On Mann Viscosity Subgradient Extragradient Algorithms for Fixed Point Problems of Finitely Many Strict Pseudocontractions and Variational Inequalities

Lu-Chuan Ceng 1, Adrian Petruşel 2,3 and Jen-Chih Yao 4,*

1 Department of Mathematics, Shanghai Normal University, Shanghai 200234, China; zenglc@shnu.edu.cn
2 Department of Mathematics, Babeş-Bolyai University, Cluj-Napoca 400084; petrusel@math.ubbcluj.ro
3 Academy of Romanian Scientists, Bucharest 050044, Romania
4 Research Center for Interneural Computing, China Medical University Hospital, Taichung 40447, Taiwan

* Correspondence: yaojc@mail.cmu.edu.tw

Received: 21 August 2019; Accepted: 26 September 2019; Published: 4 October 2019

Abstract: In a real Hilbert space, we denote CFPP and VIP as common fixed point problem of finitely many strict pseudocontractions and a variational inequality problem for Lipschitzian, pseudomonotone operator, respectively. This paper is devoted to explore how to find a common solution of the CFPP and VIP. To this end, we propose Mann viscosity algorithms with line-search process by virtue of subgradient extragradient techniques. The designed algorithms fully assimilate Mann approximation approach, viscosity iteration algorithm and inertial subgradient extragradient technique with line-search process. Under suitable assumptions, it is proven that the sequences generated by the designed algorithms converge strongly to a common solution of the CFPP and VIP, which is the unique solution to a hierarchical variational inequality (HVI).

Keywords: method with line-search process; pseudomonotone variational inequality; strictly pseudocontractive mappings; common fixed point; sequentially weak continuity

MSC: 47H05; 47H09; 47H10; 90C52

1. Introduction and Preliminaries

Throughout this article, we suppose that the real vector space H is a Hilbert one and the nonempty subset C of H is a convex and closed one. An operator $S : C \to H$ is called:

(i) L-Lipschitzian if there exists $L > 0$ such that \(\|Su - Sv\| \leq L\|u - v\| \ \forall u, v \in C \);

(ii) sequentially weakly continuous if for any \(\{w_n\} \subset C \), the following implication holds: \(w_n \rightharpoonup w \Rightarrow Sw_n \rightharpoonup Sw \);

(iii) pseudomonotone if \(\langle Su, u - v \rangle \leq 0 \Rightarrow \langle Sv, u - v \rangle \leq 0 \ \forall u, v \in C \);

(iv) monotone if \(\langle Su - Sv, v - u \rangle \leq 0 \ \forall u, v \in C \);

(v) γ-strongly monotone if \(\exists \gamma > 0 \ s.t. \ \langle Su - Sw, u - w \rangle \geq \gamma \|u - w\|^2 \ \forall u, w \in C \).

It is not difficult to observe that monotonicity ensures the pseudomonotonicity. A self-mapping $S : C \to C$ is called a η-strict pseudocontraction if the relation holds: \(\langle Su - Sv, u - v \rangle \leq \|u - v\|^2 - \frac{L^2}{2}\| (I - S)u - (I - S)v \|^2 \ \forall u, v \in C \) for some $\eta \in [0, 1)$. By [1] we know that, in the case where S is η-strictly pseudocontractive, S is Lipschitzian, i.e., \(\|Su - Sv\| \leq \frac{1 + \eta}{1 - \eta} \|u - v\| \ \forall u, v \in C \). It is clear that the class of strict pseudocontractions includes the class of nonexpansive operators, i.e., \(\|Su - Sv\| \leq \|u - v\| \ \forall u, v \in C \). Both classes of nonlinear operators received much attention and many numerical algorithms were designed for calculating their fixed points in Hilbert or Banach spaces; see e.g., [2–11].
Let A be a self-mapping on H. The classical variational inequality problem (VIP) is to find $z \in C$ such that $\langle Az, y - z \rangle \geq 0 \ \forall y \in C$. The solution set of such a VIP is indicated by $\text{VI}(C, A)$. To the best of our knowledge, one of the most effective methods for solving the VIP is the gradient-projection method. Recently, many authors numerically investigated the VIP in finite dimensional spaces, Hilbert spaces or Banach spaces; see e.g., [12–20].

In 2014, Kraikaew and Saejung [21] suggested a Halpern-type gradient-like algorithm to deal with the VIP

$$
\begin{align*}
\ell
\end{align*}
$$

with $\ell \in (0, \frac{1}{1})$. Under mild assumptions, they proved that $\{u_k\}$ converge weakly to a point of $\text{VI}(C, A)$.

Very recently, Thong and Hieu [23] suggested two inertial algorithms with linear-search process, to solve the VIP for Lipschitzian, monotone operator A and the FPP for a quasi-nonexpansive operator S satisfying a demiclosedness property in H. Under appropriate assumptions, they proved that the sequences constructed by the suggested algorithms converge weakly to a point of $\text{Fix}(S) \cap \text{VI}(C, A)$. Further research on common solutions problems, we refer the readers to [24–38].

In this paper, we first introduce Mann viscosity algorithms via subgradient extragradient techniques, and then establish some strong convergence theorems in Hilbert spaces. It is remarkable that our algorithms involve line-search process.

The following lemmas are useful for the convergence analysis of our algorithms in the sequel.

Lemma 1. [39] Let the operator A be pseudomonotone and continuous on C. Given a point $w \in C$. Then the relation holds: $\langle Aw, w - y \rangle \leq 0 \ \forall y \in C \Leftrightarrow \langle Ay, w - y \rangle \leq 0 \ \forall y \in C$.

Lemma 2. [40] Suppose that $\{s_k\}$ is a sequence in $[0, +\infty)$ such that $s_{k+1} \leq t_k b_k + (1 - t_k)s_k \ \forall k \geq 1$, where $\{t_k\}$ and $\{b_k\}$ lie in real line $\mathbb{R} := (-\infty, \infty)$, such that:

(a) $\{t_k\} \subset [0, 1]$ and $\sum_{k=1}^{\infty} t_k = \infty$;

(b) $\lim \sup_{k \to \infty} b_k \leq 0 \text{ or } \sum_{k=1}^{\infty} |t_k b_k| < \infty$. Then $s_k \to 0$ as $k \to \infty$.

From Ceng et al. [2] it is not difficult to find that the following lemmas hold.

Lemma 3. Let Γ be an η-strictly pseudocontractive self-mapping on C. Then $I - \Gamma$ is demiclosed at zero.

Lemma 4. For $l = 1, \ldots, N$, let Γ_l be an η_l-strictly pseudocontractive self-mapping on C. Then for $l = 1, \ldots, N$, the mapping Γ_1 is an η-strictly pseudocontraction with $\eta = \max\{\eta_l : 1 \leq l \leq N\}$, such that

$$
\|\Gamma_1 u - \Gamma_1 v\| \leq \frac{1 + \eta}{1 - \eta} \|u - v\| \ \forall u, v \in C.
$$

Lemma 5. Let Γ be an η-strictly pseudocontractive self-mapping on C. Given two reals $\gamma, \beta \in [0, +\infty)$. If $(\gamma + \beta) \eta \leq \gamma$, then $\|\gamma(u - v) + \beta(\Gamma u - \Gamma v)\| \leq (\gamma + \beta)\|u - v\| \ \forall u, v \in C$.
2. Main Results

Our first algorithm is specified below:

Algorithm 1

Initial Step: Given $x_0, x_1 \in H$ arbitrarily. Let $\gamma > 0$, $\ell \in (0, 1)$, $\mu \in (0, 1)$.

Iteration Steps: Compute x_{n+1} below:

Step 1. Put $v_n = x_n - \sigma_n(x_n - x_{n-1})$ and calculate $u_n = P_C(v_n - \ell_n Au_n)$, where ℓ_n is picked to be the largest $\ell \in \{\gamma, \gamma \ell, \gamma^2 \ell, \ldots\}$ s.t. $\ell \|Au_n - Au_n\| \leq \mu \|v_n - u_n\|$.

\begin{equation}
\ell \|Au_n - Au_n\| \leq \mu \|v_n - u_n\|.
\end{equation}

Step 2. Calculate $z_n = (1 - \alpha_n)P_{C_n}(v_n - \ell_n Au_n) + \alpha_n f(x_n)$ with $C_n := \{v \in H : \langle v - \ell_n Au_n - u_n, u_n - v \rangle \geq 0\}$.

Step 3. Calculate $x_{n+1} = \gamma_n P_{C_n}(v_n - \ell_n Au_n) + \delta_n T_n z_n + \beta_n x_n$.

Update $n := n + 1$ and return to Step 1.

In this section, we always suppose that the following hypotheses hold:

T_k is a ζ_k-strictly pseudocontractive mapping on H for $k = 1, \ldots, N$ s.t. $\zeta \in [0, 1)$ with $\zeta = \max \{\xi_k : 1 \leq k \leq N\}$.

A is L-Lipschitzian, pseudomonotone self-mapping on H, and sequentially weakly continuous on C, such that $\Omega := \bigcap_{k=1}^N Fix(T_k) \cap VI(C, A) \neq \emptyset$.

\[f : H \rightarrow C \text{ is a } \delta\text{-contraction with } \delta \in [0, \frac{1}{4}) \text{.} \]

\[\{\sigma_n\} \subset \{0, 1\} \text{ and } \{\beta_n\}, \{\gamma_n\}, \{\delta_n\} \subset (0, 1) \text{ are such that} : \]

(i) $\beta_n + \gamma_n + \delta_n = 1$ and $\sup_{n \geq 1} \frac{\delta_n}{\gamma_n} < \infty$;

(ii) $|1 - 2\delta_n| \gamma_n \geq \gamma_n + \delta_n$, $\forall n \geq 1$ and $\liminf_{n \rightarrow \infty} |1 - 2\delta_n| \gamma_n > 0$;

(iii) $\lim_{n \rightarrow \infty} \alpha_n = 0$ and $\sup_{n \geq 1} \beta_n = \infty$;

(iv) $\liminf_{n \rightarrow \infty} \beta_n > 0$, $\liminf_{n \rightarrow \infty} \delta_n > 0$ and $\limsup_{n \rightarrow \infty} \beta_n < 1$.

Following Xu and Kim [40], we denote $T_n := T_{n \text{mod} N}$, $\forall n \geq 1$, where the mod function takes values in $\{1, 2, \ldots, N\}$, i.e., whenever $n = jN + q$ for some $j \geq 0$ and $0 \leq q < N$, we obtain that $T_n = T_q$ in the case of $q = 0$ and $T_n = T_j$ in the case of $0 < q < N$.

Lemma 6. The Armijo-like search rule (1) is well defined, and $\min \{\gamma, \frac{\mu}{4}\} \leq \ell_n \leq \gamma$.

Proof. Obviously, (1) holds for all $\gamma^m \leq \frac{\mu}{4}$. So, ℓ_n is well defined and $\ell_n \leq \gamma$. In the case of $\ell_n = \gamma$, the inequality is true. In the case of $\ell_n < \gamma$, (1) ensures $\|Av_n - AP_C(v_n - \frac{\mu}{4} Au_n)\| > \frac{\mu}{4} \|v_n - P_C(v_n - \frac{\mu}{4} Au_n)\|$. The L-Lipschitzian property of A yields $\ell_n > \frac{\mu}{4}$. \hfill \Box

Lemma 7. Let $\{v_n\}, \{u_n\}$ and $\{z_n\}$ be the sequences constructed by Algorithm 1. Then

\[\|z_n - \omega\|^2 \leq (1 - \alpha_n)\|v_n - \omega\|^2 + \alpha_n \delta \|x_n - \omega\|^2 - (1 - \alpha_n)(1 - \mu)\|v_n - u_n\|^2 \]

\[+ \|h_n - u_n\|^2 + 2\alpha_n< f\omega - \omega, z_n - \omega > \forall \omega \in \Omega. \]

where $h_n := P_{C_n}(v_n - \ell_n Au_n) \forall n \geq 1$.

Proof. First, taking an arbitrary $p \in \Omega \subset C \subset C_n$, we observe that

\[2\|h_n - p\|^2 \leq 2< h_n - p, v_n - \ell_n Au_n - p > \]

\[= \|h_n - p\|^2 + \|v_n - p\|^2 - \|h_n - v_n\|^2 - 2< \ell_n Au_n, h_n - p >. \]

So, it follows that $\|v_n - p\|^2 - 2< h_n - p, \ell_n Au_n > - \|h_n - v_n\|^2 \geq \|h_n - p\|^2$, which together with (1), we deduce that $0 \geq \langle p - u_n, Au_n \rangle$ and

\[\|h_n - p\|^2 \leq \|v_n - p\|^2 - \|h_n - v_n\|^2 + 2\ell_n(\langle Au_n, p - u_n \rangle + \langle Au_n, u_n - h_n \rangle) \]

\[\leq \|v_n - p\|^2 - \|Au_n - h_n\|^2 - \|v_n - u_n\|^2 + 2\langle u_n - v_n + \ell_n Au_n, u_n - h_n \rangle. \]
Since \(h_n = P_{C_n}(v_n - \ell_n Au_n) \) with \(C_n := \{ v \in H : \langle u_n - v + \ell_n Av_n, u_n - v \rangle \leq 0 \} \), we have \(\langle u_n - v_n + \ell_n Av_n, u_n - h_n \rangle \leq 0 \), which together with (1), implies that

\[
2\langle u_n - v_n + \ell_n Au_n, u_n - h_n \rangle = 2\langle u_n - v_n + \ell_n Av_n, u_n - h_n \rangle + 2\ell_n \langle Av_n - Au_n, h_n - u_n \rangle \leq 2\mu\|u_n - v_n\|\|u_n - h_n\| \leq \mu(\|v_n - u_n\|^2 + \|h_n - u_n\|^2).
\]

Therefore, substituting the last inequality for (4), we infer that

\[
\|h_n - p\|^2 \leq \|v_n - p\|^2 - (1 - \mu)\|v_n - u_n\|^2 - (1 - \mu)\|h_n - u_n\|^2 \quad \forall p \in \Omega.
\]

In addition, we have

\[
z_n - p = (1 - \alpha_n)(h_n - p) + \alpha_n(f - I)p + \alpha_n(f(x_n) - f(p)).
\]

Using the convexity of the function \(h(t) = t^2 \forall t \in \mathbb{R} \), from (5) we get

\[
\|z_n - p\|^2 \leq [\alpha_n\delta\|x_n - p\| + (1 - \alpha_n)\|h_n - p\|]^2 + 2\alpha_n\langle (f - I)p, z_n - p \rangle \\
 \leq \alpha_n\delta\|x_n - p\|^2 + (1 - \alpha_n)\|h_n - p\|^2 + 2\alpha_n\langle (f - I)p, z_n - p \rangle \\
 \leq \alpha_n\delta\|x_n - p\|^2 + (1 - \alpha_n)(\|v_n - p\|^2 - (1 - \alpha_n)(1 - \mu)\|v_n - u_n\|^2 \\
 + \|h_n - u_n\|^2) + 2\alpha_n\langle (f - I)p, z_n - p \rangle.
\]

\[
\square
\]

Lemma 8. Let \(\{x_n\}, \{u_n\}, \) and \(\{v_n\} \) be bounded sequences constructed by Algorithm 1. If \(x_n - x_{n+1} \to 0, \ v_n - u_n \to 0, \ v_n - z_n \to 0 \) and \(\exists \{v_n\} \subset \{v_n\} \) s.t. \(v_{n_i} \to z \in H, \) then \(z \in \Omega. \)

Proof. According to Algorithm 1, we get \(\sigma_n(x_n - x_{n-1}) = v_n - x_n \forall n \geq 1, \) and hence \(\|v_n - x_{n-1}\| \geq \|v_n - x_n\|. \) Using the assumption \(x_n - x_{n+1} \to 0, \) we have

\[
\lim_{n \to \infty} \|v_n - x_n\| = 0.
\]

So,

\[
\|z_n - x_n\| \leq \|v_n - z_n\| + \|v_n - x_n\| \to 0.
\]

Since \(\{x_n\} \) is bounded, from \(v_n = x_n - \sigma_n(x_{n-1} - x_n) \) we know that \(\{v_n\} \) is a bounded vector sequence. According to (5), we obtain that \(h_n := P_{C_n}(v_n - \ell_n Au_n) \) is a bounded vector sequence. Also, by Algorithm 1 we get \(\alpha_n f(x_n) + h_n - x_n - \alpha_n h_n = z_n - x_n. \) So, the boundedness of \(\{x_n\}, \{h_n\} \) guarantees that as \(n \to \infty, \)

\[
\|h_n - x_n\| = \|z_n - x_n - \alpha_n f(x_n) + \alpha_n h_n\| \leq \|z_n - x_n\| + \alpha_n(\|f(x_n)\| + \|h_n\|) \to 0.
\]

It follows that

\[
x_{n+1} - z_n = \gamma_n(h_n - x_n) + \delta_n(T_n z_n - z_n) + (1 - \delta_n)(x_n - z_n),
\]

which immediately yields

\[
\delta_n\|T_n z_n - z_n\| = \|x_{n+1} - x_n + x_n - z_n - (1 - \delta_n)(x_n - z_n) - \gamma_n(h_n - x_n)\| \\
\leq \|x_{n+1} - x_n + \delta_n(x_n - z_n) - \gamma_n(h_n - x_n)\| \\
\leq \|x_{n+1} - x_n\| + \|x_n - z_n\| + \|h_n - x_n\|.
\]
Since $x_n - x_{n+1} \to 0$, $z_n - x_n \to 0$, $h_n - x_n \to 0$ and $\liminf_{n \to \infty} \delta_n > 0$, we obtain $\|z_n - T_n z_n\| \to 0$ as $n \to \infty$. This further implies that

$$
\|x_n - T_n x_n\| \leq \|x_n - z_n\| + \|z_n - T_n z_n\| + \frac{1 + \epsilon}{1 - \epsilon} \|z_n - x_n\| \leq \frac{2}{1 - \epsilon} \|x_n - z_n\| + \|z_n - T_n z_n\| \to 0 \quad (n \to \infty).
$$

We have $(v_n - \ell_n Av_n - u_n, v - u_n) \leq 0 \quad \forall v \in C,$ and

$$
\langle v_n - u_n, v - u_n \rangle + \ell_n \langle Av_n, u_n - v_n \rangle \leq \ell_n \langle Av_n, v - v_n \rangle \quad \forall v \in C.
$$

Note that $\ell_n \geq \min \{\gamma, \frac{\|u\|^2}{T}\}.$ So, $\liminf_{n \to \infty} \langle Av_n, v - v_n \rangle \geq 0 \quad \forall v \in C.$ This yields $\liminf_{n \to \infty} \langle Av_n, v - u_n \rangle \geq 0 \quad \forall v \in C.$ Since $v_n - x_n \to 0$ and $v_n \to z$, we get $x_n \to z$. We may assume $k = n \mod N$ for all i. By the assumption $x_n - x_{n+k} \to 0$, we have $x_{n+j} \to z$ for all $j \geq 1$. Hence, $\|x_{n+j} - T_{i+k} x_{n+j}\| = \|x_{n+j} - T_{i+k} x_{n+j}\| \to 0.$ Then the demiclosedness principle implies that $z \in \text{Fix}(T_{k+i})$ for all j. This ensures that $z \in \bigcap_{k=1}^{N} \text{Fix}(T_k)$.

We now take a sequence $\{\xi_i\} \subset (0, 1)$ satisfying $\xi_i \downarrow 0$ as $i \to \infty$. For all $i \geq 1$, we denote by m_i the smallest natural number satisfying

$$
\langle Au_{n_i}, v - u_{n_i} \rangle + \xi_i \geq 0 \quad \forall i \geq m_i.
$$

Since $\{\xi_i\}$ is decreasing, it is clear that $\{m_i\}$ is increasing. Noticing that $\{u_{n_i}\} \subset C$ ensures $Au_{m_i} \neq 0 \quad \forall i \geq 1$, we set $e_{m_i} = \frac{Au_{m_i}}{\|Au_{m_i}\|}$, we get $\langle Au_{m_i}, e_{m_i} \rangle = 1 \quad \forall i \geq 1.$ So, from (10) we get $\langle Au_{m_i}, v + \xi_i e_{m_i} - u_{m_i} \rangle \geq 0 \quad \forall i \geq 1.$ Also, the pseudomonotonicity of A implies $\langle A(v + \xi_i e_{m_i}), v + \xi_i e_{m_i} - u_{m_i} \rangle \geq 0 \quad \forall i \geq 1.$

This immediately leads to

$$
\langle Av - A(v + \xi_i e_{m_i}), v + \xi_i e_{m_i} - u_{m_i} \rangle - \xi_i \langle Av, e_{m_i} \rangle \leq \langle Av, v - u_{m_i} \rangle \quad \forall i \geq 1.
$$

We claim $\lim_{i \to \infty} \xi_i e_{m_i} = 0$. Indeed, from $v_{n_i} \to z$ and $v_n - u_n \to 0$, we obtain $u_{n_i} \to z$. So, $\{u_{n_i}\} \subset C$ ensures $z \in C$. Also, the sequentially weak continuity of A guarantees that $Au_{n_i} \to Az$. Thus, we have $Az \neq 0$ (otherwise, z is a solution). Moreover, the sequentially weak lower semicontinuity of $\| \cdot \|$ ensures $0 < \|Az\| \leq \liminf_{i \to \infty} \|Au_{n_i}\|$. Since $\{u_{n_i}\} \subset \{u_n\}$ and $\xi_i \downarrow 0$ as $i \to \infty$, we deduce that $0 \leq \limsup_{i \to \infty} \|\xi_i e_{m_i}\| = \limsup_{i \to \infty} \|\xi_i \| = 0$. Hence we get $\xi_i e_{m_i} \to 0$.

Finally we claim $z \in \Omega$. In fact, letting $i \to \infty$, we conclude that the right hand side of (11) tends to zero by the Lipschitzian property of A, the boundedness of $\{u_{n_i}\}, \{h_{n_i}\}$ and the limit $\lim_{i \to \infty} \xi_i e_{m_i} = 0$. Thus, we get $\langle Av, v - z \rangle = \liminf_{i \to \infty} \langle Av, v - u_{n_i} \rangle \geq 0 \quad \forall v \in C$. So, $z \in VI(C, A)$. Therefore, from (9) we have $z \in \bigcap_{k=1}^{N} \text{Fix}(T_k) \cap VI(C, A) = \Omega.$

Theorem 1. Assume $A(C)$ is bounded. Let $\{x_n\}$ be constructed by Algorithm 1. Then

$$
x_n \to x^* \in \Omega \iff \begin{cases} x_n - x_{n+1} \to 0, \\ \sup_{n \geq 1} \|x_n - f x_n\| < \infty \end{cases}
$$

where $x^* \in \Omega$ is the unique solution to the hierarchical variational inequality (HVI):

$$
\langle (I - f)x^*, x^* - \omega \rangle \leq 0, \quad \forall \omega \in \Omega.
$$
Proof. Taking into account condition (iv) on \(\{ \gamma_n \} \), we may suppose that \(\{ \beta_n \} \subset [a, b] \subset (0, 1) \). Applying Banach’s Contraction Principle, we obtain existence and uniqueness of a fixed point \(x^* \in H \) for the mapping \(P_{\Omega} \circ f \), which means that \(x^* = P_{\Omega}f(x^*) \). Hence, the HVI

\[
\langle (I - f)x^* - x^* - \omega \rangle \leq 0, \quad \forall \omega \in \Omega
\]

(12)

has a unique solution \(x^* \in \Omega := \cap_{k=1}^{N} \text{Fix}(T_k) \cap VI(C, A) \).

It is now obvious that the necessity of the theorem is true. In fact, if \(x_n \to x^* \in \Omega \), then we get

\[
\sup_{n \geq 1} \| x_n - f(x_n) \| \leq \sup_{n \geq 1} (\| x_n - x^* \| + \| x^* - f(x^*) \| + \| f(x^*) - f(x_n) \|) < \infty \quad \text{and}
\]

\[
\| x_n - x_{n+1} \| \leq \| x_n - x^* \| + \| x_{n+1} - x^* \| \to 0 \quad (n \to \infty).
\]

For the sufficient condition, let us suppose \(x_n - x_{n+1} \to 0 \) and \(\sup_{n \geq 1} \| (I - f)x_n \| < \infty \). The sufficiency of our conclusion is proved in the following steps.

\[\square\]

Step 1. We show the boundedness of \(\{ x_n \} \). In fact, let \(p \) be an arbitrary point in \(\Omega \). Then \(T_np = p \forall n \geq 1 \), and

\[
\| v_n - p \|^2 - (1 - \mu)\| h_n - u_n \|^2 - (1 - \mu)\| v_n - u_n \| \geq \| h_n - p \|^2,
\]

(13)

which hence leads to

\[
\| v_n - p \| \geq \| h_n - p \| \quad \forall n \geq 1.
\]

(14)

By the definition of \(v_n \), we have

\[
\| v_n - p \| \leq \| x_n - p \| + \sigma_n \| x_n - x_{n-1} \| \leq \| x_n - p \| + \alpha_n \cdot \frac{\sigma_n}{\alpha_n} \| x_n - x_{n-1} \|.\]

(15)

Noticing \(\sup_{n \geq 1} \| x_n - x_{n-1} \| < \infty \) and \(\sup_{n \geq 1} \| x_n - x_{n-1} \| < \infty \), we obtain that \(\sup_{n \geq 1} \| x_n - x_{n-1} \| < \infty \).

This ensures that \(\exists M_1 > 0 \text{ s.t.} \)

\[
\frac{\sigma_n}{\alpha_n} \| x_n - x_{n-1} \| \leq M_1 \quad \forall n \geq 1.
\]

(16)

Combining (14)–(16), we get

\[
\| h_n - p \| \leq \| v_n - p \| \leq \| x_n - p \| + \alpha_n M_1 \quad \forall n \geq 1.
\]

(17)

Note that \(A(C) \) is bounded, \(u_n = P_C(v_n - \epsilon_n Au_n) \), \(f(H) \subset C \subset C_n \) and \(h_n = P_{C_n}(v_n - \epsilon_n Au_n) \). Hence we know that \(\{ Au_n \} \) is bounded. So, from \(\sup_{n \geq 1} \| (I - f)x_n \| < \infty \), it follows that

\[
\| h_n - f(x_n) \| \leq \| v_n - \epsilon_n Au_n - f(x_n) \|
\]

\[
\leq \| x_n - x_{n-1} \| + \| x_n - f(x_n) \| + \gamma \| Au_n \| \leq M_0,
\]

where \(\exists M_0 > 0 \text{ s.t.} \)

\[
M_0 \geq \sup_{n \geq 1} (\| x_n - x_{n-1} \| + \| x_n - f(x_n) \| + \gamma \| Au_n \|) \quad (\text{due to the assumption } x_n - x_{n+1} \to 0).
\]

Consequently,

\[
\| z_n - p \| \leq \alpha_n \delta \| x_n - p \| + (1 - \alpha_n) \| h_n - p \| + \alpha_n (f - I) p \|
\]

\[
\leq (1 - \alpha_n (1 - \delta)) \| x_n - p \| + \alpha_n (M_1 + \| (f - I) p \|),
\]

which together with \((\gamma_n + \delta_n) \zeta \leq \gamma_n \), yields

\[
\| x_{n+1} - p \|
\]

\[
\leq \beta_n \| x_n - p \| + (1 - \beta_n) \| \frac{1}{1 - \beta_n} [\gamma_n (z_n - p) + \delta_n (T_n z_n - p)] \| + \gamma_n \| h_n - z_n \|
\]

\[
\leq \beta_n \| x_n - p \| + (1 - \beta_n) \| (1 - \alpha_n (1 - \delta)) \| x_n - p \| + \alpha_n (M_0 + M_1 + \| (f - I) p \|)
\]

\[
= [1 - \alpha_n (1 - \beta_n) (1 - \delta)] \| x_n - p \| + \alpha_n (1 - \beta_n) (1 - \delta) \frac{M_0 + M_1 + \| (f - I) p \|}{1 - \delta}.
\]
This shows that \(\|x_n - p\| \leq \max \{ \|x_1 - p\|, \frac{M_0 + M_1 + \|f(h)p\|}{1 - \nu} \} \) \(\forall n \geq 1 \). Thus, \(\{x_n\} \) is bounded, and so are the sequences \(\{h_n\}, \{v_n\}, \{u_n\}, \{z_n\}, \{T_n z_n\} \).

Step 2. We show that \(\exists M_4 > 0 \) s.t.

\[
(1 - \alpha_n)(1 - \beta_n)(1 - \mu) \|\|v_n - y_n\|^2 + \|u_n - y_n\|^2\| \leq \|x_n - p\|^2 - \|x_{n+1} - p\|^2 + \alpha_n M_4.
\]

In fact, using Lemma 7 and the convexity of \(\cdot \|\cdot\|^2 \), we get

\[
\|x_{n+1} - p\|^2 \leq \|\beta_n(x_n - p)\|^2 + \gamma_n\|z_n - p\|^2 + \delta_n\|h_n - f(x_n), x_{n+1} - p\| + 2\gamma_n\alpha_n\langle h_n - f(x_n), x_{n+1} - p\rangle
\]

\[
\leq \beta_n\|x_n - p\|^2 + (1 - \beta_n)\|z_n - p\|^2 + 2(1 - \beta_n)\alpha_n\|h_n - f(x_n)\|\|x_{n+1} - p\|
\]

\[
\leq \beta_n\|x_n - p\|^2 + (1 - \beta_n)(\alpha_n\|x_n - p\| + (1 - \alpha_n)\|v_n - p\|)^2
\]

\[
- (1 - \alpha_n)(1 - \mu)\|\|v_n - u_n\|^2 + \|h_n - u_n\|^2\| + \alpha_n M_2, \tag{18}
\]

where \(\exists M_2 > 0 \) s.t. \(M_2 \geq \sup_{n \geq 1} 2(\|f - p\|\|z_n - p\| + \|u_n - f(x_n)\|\|x_{n+1} - p\|) \). Also,

\[
\|v_n - p\|^2 \leq \|x_n - p\|^2 + \alpha_n(2M_1\|x_n - p\| + \alpha_n M_3)
\]

\[
\leq \|x_n - p\|^2 + \alpha_n M_3, \tag{19}
\]

where \(\exists M_3 > 0 \) s.t. \(M_3 \geq \sup_{n \geq 1}(2M_1\|x_n - p\| + \alpha_n M_2^2) \). Substituting (19) for (18), we have

\[
\|x_{n+1} - p\|^2 \leq \beta_n\|x_n - p\|^2 + (1 - \beta_n)(1 - \alpha_n(1 - \delta))\|x_n - p\|^2 + (1 - \alpha_n)\|x_n - M_5
\]

\[
- (1 - \alpha_n)(1 - \mu)\|\|v_n - u_n\|^2 + \|h_n - u_n\|^2\| + \alpha_n M_2
\]

\[
\leq \|x_n - p\|^2 - (1 - \alpha_n)(1 - \beta_n)(1 - \mu)\|\|v_n - u_n\|^2 + \|h_n - u_n\|^2\| + \alpha_n M_4, \tag{20}
\]

where \(M_4 := M_2 + M_3 \). This immediately implies that

\[
(1 - \alpha_n)(1 - \beta_n)(1 - \mu)\|\|v_n - u_n\|^2 + \|h_n - u_n\|^2\| \leq \|x_n - p\|^2 - \|x_{n+1} - p\|^2 + \alpha_n M_4. \tag{21}
\]

Step 3. We show that \(\exists M > 0 \) s.t.

\[
\|x_{n+1} - p\|^2 \leq \left[1 - \frac{1 - 2\beta_n}{1 - \alpha_n(1 - \delta)} \right] \|x_n - p\|^2 + \frac{1 - 2\beta_n}{1 - \alpha_n(1 - \delta)} \|x_n - p\| f(x_n) - p \|z_n - x_{n+1}\|
\]

\[
+ \frac{2\delta_n}{1 - 2\beta_n} \|z_n - p\| f(x_n) - p \|z_n - x_n\| + \frac{2\delta_n}{1 - 2\beta_n} \|f(p) - p, x_n - p\|
\]

\[
+ \frac{2\delta_n}{\alpha_n(1 - \delta)} \|x_n - x_{n-1}\| M_3. \tag{22}
\]

In fact, we get

\[
\|v_n - p\|^2 \leq \|x_n - p\|^2 + \sigma_n\|x_n - x_{n-1}\|\|2|x_n - p|| + \sigma_n\|x_n - x_{n-1}\|
\]

\[
\leq \|x_n - p\|^2 + \sigma_n\|x_n - x_{n-1}\| M_3, \tag{22}
\]

where \(\exists M > 0 \) s.t. \(M \geq \sup_{n \geq 1}\{\|x_n - p\|, \sigma_n\|x_n - x_{n-1}\|\} \). By Algorithm 1 and the convexity of \(\cdot \|\cdot\|^2 \), we have

\[
\|x_{n+1} - p\|^2 \leq \|\beta_n(x_n - p)\|^2 + \gamma_n\|z_n - p\|^2 + \delta_n\|h_n - f(x_n), x_{n+1} - p\| + 2\gamma_n\alpha_n\langle h_n - f(x_n), x_{n+1} - p\rangle
\]

\[
\leq \beta_n\|x_n - p\|^2 + (1 - \beta_n)\|z_n - p\|^2 + 2\gamma_n\alpha_n\|h_n - f(x_n)\|\|x_{n+1} - p\|
\]

\[
+ 2\gamma_n\alpha_n\langle h_n - f(x_n), x_{n+1} - p\rangle
\]

which leads to

\[
\|x_{n+1} - p\|^2 \leq \beta_n\|x_n - p\|^2 + (1 - \beta_n)(1 - \alpha_n)\|h_n - p\|^2 + 2\alpha_n\langle f(x_n) - p, z_n - p\rangle
\]

\[
+ \gamma_n\alpha_n\|h_n - p\|^2 + \|x_{n+1} - p\|^2 + 2\gamma_n\alpha_n\langle f(x_n) - p, x_{n+1} - p\rangle.
\]
Using (17) and (22) we obtain that \(\| h_n - p \|^2 \leq \| x_n - p \|^2 + \sigma_n \| x_n - x_{n-1} \| 3M. \) Hence,

\[
\| x_{n+1} - p \|^2 \leq \left[1 - \alpha_n (1 - \beta_n) \right] \| x_n - p \|^2 + (1 - \beta_n) (1 - \alpha_n) \sigma_n \| x_n - x_{n-1} \| 3M + 2 \alpha_n \beta_n \| f(x_n) - p \| \| z_n - x_{n+1} \| + \gamma_n \alpha_n \| f(x_n) - p \| \| z_n - x_{n-1} \| 3M + \gamma_n \alpha_n \| f(x_n) - p \| \| z_n - x_{n+1} \| + 2 \alpha_n \beta_n \| f(x_n) - p \| \| z_n - x_{n+1} \| + 2 \alpha_n \beta_n \| f(x_n) - p \| \| z_n - x_{n-1} \| 3M + 2 \gamma_n \alpha_n \| f(x_n) - p \| \| z_n - x_{n+1} \| + 2 \alpha_n \beta_n \| f(x_n) - p \| \| z_n - x_{n-1} \| 3M,
\]

which immediately yields

\[
\| x_{n+1} - p \|^2 \leq \left[1 - \left(1 - \frac{2\beta_n}{\gamma_n} \right) \alpha_n \right] \| x_n - p \|^2 + \left(1 - \frac{2\beta_n}{\gamma_n} \right) \alpha_n \| f(x_n) - p \| \| z_n - x_{n+1} \| + 2 \alpha_n \beta_n \| f(x_n) - p \| \| z_n - x_{n-1} \| 3M.
\] (23)

Step 4. We show that \(x_n \to x^* \in \Omega \), where \(x^* \) is the unique solution of (12). Indeed, putting \(p = x^* \), we infer from (23) that

\[
\| x_{n+1} - x^* \|^2 \leq \left[1 - \left(1 - \frac{2\beta_n}{\gamma_n} \right) \alpha_n \right] \| x_n - x^* \|^2 + \left(1 - \frac{2\beta_n}{\gamma_n} \right) \alpha_n \| f(x_n) - x^* \| \| z_n - x_{n+1} \| + 2 \alpha_n \beta_n \| f(x_n) - x^* \| \| z_n - x_{n-1} \| 3M.
\] (24)

It is sufficient to show that \(\limsup_{n \to \infty} (f(I)x^*, x_n - x^*) \leq 0 \). From (21), \(x_n - x_{n+1} \to 0, \alpha_n \to 0 \) and \(\{\beta_n\} \subset [a, b] \subset (0, 1) \), we get

\[
\limsup_{n \to \infty} (f(I)x^*, x_n - x^*) \leq \left(f(I)x^* - x^* \right), \| x_n - x^* \| + \| x_{n+1} - x^* \| + \| x_{n-1} - x^* \| \leq 0.
\]

This ensures that

\[
\lim_{n \to \infty} \| x_n - u_n \| = 0 \quad \text{and} \quad \lim_{n \to \infty} \| h_n - u_n \| = 0.
\] (25)

Consequently,

\[
\| x_n - u_n \| \leq \| x_n - v_n \| + \| v_n - u_n \| \to 0 \quad (n \to \infty).
\]

Since \(z_n = \alpha_n f(x_n) + (1 - \alpha_n) h_n \) with \(h_n := \rho v_n - (\ell_n A) u_n \), we get

\[
\| z_n - u_n \| = \| \alpha_n f(x_n) - \alpha_n h_n + h_n - u_n \| \leq \alpha_n (\| f(x_n) \| + \| h_n \|) + \| h_n - u_n \| \to 0 \quad (n \to \infty),
\] (26)

and hence

\[
\| z_n - u_n \| \leq \| z_n - u_n \| + \| u_n - x_n \| \to 0 \quad (n \to \infty).
\] (27)

Obviously, combining (25) and (26), guarantees that

\[
\| v_n - z_n \| \leq \| v_n - u_n \| + \| u_n - z_n \| \to 0 \quad (n \to \infty).
\]
From the boundedness of \(\{x_n\} \), it follows that \(\exists x_{n_1} \subset x_n \) s.t.
\[
\lim_{n \to \infty} \sup (f(I)x^*, x_n - x^*) = \lim_{i \to \infty} \sup (f(I)x^*, x_{n_i} - x^*).
\] (28)

Since \(\{x_n\} \) is bounded, we may suppose that \(x_{n_i} \to \hat{x} \). Hence from (28) we get
\[
\lim_{n \to \infty} \sup (f(I)x^*, x_n - x^*) = \lim_{i \to \infty} \sup (f(I)x^*, x_{n_i} - x^*) = \lim_{i \to \infty} \sup (f(I)x^*, \hat{x} - x^*).
\] (29)

It is easy to see from \(v_n - x_n \to 0 \) and \(x_{n_i} \to \hat{x} \) that \(v_{n_i} \to \hat{x} \). Since \(x_{n_i} - x_{n_i+1} \to 0 \), \(v_n - u_n \to 0 \), \(v_n - z_n \to 0 \) and \(v_{n_i} \to \hat{x} \), by Lemma 8 we infer that \(\hat{x} \in \Omega \). Therefore, from (12) and (29) we conclude that
\[
\lim_{n \to \infty} \sup (f(I)x^*, x_n - x^*) = \lim_{i \to \infty} \sup (f(I)x^*, \hat{x} - x^*) \leq 0.
\] (30)

Note that \(\liminf_{n \to \infty} \frac{(1-2\delta_n - \gamma_n)}{1 - \alpha_n} > 0 \). It follows that \(\sum_{n=0}^{\infty} \frac{(1-2\delta_n - \gamma_n)}{1 - \alpha_n} = \infty \). It is clear that
\[
\limsup_{n \to \infty} \left\{ \frac{2\gamma_n}{(1-2\delta_n - \gamma_n)} \|f(x_n) - x^*\| \|z_n - x_{n-1}\| + \frac{2\delta_n}{(1-2\delta_n - \gamma_n)} \|f(x_n) - x^*\| \|z_n - x_n\| + \frac{2\delta_n}{(1-2\delta_n - \gamma_n)} \|f(x_n) - x^*\| \|x_n - x_{n-1}\| \|3M\| \right\} \leq 0.
\] (31)

Therefore, by Lemma 2 we immediately deduce that \(x_n \to x^* \).

Next, we introduce another Mann viscosity algorithm with line-search process by the subgradient extragradient technique.

Algorithm 2

Initial Step: Given \(x_0, x_1 \in H \) arbitrarily. Let \(\gamma > 0 \), \(I \in (0, 1) \), \(\mu \in (0, 1) \).

Iteration Steps: Compute \(x_{n+1} \) below:

Step 1. Put \(v_n = x_n - \sigma_n(x_n - x_n) \) and calculate \(u_n = P_C(v_n - \ell_n Av_n) \), where \(\ell_n \) is picked to be the largest \(\ell \in \{\gamma, \gamma I, \gamma I^2, \ldots\} \) s.t.
\[
\ell \|Av_n - Au_n\| \leq \mu \|v_n - u_n\|.
\] (32)

Step 2. Calculate \(z_n = (1 - \alpha_n)P_C(v_n - \ell_n Av_n) + \alpha_n f(x_n) \) with \(C_n := \{v \in H : \langle v_n - \ell_n Av_n - u_n, u_n - v\rangle \geq 0\} \).

Step 3. Calculate
\[
x_{n+1} = \gamma_n P_C(v_n - \ell_n Av_n) + \delta_n T_n z_n + \beta_n v_n.
\] (33)

Update \(n := n + 1 \) and return to Step 1.

It is remarkable that Lemmas 6, 7 and 8 remain true for Algorithm 2.

Theorem 2. Assume \(A(C) \) is bounded. Let \(\{x_n\} \) be constructed by Algorithm 2. Then
\[
x_n \to x^* \in \Omega \iff \begin{cases} x_n - x_{n+1} \to 0, \\ \sup_{n \geq 1} \|I - f\|x_n\| < \infty \end{cases}
\]
where \(x^* \in \Omega \) is the unique solution of the HVI: \(\langle I - f\rangle x^*, x^* - \omega \leq 0, \forall \omega \in \Omega \).

Proof. For the necessity of our proof, we can observe that, by a similar approach to that in the proof of Theorem 1, we obtain that there is a unique solution \(x^* \in \Omega \) of (12).

We show the sufficiency below. To this aim, we suppose \(x_n - x_{n+1} \to 0 \) and \(\sup_{n \geq 1} \|I - f\|x_n\| < \infty \), and prove the sufficiency by the following steps. □
Step 1. We show the boundedness of \(\{ x_n \} \). In fact, by the similar inference to that in Step 1 for the proof of Theorem 1, we obtain that (13)–(17) hold. So, using Algorithm 2 and (17) we obtain
\[
\| z_n - p \| \leq (1 - \alpha_n (1 - \delta)) \| x_n - p \| + \alpha_n (M_1 + \| (f - I)p \|),
\]
which together with \((\gamma_n + \delta_n)z_0 \leq \gamma_n\), yields
\[
\begin{align*}
\| x_{n+1} - p \| & \leq \beta_n \| v_n - p \| + (1 - \beta_n) \| \frac{1}{1 - \beta_n} (\gamma_n (z_n - p) + \delta_n (T_n z_n - p)) \| + \gamma_n \| h_n - z_n \|
& \leq \beta_n \| x_n - p \| + \alpha_n M_1 + (1 - \beta_n) \| (1 - \alpha_n (1 - \delta)) \| x_n - p \|
& \quad + \alpha_n (M_0 + M_1 + \| (f - I)p \|)]
& = [1 - \alpha_n (1 - \beta_n) (1 - \delta)] \| x_n - p \| + \alpha_n (1 - \beta_n) (1 - \delta) \frac{M_0 + \frac{1}{1 - \beta_n} M_1 + \| (f - I)p \|}{1 - \delta}.
\end{align*}
\]
Therefore, we get the boundedness of \(\{ x_n \} \) and hence the one of sequences \(\{ h_n \}, \{ v_n \}, \{ u_n \}, \{ z_n \}, \{ T_n z_n \} \).

Step 2. We show that \(\exists M_4 > 0 \) s.t.
\[
(1 - \alpha_n)(1 - \beta_n)(1 - \mu) \| |w_n - y_n| \|^2 + \| u_n - y_n \|^2 \leq \| x_n - p \|^2 - \| x_{n+1} - p \|^2 + \alpha_n M_4.
\]
In fact, by Lemma 7 and the convexity of \(\| \cdot \| \), we get
\[
\begin{align*}
\| x_{n+1} - p \|^2 & \leq \beta_n \| v_n - p \|^2 + \gamma_n \| z_n - p \| + \delta_n \| T_n z_n - p \| + 2 \gamma_n \alpha_n \| h_n - f(x_n) \| \| x_n - p \| + 2(1 - \beta_n) \alpha_n \| h_n - f(x_n) \| \| x_{n+1} - p \|
& \leq \beta_n \| v_n - p \|^2 + (1 - \beta_n) \| z_n - p \|^2 + 2(1 - \beta_n) \alpha_n \| h_n - f(x_n) \| \| x_{n+1} - p \|
& \quad - (1 - \alpha_n)(1 - \mu) \| \| v_n - u_n \|^2 + \| h_n - u_n \|^2 \| + \| x_{n+1} - p \|^2 \| x_{n+1} - p \| + \alpha_n M_2), \tag{34}
\end{align*}
\]
where \(\exists M_2 > 0 \) s.t. \(M_2 \geq \sup_{n \geq 2} (2 \| (f - I)p \| \| z_n - p \| + \| u_n - f(x_n) \| \| x_{n+1} - p \|) \). Also,
\[
\begin{align*}
\| v_n - p \|^2 & \leq \| x_n - p \|^2 + \alpha_n (2M_1 \| x_n - p \| + \alpha_n M_2^3)
& \leq \| x_n - p \|^2 + \alpha_n M_3, \tag{35}
\end{align*}
\]
where \(\exists M_3 > 0 \) s.t. \(M_3 \geq \sup_{n \geq 1} (2M_1 \| x_n - p \| + \beta_n M_2^3) \). Substituting (35) for (34), we have
\[
\begin{align*}
\| x_{n+1} - p \|^2 & \leq \beta_n \| x_n - p \|^2 + (1 - \beta_n) \{ (1 - \alpha_n (1 - \delta)) \| x_n - p \|^2 + (1 - \alpha_n) \alpha_n M_5
& \quad - (1 - \alpha_n)(1 - \mu) \| \| v_n - u_n \|^2 + \| h_n - u_n \|^2 \| + \alpha_n M_2 \} + \beta_n \alpha_n M_3
& = \| x_n - p \|^2 - (1 - \alpha_n)(1 - \beta_n)(1 - \mu) \| \| v_n - u_n \|^2 + \| h_n - u_n \|^2 \| + \| x_{n+1} - p \| + \alpha_n M_4, \tag{36}
\end{align*}
\]
where \(M_4 := M_2 + M_3 \). This ensures that
\[
(1 - \alpha_n)(1 - \beta_n)(1 - \mu) \| |w_n - y_n| \|^2 + \| h_n - u_n \|^2 \leq \| x_n - p \|^2 - \| x_{n+1} - p \|^2 + \alpha_n M_4. \tag{37}
\]

Step 3. We show that \(\exists M > 0 \) s.t.
\[
\begin{align*}
\| x_{n+1} - p \|^2 & \leq \| x_n - p \|^2 + \| z_n - x_n - p \| + \| |z_n - x_n| - \| x_n - p \| \| p \| \| x_n - x_{n+1} \|
& \quad + \| f(x_n) - p \| \| z_n - x_n \| + \frac{2\beta_n}{1 - \beta_n} \| f(p) - p, x_n - p \| + \frac{2\delta_n}{1 - \alpha_n \gamma_n} \| x_n - x_{n-1} \| 3M.
\end{align*}
\]
In fact, we get
\[
\begin{align*}
\| v_n - p \|^2 & \leq \| x_n - p \|^2 + \sigma_n \| x_n - x_{n-1} \| (2 \| x_n - p \| + \sigma_n \| x_n - x_{n-1} \|)
& \leq \| x_n - p \|^2 + \sigma_n \| x_n - x_{n-1} \| 3M, \tag{38}
\end{align*}
\]
where $\exists M > 0$ s.t. $M \geq \sup_{n \geq 1} \{\|x_n - p\|, \sigma_n\|x_n - x_{n-1}\|\}$. Using Algorithm 1 and the convexity of $\| \cdot \|^2$, we get
\[
\|x_{n+1} - p\|^2 \leq \|\beta_n(v_n - p) + \gamma_n(z_n - p) + \delta_n(T_n z_n - p)\|^2 + 2\gamma_n \sigma_n \|h_n - f(x_n), x_{n+1} - p\|
\leq \beta_n\|v_n - p\|^2 + (1 - \beta_n)\|\frac{1}{1 - \beta_n} \gamma_n(z_n - p) + \delta_n(T_n z_n - p)\|^2 + 2\gamma_n \sigma_n \|h_n - f(x_n), x_{n+1} - p\|
+ 2\gamma_n \sigma_n \|h_n - p, x_{n+1} - p\| + 2\gamma_n \sigma_n \|p - f(x_n), x_{n+1} - p\|,
\]
which leads to
\[
\|x_{n+1} - p\|^2 \leq \beta_n\|v_n - p\|^2 + (1 - \beta_n)\|\|1 - \alpha_n\|\|h_n - p\|^2 + 2\alpha_n(f(x_n) - p, z_n - p)\|
+ \gamma_n \sigma_n \|\|h_n - p\|^2 + \|x_{n+1} - p\|^2\| + 2\gamma_n \sigma_n \|p - f(x_n), x_{n+1} - p\|.
\]
Using (17) and (38) we deduce that $\|h_n - p\|^2 \leq \|v_n - p\|^2 \leq \|x_n - p\|^2 + \sigma_n\|x_n - x_{n-1}\|^3 M$. Hence,
\[
\|x_{n+1} - p\|^2 \leq [1 - \alpha_n(1 - \beta_n)]\|x_{n} - p\|^2 + [1 - \alpha_n(1 - \beta_n)]\sigma_n\|x_{n} - x_{n-1}\|^3 M
+ 2\alpha_n \sigma_n \|f(x_n) - p, z_n - p\| + \gamma_n \sigma_n \|\|h_n - p\|^2 + \|x_{n+1} - p\|^2\| + 1 - \alpha_n(1 - \beta_n)]\|x_{n} - p\|^2 + \sigma_n\|x_{n} - x_{n-1}\|^3 M
+ 2\gamma_n \sigma_n \|f(x_n) - p, z_n - x_{n+1}\|
+ 2\gamma_n \sigma_n \|\|h_n - p\|^2 + \|x_{n+1} - p\|^2\| + \sigma_n\|x_{n} - x_{n-1}\|^3 M
\leq [1 - \alpha_n(1 - \beta_n)]\|x_{n} - p\|^2 + 2\alpha_n \sigma_n \|f(x_n) - p, z_n - x_{n+1}\|
+ 2\gamma_n \sigma_n \|\|h_n - p\|^2 + \|x_{n+1} - p\|^2\| + \sigma_n\|x_{n} - x_{n-1}\|^3 M,
\]
which immediately yields
\[
\|x_{n+1} - p\|^2 \leq [1 - \frac{(1 - \alpha_n)\beta_n - \gamma_n}{\alpha_n}]\|x_{n} - p\|^2 + \frac{(1 - \alpha_n)\beta_n - \gamma_n}{\alpha_n} \sigma_n\|x_{n} - x_{n-1}\|^3 M \frac{2\gamma_n}{\alpha_n} \|f(x_n) - p\| \|z_n - x_{n+1}\|
+ \frac{2\gamma_n}{\alpha_n} \|f(x_n) - p\| \|z_n - x_{n+1}\| + \frac{2\gamma_n}{\alpha_n} \sigma_n\|x_{n} - x_{n-1}\|^3 M.
\] (39)

Step 4. In order to show that $x_n \to x^* \in \Omega$, which is the unique solution of (12), we can follow a similar method to that in Step 4 for the proof of Theorem 1.

Finally, we apply our main results to solve the VIP and common fixed point problem (CFPP) in the following illustrating example.

The starting point $x_0 = x_1$ is randomly picked in the real line. Put $f(u) = \frac{1}{8} \sin u, \gamma = l = \mu = \frac{1}{2}, \sigma_n = \alpha_n = \frac{1}{n+1}, \beta_n = \frac{1}{\sqrt{5}}, \gamma_n = \frac{1}{n+1}$ and $\delta_n = \frac{1}{2}$.

We first provide an example of Lipschitzian, pseudomonotone self-mapping A satisfying the boundedness of $A(C)$ and strictly pseudocontractive self-mapping T_1 with $\Omega = \text{Fix}(T_1) \cap \text{VI}(C, A) \neq \emptyset$. Let $C = [-1, 2]$ and H be the real line with the inner product $(a, b) = ab$ and induced norm $\| \cdot \| = | \cdot |$. Then f is a δ-contractive map with $\delta = \frac{1}{5} \in [0, \frac{1}{2})$ and $f(H) \subset C$ because $\|f(u) - f(v)\| = \frac{1}{6} |\sin u - \sin v| \leq \frac{1}{6} |u - v|$ for all $u, v \in H$.

Let $A : H \to H$ and $T_1 : H \to H$ be defined as $Au := \frac{1}{1 + |\sin u|} - \frac{1}{1 + |u|}$, and $T_1 u := \frac{1}{2} u - \frac{3}{8} \sin u$ for all $u \in H$. Now, we first show that A is L-Lipschitzian, pseudomonotone operator with $L = 2$, such that $A(C)$ is bounded. In fact, for all $u, v \in H$ we get
\[
\|Au - Av\| \leq \left\| \frac{1}{1 + |u|} - \frac{1}{1 + |v|} \right\| + \left\| \frac{1}{1 + |u|} \sin u - \frac{1}{1 + |v|} \sin v \right\|
\leq \left\| \frac{1}{1 + |u|} \right\| \left\| \frac{1 + |v|}{1 + |u|} \right\| + \left\| \frac{1 + |u|}{1 + |v|} \sin v \right\|
\leq 2 \|u - v\|.
\]
This implies that A is 2-Lipschitzian. Next, we show that A is pseudomonotone. For any given $u, v \in H$, it is clear that the relation holds:

$$
\langle Au, u - v \rangle = \left(\frac{1}{1 + |\sin u|} - \frac{1}{1 + |u|} \right) (u - v) \leq 0 \Rightarrow \langle Av, u - v \rangle = \left(\frac{1}{1 + |\sin v|} - \frac{1}{1 + |v|} \right) (u - v) \leq 0.
$$

Furthermore, it is easy to see that T_1 is strictly pseudocontractive with constant $\xi_1 = \frac{1}{2}$. In fact, we observe that for all $u, v \in H$,

$$
\|T_1 u - T_1 v\| \leq \frac{1}{2} \|u - v\| + \frac{3}{8} \| u - \sin v \| \leq \| u - v \| + \frac{1}{4} \| (I - T_1) u - (I - T_1) v \|.
$$

It is clear that $(\gamma_n + \delta_n) \xi_1 = (\frac{1}{8} + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{2}) \leq \frac{1}{8} = \gamma_n < (1 - 2\delta) \xi_1 = (1 - 2 \cdot \frac{1}{8} \cdot \frac{1}{2}) = \frac{3}{8}$ for all $n \geq 1$. In addition, it is clear that $\text{Fix}(T_1) = \{0\}$ and $A0 = 0$ because the derivative $d(T_1u)/du = \frac{1}{2} - \frac{3}{8} \cos u > 0$. Therefore, $\Omega = \{0\} \neq \emptyset$. In this case, Algorithm 1 can be rewritten below:

$$
\begin{align*}
\{v_n\} = x_n &- \frac{1}{n+1} (x_{n-1} - x_n), \\
u_n = P_C(v_n - \ell_n Au_n), \\
z_n = \frac{1}{n+1} f(x_n) + \frac{n}{n+1} P_C(v_n - \ell_n Au_n), \\
x_{n+1} = \frac{1}{2} v_n + \frac{1}{6} P_C(v_n - \ell_n Au_n) + \frac{1}{2} T_1 z_n \quad \forall n \geq 1,
\end{align*}
$$

with $\{C_n\}$ and $\{\ell_n\}$, selected as in Algorithm 1. Then, by Theorem 1, we know that $x_n \to 0 \in \Omega$ iff $x_n - x_{n+1} \to 0 (n \to \infty)$ and $\sup_{n \geq 1} |x_n - \frac{1}{8} \sin x_n| < \infty$.

On the other hand, Algorithm 2 can be rewritten below:

$$
\begin{align*}
\{v_n\} = x_n &- \frac{1}{n+1} (x_{n-1} - x_n), \\
u_n = P_C(v_n - \ell_n Au_n), \\
z_n = \frac{1}{n+1} f(x_n) + \frac{n}{n+1} P_C(v_n - \ell_n Au_n), \\
x_{n+1} = \frac{1}{2} v_n + \frac{1}{6} P_C(v_n - \ell_n Au_n) + \frac{1}{2} T_1 z_n \quad \forall n \geq 1,
\end{align*}
$$

with $\{C_n\}$ and $\{\ell_n\}$, selected as in Algorithm 2. Then, by Theorem 2, we know that $x_n \to 0 \in \Omega$ iff $x_n - x_{n+1} \to 0 (n \to \infty)$ and $\sup_{n \geq 1} |x_n - \frac{1}{8} \sin x_n| < \infty$.

Author Contributions: All authors contributed equally to this manuscript.

Funding: This research was partially supported by the Innovation Program of Shanghai Municipal Education Commission (15ZZ068), Ph.D. Program Foundation of Ministry of Education of China (20123127110002) and Program for Outstanding Academic Leaders in Shanghai City (15XD1503100).

Conflicts of Interest: The authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter discussed in this manuscript.

References

