phi'_{u_\omega}(u_\omega),u_\omega> + K_6
$$

$$
= \mu \inf_{\gamma \in \Lambda} \max_{s \in [0,1]} \Phi_{u_\omega}(\gamma^*(s)) + K_6
$$

$$
\leq \mu \max_{s \in [0,1]} \Phi_{u_\omega}(su^*) + K_6
$$

$$
\leq \mu \left(\frac{s^2}{2} + \sum_{j=1}^{l} I_j(su^*) \int_0^{T_\omega} I_j(t) dt - k_1 |s|^{\mu} \int_0^{T} |u^*|^{\mu} dt + k_2 T \right) + K_6
$$

$$
\leq \mu \left(\frac{s^2}{2} + \int_0^{T} |u^*|^{\beta} |s|^{\beta} - k_1 |s|^{\mu} \int_0^{T} |u^*|^{\mu} dt \right) + K_7,
$$

for any $\epsilon > 0$. So
where \(K_6, K_7 \) denote positive constants. Let

\[
h(t) = \frac{t^2}{2} + l \beta_0 ||u^\ast||_E^\beta |t|^\beta - k_1 |t|^\mu \int_0^T |u^\ast|^\mu d\tau, \quad t \geq 0. \tag{19}
\]

Since \(\mu > \beta \), then the function \(h(t) \) can achieve its maximum at some \(t_0 > 0 \) and the value
\(\mu h(t_0) + K_7 \) can be taken as \(A_\ast > 0 \). Obviously it is independent of \(\omega \). Then (18) implies that there exists \(A_2 := \sqrt{2A_\ast/(\mu - 2)} \) independent of \(\omega \) such that \(||u_{\omega}||_A \leq A_2 \). Therefore, this completes the proof of Theorem 1.

Proof of Theorem 2. It follows from Theorem 1 that there exists at least one weak solution \(u_\omega \) of problem (2). Next, fix \(\omega \in E_0^A \) we show that the solution of problem (2) is unique. In fact, if there are two different solutions \(u_1 \) and \(u_2 \) satisfying the first equation in problem (2) a.e. \(t \in [0, T] \). Then

\[
\int_0^T [a(t)\partial_t^\alpha D_0^\alpha u_2(t) - a(t)\partial_t^\alpha D_0^\alpha u_1(t)] dt = \int_0^T [b(t)(u_2(t) - u_1(t))] dt
\]

and

\[
\int_0^T [a(t)\partial_t^\alpha D_0^\alpha u_1(t) - a(t)\partial_t^\alpha D_0^\alpha u_1(t)] dt = \int_0^T [b(t)(u_2(t) - u_1(t))] dt.
\]

Combining with the condition (C6), (12) and Lemma 1, we have

\[
||u_2 - u_1||_A^2 \leq \int_0^T |f(t, u_2(t), \omega(t)) - f(t, u_1(t), \omega(t))||u_2 - u_1|| dt
\]

\[
+ \sum_{j=1}^l |I_j(u_2(t_j)) - I_j(u_1(t_j))||u_2(t_j) - u_1(t_j)||
\]

\[
\leq L_1 \int_0^T [u_2 - u_1]^2 dt + \sum_{j=1}^l \rho_j |u_2(t_j) - u_1(t_j)|^2
\]

\[
\leq \left(\frac{L_1 T^{2a}}{a_0(\Gamma(a + 1)) \Gamma(a)} + \frac{T^{(2a - 1)}}{\Gamma(a) a_0(2a - 1)} \sum_{j=1}^l \rho_j \right) ||u_2 - u_1||_A^2
\]

\[
= L^* ||u_2 - u_1||_A^2.
\]

Since \(0 < L^* < 1 \), we can deduce that \(||u_2 - u_1||_A = 0 \) and \(u_1 = u_2 \). This ends the proof of Theorem 2. \(\square \)

Proof of Theorem 3. According to Theorem 1, We can construct a iterative sequence \(\{u_n\} \in E_0^A \) as solutions of the following problem

\[
\begin{aligned}
{t^\mu}D_0^\alpha (a(t)D_0^\alpha D_0^\alpha u_n(t)) + b(t)u_n(t) = f(t, u_n(t), D_0^\alpha D_0^\alpha u_{n-1}(t)), \quad t \neq t_j, a.e. \ t \in [0, T] \\
\Delta (iD_0^{\alpha - 1}(a(t)D_0^\alpha D_0^\alpha u_n(t))) = I_j(u_n(t_j)), \quad j = 1, 2, \ldots, l, \\
u_n(0) = u_n(T) = 0.
\end{aligned}
\tag{20}
\]

Obtained by the Mountain Pass theorem, starting with an arbitrary \(u_0 \in E_0^A \). According to (IV) of Theorem 1, we have \(||u_n||_A \leq A_2 \). It follows from (6) that

\[
||u_n||_A \leq \frac{T^{\frac{\alpha - 1}{2}} A_2}{\Gamma(\alpha) a_0(2a - 1)} := g.
\]
So by (9), $\Phi'_n(u_{n+1})(u_{n+1} - u_n) = 0$, $\Phi'_n(u_n)(u_{n+1} - u_n) = 0$, we have
\[
\int_0^T \left[a(t)\|D^\alpha_t u_n(t)\|^2 + b(t)u_n(t)(u_{n+1} - u_n) \right] dt \\
+ \sum_{j=1}^I I_j(u_n(t_j))(u_{n+1}(t_j) - u_n(t_j)) = \int_0^T f(t, u_{n+1}, D^\alpha_t u_{n+1})(u_{n+1} - u_n) dt,
\]
and
\[
\int_0^T \left[a(t)\|D^\alpha_t u_{n+1}(t)\|^2 + b(t)u_{n+1}(t)(u_{n+1} - u_n) \right] dt \\
+ \sum_{j=1}^I I_j(u_{n+1}(t_j))(u_{n+1}(t_j) - u_n(t_j)) = \int_0^T f(t, u_{n+1}, D^\alpha_t u_{n+1})(u_{n+1} - u_n) dt.
\]
Hence, by (C6), (I2), and the Hölder inequality, we get
\[
\|u_{n+1} - u_n\|_{\alpha}^2 = \int_0^T \left[f(t, u_{n+1}, D^\alpha_t u_{n+1}) - f(t, u_n, D^\alpha_t u_{n-1}) \right] (u_{n+1} - u_n) dt \\
+ \sum_{j=1}^I \left[I_j(u_{n+1}(t_j)) - I_j(u_n(t_j)) \right] (u_{n+1}(t_j) - u_n(t_j)) \\
\leq L_1 \int_0^T |u_{n+1} - u_n|^2 dt + L_2 \int_0^T \|D^\alpha_t (u_{n+1} - u_{n-1})\| (u_{n+1} - u_n) dt \\
+ \sum_{j=1}^I \rho_j |u_{n+1}(t_j) - u_n(t_j)|^2 \\
\leq \left(\frac{L_1 T^{2\alpha}}{a_0 \Gamma(\alpha + 1)^2} + \frac{T^{2\alpha - 1}}{a_0 (2\alpha - 1) \Gamma(\alpha)^2} \sum_{j=1}^I \rho_j \right) \|u_{n+1} - u_n\|^2 + \frac{L_2 T^n}{a_0 \Gamma(\alpha + 1)} \|u_n - u_{n-1}\|_{\alpha} \cdot \|u_{n+1} - u_n\|_{\alpha},
\]
which implies that
\[
\|u_{n+1} - u_n\|_{\alpha} \leq \bar{L} \|u_n - u_{n-1}\|_{\alpha},
\]
where
\[
\bar{L} = \frac{L_2 T^n (2\alpha - 1) \Gamma(\alpha + 1) \Gamma(\alpha)^2}{a_0 (2\alpha - 1) \Gamma(\alpha)^2 (\Gamma(\alpha + 1)^2 - T^{2\alpha - 1} \Gamma(\alpha + 1)^2)}.
\]
According to the condition of Theorem 3, $\bar{L} \in (0, 1)$. The we know that \(\{u_n\} \) is a Cauchy sequence in \(E_0^\alpha \). Therefore the sequence \(\{u_n\} \) strongly converges in \(E_0^\alpha \) to some \(u \in E_0^\alpha \), Theorem 1 guarantees \(u \neq 0 \).

By (C6), we have, for any \(x(t) \in E_0^\alpha \),
\[
\int_0^T \left| f(t, u_n(t), D^\alpha_t u_{n-1}(t)) - f(t, u(t), D^\alpha_t u(t)) \right| |x(t)| dt \\
\leq L_1 \int_0^T |u_n(t) - u(t)| |x(t)| dt + L_2 \int_0^T \|D^\alpha_t (u_{n-1} - u(t))\| |x(t)| dt \\
\leq \left(\frac{L_1 T^{2\alpha}}{a_0 \Gamma(\alpha + 1)^2} \|u_n - u\|_{\alpha} + \frac{L_2 T^n}{a_0 \Gamma(\alpha + 1)} \|u_{n-1} - u\|_{\alpha} \right) \|x\|_{\alpha} \to 0
\]
as \(n \to +\infty \), which implies that \(u \) is the solution of problem (1). Hence, we obtain a nontrivial solution of problem (1). This completes the proof. \(\Box \)

Finally, in this paper, we present an explicit example to illustrate our main result.
Example 1. Let $\alpha = 0.75, T = 1, t_1 \in (0, 1), a(t) = 1/48, \text{ and } b(t) = (2 - t)/48$. Consider the following fractional boundary value problem:

\begin{equation}
\begin{aligned}
&\int_0^T D_0^{0.75} (a(t) D_0^{0.75} u(t)) + b(t) u(t) = \frac{1}{20} (1 + \sin^2 (\int_0^T D_0^{0.75} u(t))) u^5(t), \text{ a.e. } t \in [0, 1], t \neq t_1, \\
&\Delta_1 D_1^{-0.25} (D_0^{0.75} u)(t_1) = \frac{1}{100} u^3(t_1), \\
&u(0) = u(1) = 0.
\end{aligned}
\end{equation}

Compared with problem (1), $f(t, u, v) = \frac{1}{20} (1 + \sin^2 v) u^5, a_0 = \frac{1}{20}, \text{ and } I_1(u(t_1)) = \frac{1}{100} u^3$. By taking $\theta > 6, \mu = 6$ and $k_1 = \frac{1}{120}, k_2 = \frac{1}{130}, \beta = 4$ and all $\zeta > 0$. Then by simple computation, it is easy to show that the function f satisfies the assumptions (C1)-(C5) and the function I_1 satisfies the hypotheses (I2).

For the conditions (C6) and (I2), for all $t \in [0, 1], u_1, u_2 \in [-\xi, \xi], v_1, v_2 \in \mathbb{R}$, it follows that

$$
|f(t, u_2, v_2) - f(t, u_1, v_1)| \leq \frac{1}{20} u_2^5 (1 + \sin^2 (v_2)) - u_1^5 (1 + \sin^2 (v_1)) + \frac{1}{20} |u_2^5 (1 + \sin^2 (v_2)) - u_1^5 (1 + \sin^2 (v_1))| \\
\leq \frac{1}{20} [1 + \sin^2 (v_2)] |u_2^5 - u_1^5| + \frac{1}{20} |u_2^5| \sin^2 (v_2) - \sin^2 (v_1)| \\
\leq \frac{1}{2} 5^{1/2} |u_2 - u_1| + \frac{1}{10} \xi^5 |v_2 - v_1|,
$$

and

$$
|I_1(u_2(t_1)) - I_1(u_1(t_1))| \leq \frac{3}{100} \xi^2 |u_2 - u_1|.
$$

Thus, we can choose $L_1 = \frac{1}{2} \xi^5, L_2 = \frac{1}{10} \xi^3$ and $\rho_1 = \frac{3}{100} \xi^2$, where $\xi = \sqrt{2} A_2 / \Gamma(0.75)$. In this case, it suffices to verify that

$$
\bar{L} = \frac{L_2 \Gamma(1.75) [\Gamma(0.75)]^2}{[\Gamma(0.75)]^2 / 16 - L_1 [\Gamma(0.75)]^2 - 2 [\Gamma(1.75)]^2 \rho_1} \\
= \frac{\xi^5 \Gamma(1.75) [\Gamma(0.75)]^2}{10 [\Gamma(0.75)]^2 / 16 - 5 \xi^5 [\Gamma(0.75)]^2 - 0.6 [\Gamma(1.75)]^2 \xi^2} \in (0, 1).
$$

From (19), we estimate the value of $A_\ast = \mu h(t_0) + K_7$, where K_7 is dependent of ζ. Since

$$
\int_0^1 \left| D_0^{0.75} (t^2 - t) \right|^2 \, dt = \frac{1}{2} / [\Gamma(1.25)]^2 \cdot (\frac{2}{3} - \frac{96}{175}).
$$

Then we may choose $u^*(t) = 4 \sqrt{60/(1 + 20c_0)} (t^2 - t)$, where $c_0 = \frac{1}{2} / [\Gamma(1.25)]^2 (\frac{2}{3} - \frac{96}{175})$ such that $u^*(t) \in E_{0.75}$ with $\|u^*\|_{0.75} = 1$. By direct computation via Mathematica, we have $t_0 \approx 0.3547 \in (0, 1)$, and

$$
A_\ast = \mu h(t_0) + K_7 \approx 0.2522 + K_7.
$$

According to the arbitrariness of K_7 and ζ, we may take enough small $K_7, \zeta > 0$, such that $A_\ast = 0.3$. Then $A_2 = \sqrt{2 A_\ast / (\mu - 2)} \approx 0.3873, \zeta \approx 1.1540 A_2 \approx 0.4469; \text{ we obtain}

$$
\bar{L} = \frac{\xi^5 \Gamma(1.75) [\Gamma(0.75)]^2}{10 [\Gamma(0.75)]^2 / 16 - 5 \xi^5 [\Gamma(0.75)]^2 - 0.6 [\Gamma(1.75)]^2 \xi^2} \approx 0.0597 \in (0, 1).
$$

Then all conditions in Theorem 1 are satisfied. Consequently the problem (21) admits at least one nontrivial solution.
4. Conclusions

In this work, we studied a class of impulsive fractional boundary value problems with nonlinear derivative dependence. Due to the fact that the studied problem (1) is of no the variational structure and it cannot be studied by directly using the well-developed critical point theory. First, we considered a family of impulsive fractional boundary value problem without the fractional derivative of the solution. Second, we give sufficient conditions of the existence of at least one nontrivial solution for problems (1). The used technical approach is based on variational methods and iterative methods. In future work, it is worth investigating multiplicity of solutions for the problem (1), and the existence of solutions to impulsive fractional differential equations involving p-Laplacian.

Author Contributions: Y.Z. and J.X. contributed equally in writing this article; supervision, H.C. All authors read and approved the final manuscript.

Funding: The research was supported by Hunan Provincial Natural Science Foundation of China (2019JJ40068), and by National Natural Science Foundation of China (11601048 and 11671403).

Acknowledgments: The authors thank the anonymous referees for their careful reading and insightful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).