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Abstract: The purpose of this article is to obtain the exact and approximate numerical solutions of
linear and nonlinear singular conformable pseudohyperbolic equations and conformable coupled
pseudohyperbolic equations through the conformable double Laplace decomposition method.
Further, the numerical examples were provided in order to demonstrate the efficiency, high accuracy,
and the simplicity of present method.

Keywords: conformable derivative; conformable partial derivative; conformable double Laplace
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1. Introduction

In recent years, many mathematicians have been studying and discussing the linear and nonlinear
fractional differential equations (FDEs) which arise in various fields of physical sciences, as well as in
engineering. These types of equations play a significant role and also help to develop mathematical
tools in order to understand fractional modelling.

However, there are many different methods to obtain exact and approximate solutions of
these kinds of equations. In [1], the author point out a major flaw in the so-called conformable
calculus. Recently, many researchers have also paid much attention to study the numerical and exact
methods for finding the solution of conformable differential equations. In [2], the authors proposed
so-called conformable derivatives. In [3], the conformable heat equation was studied. Similarly, in [4],
the nonlinear conformable problems were also studied. The authors in [5] discussed the concepts
underlying the formulation of operators capable of being interpreted as fractional derivatives or
fractional integrals. In a very short period of time, many mathematicians became interested and
provided mathematical models related to conformable derivatives, for the details we refer reader
to see [6–9]. In [10,11], the conformable derivatives were applied to some problems in mechanics,
and in [12] total frational derivative and directional fractional derivative of functions of several
variables were studied.

In order to solve the conformable derivatives, the single Laplace transform method was first
introduced and used in [13]. In [14], the idea was extended to the conformable double Laplace
transform. In [15], the modified Laplace transform was applied to solve some ordinary differential
equations in the frame work of a certain type generalized fractional derivatives. The authors
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in [16] applied the double Laplace decomposition method to solve singular linear and nonlinear
one-dimensional pseudohyperbolic equations.

In this present research, the main objective is to solve linear and nonlinear singular
pseudohyperbolic equations by using the conformable double Laplace transform decomposition
method, which is a combination of the conformable double Laplace transformation and
decomposition method.

2. Properties of Conformable Derivative and Conformable Double Laplace Transform

In this part, we present some background about the nature of the conformable Laplace transform.
In the following example, we present the conformable partial derivatives of certain functions as follows.

Example 1. Let µ, ν ∈ (0, 1] and a, b, m, n, λ, µ ∈ R, then the conformable derivative follows

∂µ

∂xµ (au (x, t) + bv (x, t)) = a
∂µu
∂xµ + b

∂µu
∂xµ ,

∂µ+ν

∂xµ∂tν

(
xµtλ

)
= µλxκ−µtλ−ν,

∂µ

∂xµ

(
eλ xµ

µ + τtν
ν

)
= λeλ xµ

µ + τtν
ν ,

∂ν

∂tν

(
eλ xµ

µ + τtν
ν

)
= τeλ xµ

µ + τtν
ν ,

∂ν

∂tν

(
xµ

µ

)n ( tν

ν

)m
= m

(
xµ

µ

)n ( tν

ν

)m−1
,

∂µ

∂xµ

(
xµ

µ

)n ( tν

ν

)
= n

(
xµ

µ

)n−1 ( tν

ν

)
,

∂ν

∂tν

(
sin
(

xµ

µ

)
sin
(

tν

ν

))
= sin

(
xµ

µ

)
cos

(
tν

ν

)
,

∂µ

∂xµ

(
sin a

(
xµ

µ

)
sin
(

tν

ν

))
= a cos

(
xµ

µ

)
sin
(

tν

ν

)
.

Next we recall the conformable single and double Laplace transforms, see [14,17], repectively.

Definition 1. Let f : [0, ∞)→ R be a real valued function. The conformable single Laplace transform of f is
defined by

Lν
t

(
f
(

tν

ν

))
=
∫ ∞

0
e−s tν

ν f
(

tν

ν

)
tν−1dt.

Similarly, if we let u
(

xµ

µ , tν

ν

)
be a piecewise continuous function on [0, ∞)× [0, ∞) of exponential order

and for some a, b ∈ R,

sup
{

xµ

µ
,

tν

ν

}
> 0 , and

∣∣∣u ( x¯

¯ , t ˚

˚

)∣∣∣
ea x¯

¯ +b t ˚
˚

≤ 1.

Then the conformable double Laplace transform is defined by

Lµ
x Lν

t

(
u
(

xµ

µ
,

tν

ν

))
= Fµ,ν (p, s) =

∫ ∞

0

∫ ∞

0
e−p xµ

µ −s tν
ν u
(

xµ

µ
,

tν

ν

)
tν−1xµ−1dtdx (1)

where p, s ∈ C, 0 < µ, ν ≤ 1 and integrals by means of conformable integrals with respect to x
and t, respectively.
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Further, the first and second order partial derivatives of the conformable double Laplace transform
with respect to xµ

µ are given by

Lµ
x Lν

t

[
∂µu
∂xµ

]
= pUµ,ν(p, s)−Uν (0, s) , (2)

Lµ
x Lν

t

(
∂2µu
∂x2µ

)
= p2Uµ,ν (p, s)− pUν (0, s)− Lν

t

(
∂µ

∂xµ u
(

0,
tν

ν

))
. (3)

Similarly, with respect to tν

ν they are given by

Lµ
x Lν

t

(
∂νu
∂tν

)
= sUµ,ν (p, s)−Uµ (p, 0) , (4)

Lµ
x Lν

t

(
∂2νu
∂t2ν

)
= s2Uµ,ν (p, s)− sUµ (p, 0)− Lµ

x

(
∂ν

∂tν
u
(

xµ

µ
, 0
))

. (5)

In the following examples we state some conformable Laplace transforms of certain functions
which are useful in this to Examples 3, 4, and 5.

Example 2. In this example we calculate the conformable double Laplace for certain functions

1. Lµ
x

[
( xµ

µ )2
]
= Lx

[
x2] = 2!

p3 .

2. Lµ
x Lν

t

[
( xµ

µ )3 sin(τ tν

ν )
]
= LxLt

[
(x)3 sin(t)

]
=

3!
p4

1
s2 + 1

.

3. Lµ
x Lν

t

[
( xµ

µ ) cos( tν

ν )
]
= LxLt [(x cos(t)] =

1
p2

s
s2 + 1

.

4. Lµ
x Lν

t

[
4
(

tν

ν

)
− 4 sin

(
tν

ν

)]
= LxLt [(4t− 4 sin (t)] =

4
ps2 (s2 + 1)

.

5. Lµ
x Lν

t

[
(4− 4 cos

(
tν

ν

)]
= LxLt [(4− 4 cos (t)] =

4s
ps2 (s2 + 1)

.

The next result generalizes the conformable double Laplace transform, see [14].

Theorem 1. Let 0 < µ, ν ≤ 1 and m, n ∈ N such that u
(

xµ

µ , tν

ν

)
∈ Cl (R+ ×R+), and

l = max (m, n) . Further, we also let the conformable Laplace transforms of the functions be denoted by

u
(

xµ

µ
,

tν

ν

)
,

∂mµu
∂xmµ , and

∂nνu
∂tnν

. Then

Lµ
x Lν

t

(
∂mµ

∂xmµ u
(

xµ

µ
,

tν

ν

))
= pmUµ,ν (p, s)− pm−1Uν (0, s)

−
m−1

∑
i=1

pm−1−iLν
t

(
∂iµ

∂xiµ u
(

0,
tν

ν

))

Lµ
x Lν

t

(
∂nν

∂tnν
u
(

xµ

µ
,

tν

ν

))
= snUµ,ν (p, s)− sn−1Uµ (p, 0)

−
n−1

∑
j=1

sn−1−jLµ
x

(
∂jν

∂tjν u
(

xµ

µ
, 0
))

where
∂mµ

∂xmµ u
(

xµ

µ
,

tν

ν

)
and

∂nν

∂tnν
u
(

xµ

µ
,

tν

ν

)
denotes m, n times conformable derivatives of function u(x, t) respectively.
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Theorem 2. If the conformable double Laplace transform of the conformable derivatives ∂νu
∂tν is given by

Equation (4), then the double Laplace transforms of(
xµ

µ

)n ∂ν

∂tν
f
(

xµ

µ
,

tν

ν

)
and

xµ

µ
g
(

xµ

µ
,

tν

ν

)
are given by

(−1)n dn

dpn

(
Lµ

x Lν
t

[
f
(

xµ

µ
,

tν

ν

)])
= Lµ

x Lν
t

[(
xµ

µ

)n
f
(

xµ

µ
,

tν

ν

)]
, (6)

(−1)n dn

dpn

(
Lµ

x Lν
t

[
∂ν f
∂tν

])
= Lµ

x Lν
t

[(
xµ

µ

)n ∂ν f
∂tν

]
(7)

and where n = 1, 2, 3, ....

Proof. Using the definition of conformable double Laplace transform for Equation (6), we get

Lµ
x Lν

t

[
f (

xµ

µ
,

tν

ν
)

]
=
∫ ∞

0

∫ ∞

0
e−p xµ

µ −s tν
ν f
(

xµ

µ
,

tν

ν

)
tν−1xµ−1dt dx, (8)

by taking the nth derivative with respect to p for both sides of Equation (8), we have

dn

dpn

(
Lµ

x Lν
t

[
f (

xµ

µ
,

tν

ν
)

])
=
∫ ∞

0

∫ ∞

0

dn

dpn

(
e−p xµ

µ −s tν
ν f

(
xµ

µ
,

tν

ν

))
tν−1xµ−1dtdx

= (−1)n
∫ ∞

0

∫ ∞

0

(
xµ

µ

)n
e−p xµ

µ −s tν
ν tν−1xµ−1 f

(
xµ

µ
,

tν

ν

)
dt dx

= (−1)n Lµ
x Lν

t

[(
xµ

µ

)n
f
(

xµ

µ
,

tν

ν

)]
,

and further we obtain

(−1)n dn

dpn

(
Lµ

x Lν
t

[
f
(

xµ

µ
,

tν

ν

)])
= Lµ

x Lν
t

[(
xµ

µ

)n
f
(

xµ

µ
,

tν

ν

)]
.

Similarly, we can prove the Equation (7).

3. Conformable Derivatives Double Laplace Transform Decomposition Method Applied to
Singular Pseudohyperbolic Equation

The main aim of this section is to discuss the applicability of the conformable double Laplace
transform decomposition method (CDLDM) for the linear and nonlinear singular pseudohyperbolic
equation. The pseudo-hyperbolic equations arise, for example, in the description of the electron
diffusion processes in a plate, and they also arise in hydrodynamics in the study of fluid motion
with an alternating viscosity. In this study we define the conformable double Laplace transform of
the function u

(
xµ

µ , tν

ν

)
by Uµ,ν(p, s). To illustrate the idea of our method, let us suggest here two

important problems.

The first problem:

Consider the linear pseudohyperbolic equations

∂2νu
∂t2ν

− µ

xµ

∂µ

∂xµ

(
xµ

µ

∂µu
∂xµ

)
− µ

xµ

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µu
∂xµ

)
= f

(
xµ

µ
,

tν

ν

)
, x, t > 0 (9)
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subject to the condition

u (x, 0) = f1

(
xµ

µ

)
,

∂νu (x, 0)
∂tν

= f2

(
xµ

µ

)
, (10)

where f
(

xµ

µ , tν

ν

)
, f1

(
xµ

µ

)
, and f2

(
xµ

µ

)
are source term and initial conditions, respectively.

The method:

In order to obtain the solution of Equation (9) by using conformable double Laplace transform
decomposition methods, we applying the following steps:

Step 1: Multiplying both sides of Equation (9) by the term xµ

µ , we have

xµ

µ

∂2νu
∂t2ν

− ∂µ

∂xµ

(
xµ

µ

∂µu
∂xµ

)
− ∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µu
∂xµ

)
=

xµ

µ
f
(

xµ

µ
,

tν

ν

)
, (11)

Step 2: Applying conformable double Laplace transform for Equation (11) we get

Lµ
x Lν

t

[
xµ

µ

∂2νu
∂t2ν

]
= Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µu
∂xµ

)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µu
∂xµ

)]
+Lµ

x Lν
t

[
xµ

µ
f
(

xµ

µ
,

tν

ν

)]
, (12)

Step 3: On using Equations (5)–(7), we obtain

− d
dp

[
s2Uµ,ν(p, s)− sUµ (p, 0)− ∂νu (p, 0)

∂tν

]
= Lµ

x Lν
t [Ψ]− d

dp

[
Lµ

x Lν
t

(
f
(

xµ

µ
,

tν

ν

))]
, (13)

where the conformable Laplace transforms of u
(

xµ

µ , 0
)

and
∂νu
(

xµ

µ ,0
)

∂tν are denoted by

Uµ (p, 0) = F1 (p, 0) ,
∂νu (p, 0)

∂tν
= F2 (p, 0)

respectively, and

Ψ =
∂µ

∂xµ

(
xµ

µ

∂µu
∂xµ

)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µu
∂xµ

)
,

using given initial condition Equation (13) becomes

d
dp
[
Uµ,ν(p, s)

]
=

1
s

d
dp

F1 (p, 0) +
1
s2

d
dp

F2 (p, 0)− 1
s2 Lµ

x Lν
t [Ψ] +

1
s2

d
dp

Fµ,ν (p, s) . (14)

Step 4: By applying the integral for both sides of Equation (14), from 0 to p with respect to p,
where p is transform of the variable xµ

µ , we have

Uµ,ν(p, s) =
F1 (p, 0)

s
+

F2 (p, 0)
s2 − 1

s2

∫ p

0
Lµ

x Lν
t [Ψ] dp +

1
s2 Fµ,ν (p, s) , (15)

where Fµ,ν (p, s) , F1 (p, 0), and F2 (p, 0) are conformable Laplace transforms of the functions f
(

xµ

µ , tν

ν

)
,

f1

(
xµ

µ

)
, and f2

(
xµ

µ

)
, respectively.
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Step 5: By taking the inverse conformable double Laplace transform for Equation (15), we can
compute the solution u

(
xµ

µ , tν

ν

)
as follows

u
(

xµ

µ
,

tν

ν

)
= f1

(
xµ

µ

)
+

tν

ν
f2

(
xµ

µ

)
+ L−1

p L−1
s

[
1
s2 Fµ,ν (p, s)

]
−L−1

p L−1
s

[
1
s2

∫ p

0
Lµ

x Lν
t [Ψ] dp

]
(16)

where L−1
p L−1

s indicates the double inverse conformable derivatives double Laplace transform. Here,
we assume that the double inverse Laplace transform with respect to p and s exists for each term in the
right hand side of Equation (16).

Step 6: The conformable double Laplace transform decomposition method (CDLDM) defines the
solutions u( xµ

µ , tν

ν ) with the help of infinite series as:

u
(

xµ

µ
,

tν

ν

)
=

∞

∑
n=0

un

(
xµ

µ
,

tν

ν

)
. (17)

By substituting Equation (17) into Equation (16), we obtain

∞

∑
n=0

un

(
xµ

µ
,

tν

ν

)
= f1

(
xµ

µ

)
+

tν

ν
f2

(
xµ

µ

)
+ L−1

p L−1
s

[
1
s2 Fµ,ν (p, s)

]

−L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ

(
∞

∑
n=0

un

))]
dp

]

−L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[(
∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ

∞

∑
n=0

un

))]
dp

]
.

(18)

The zeroth component u0, as suggested by Adomian method, is always identified by the given
initial condition and the source term L−1

p L−1
s

[
1
s2 Fµ,ν (p, s)

]
, both of which are assumed to be known.

Accordingly, we set

u0

(
xµ

µ
,

tν

ν

)
= f1

(
xµ

µ

)
+

tν

ν
f2

(
xµ

µ

)
+ L−1

p L−1
s

[
1
s2 Fµ,ν (p, s)

]
.

The other components uk+1, k ≥ 0 are given by using the relation

uk+1

(
xµ

µ
,

tν

ν

)
= −L−1

p L−1
s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µuk
∂xµ

)]
dp
]

− L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µuk
∂xµ

)]
dp
]

, (19)

the first few components from the last recursive relation are, at k = 0,

u1

(
xµ

µ
,

tν

ν

)
= −L−1

p L−1
s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µu0

∂xµ

)]
dp
]

− L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µu0

∂xµ

)]
dp
]

,
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at k = 1

u2

(
xµ

µ
,

tν

ν

)
= −L−1

p L−1
s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µu1

∂xµ

)]
dp
]

− L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µu1

∂xµ

)]
dp
]

,

at k = 2

u3

(
xµ

µ
,

tν

ν

)
= −L−1

p L−1
s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µu2

∂xµ

)]
dp
]

− L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µu2

∂xµ

)]
dp
]

,

etc. The important terms used in infinite series depend on the problems and may be three terms or
four terms, etc.

In order to give a clear overview of this method, we present the following example:

Example 3. Consider singular conformable derivatives in one dimensional pseudohyperbolic equations with
the indicated initial condition

∂2νu
∂t2ν

− µ

xµ

∂µ

∂xµ

(
xµ

µ

∂µu
∂xµ

)
− µ

xµ

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µu
∂xµ

)
= −

(
xµ

µ

)2
sin
(

tν

ν

)
−4 sin

(
tν

ν

)
− 4 cos

(
tν

ν

)
, (20)

and

u
(

xµ

µ
, 0
)
= 0,

∂u
(

xµ

µ , 0
)

∂t
=

(
xµ

µ

)2
. (21)

By using the aforesaid method subject to the initial condition, we have

dUµ,ν (p, s)
dp

= − 1
s2 Lµ

x Lν
t

[
µ

xµ

∂µ

∂xµ

(
xµ

µ

∂µu
∂xµ

)
+

µ

xµ

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µu
∂xµ

)]
+

3!
p4s2 (s2 + 1)

+
4

p2s2 (s2 + 1)
+

4
p2s (s2 + 1)

− 3!
p4s2 , (22)

taking the integral for Equation (22), from 0 to p with respect to p, we get

Uµ,ν(p, s) = − 1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µu
∂xµ

)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µu
∂xµ

)]
dp

− 2
p3s2 (s2 + 1)

− 4
ps2 (s2 + 1)

− 4
ps (s2 + 1)

+
2!

p3s2 . (23)

Employing the inverse conformable derivatives double Laplace transform to Equation (23), we get

u
(

xµ

µ
,

tν

ν

)
= −L−1

p L−1
s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µu
∂xµ

)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µu
∂xµ

)]
dp
]

+

(
xµ

µ

)2
sin
(

tν

ν

)
− 4

(
tν

ν

)
+ 4 sin

(
tν

ν

)
+ 4 cos

(
tν

ν

)
− 4, (24)
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by substituting Equation (17) into Equation (24), we obtain:

∞

∑
n=0

un

(
xµ

µ
,

tν

ν

)
= −L−1

p L−1
s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ

∞

∑
n=0

un

)]
dp

]

−L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ

∞

∑
n=0

un

)]
dp

]

+

(
xµ

µ

)2
sin
(

tν

ν

)
− 4

(
tν

ν

)
+ 4 sin

(
tν

ν

)
+ 4 cos

(
tν

ν

)
− 4.

By applying the conformable double Laplace transform decomposition method, we obtain

u0 =

(
xµ

µ

)2
sin
(

tν

ν

)
− 4

(
tν

ν

)
+ 4 sin

(
tν

ν

)
+ 4 cos

(
tν

ν

)
− 4,

eventually, we have the general recursive relation, given by

uk+1

(
xµ

µ
,

tν

ν

)
= −L−1

p L−1
s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µuk
∂xµ

)]
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µuk
∂xµ

)]
dp
]

,

where k ≥ 0, therefore

u1 = −L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ u0

)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ u0

)]
dp
]

u1 = −L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
4
(

xµ

µ

)
sin
(

tν

ν

)
+ 4

(
xµ

µ

)
cos

(
tν

ν

)]
dp
]

= −L−1
p L−1

s

[
1
s2

∫ p

0

[
4

p2 (s2 + 1)
+

4s
p2 (s2 + 1)

]
dp
]

,

u1 = L−1
p L−1

s

[
1
s2

4
p (s2 + 1)

+
4s

p (s2 + 1)

]
= L−1

s

[
4

s2 (s2 + 1)
+

4s
s2 (s2 + 1)

]
,

by using partial fractional and inverse Laplace transform with respect to s, we have

u1 = L−1
s

[
4

s2 (s2 + 1)
+

4s
s2 (s2 + 1)

]
= L−1

s

[
4
s2 −

4
s2 + 1

+
4
s
− 4s

s2 + 1

]
= 4

(
tν

ν

)
− 4 sin

(
tν

ν

)
+ 4− 4 cos

(
tν

ν

)
,

and

u2 = −L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ u1

)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ u1

)]
dp
]

u2 = −L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t [0 + 0] dp

]
= 0.
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In the view of the above equations, the series solution is given by

∞

∑
n=0

un = u0 + u1 + u2 + ....

=

(
xµ

µ

)2
sin
(

tν

ν

)
− 4

(
tν

ν

)
+ 4 sin

(
tν

ν

)
+ 4 cos

(
tν

ν

)
− 4

+4
(

tν

ν

)
− 4 sin

(
tν

ν

)
+ 4− 4 cos

(
tν

ν

)
+ 0 + 0 + . . .

Hence, the exact solution of Equation (20) is given by:

u
(

xµ

µ
,

tν

ν

)
=

(
xµ

µ

)2
sin
(

tν

ν

)
.

Second problem: Consider the following general form of the nonlinear singular pseudohyperbolic
equations in one dimension of the form:

∂2νu
∂t2ν

− µ

xµ

∂µ

∂xµ

(
xµ

µ

∂µu
∂xµ

)
− µ

xµ

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µu
∂xµ

)
− a

(
xµ

µ

)
u

∂µu
∂xµ + u2 = f

(
xµ

µ
,

tν

ν

)
(25)

with initial condition

u
(

xµ

µ
, 0
)
= g1

(
xµ

µ

)
,

∂νu
(

xµ

µ , 0
)

∂tν
= g2

(
xµ

µ

)
, (26)

where the functions a( xµ

µ ) are arbitrary. In order to obtain the solution of Equation (25), we use the
following steps:

First step: By multiplying Equation (25) by xµ

µ and taking conformable double Laplace transform,
we have

Lµ
x Lν

t

[
xµ

µ

∂2νu
∂t2ν

]
= Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µu
∂xµ

)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µu
∂xµ

)]
+Lµ

x Lν
t

[
a (x)

xµ

µ

xµ

µ
u

∂µu
∂xµ −

xµ

µ
u2
]
+ Lµ

x Lν
t

[
xµ

µ
f
(

xµ

µ
,

tν

ν

)]
, (27)

where conformable Laplace transform of u
(

xµ

µ , 0
)

and
∂νu
(

xµ

µ ,0
)

∂tν are given by

Uµ (p, 0) = G1 (p, 0) ,
∂νu (p, 0)

∂tν
= G2 (p, 0) . (28)

Second step: Applying Equations (5)–(28) into Equation (27), one can get that

d
dp
[
Uµ,ν (p, s)

]
=

1
s

d
dp

G1 (p, 0) +
1
s2

d
dp

G2 (p, 0)− 1
s2 Lµ

x Lν
t [Φ] +

1
s2

d
dp

Fµ,ν (p, s) , (29)

where,

Φ =
∂µ

∂xµ

(
xµ

µ

∂µu
∂xµ

)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µu
∂xµ

)
+ a (x)

xµ

µ

xµ

µ
u

∂µu
∂x2µ

− xµ

µ
u2.
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Third step: By taking the integral for Equation (29), from 0 to p with respect to p, where p is a
transform of xµ

µ , we have

Uµ,ν (p, s) =
G1 (p, 0)

s
+

vG2 (p, 0)
s2 − 1

s2

∫ p

0
Lµ

x Lν
t [Φ] dp + Fµ,ν (p, s) . (30)

Fourth step: Using CFDLDM, the solution can be written in the infinite series as in Equation (17).
By using the inverse Laplace transformation to Equation (30), we obtain.

u
(

xµ

µ
,

tν

ν

)
= g1

(
xµ

µ

)
+

tν

ν
g2

(
xµ

µ

)
+ L−1

p L−1
s

[
1
s2 Fµ,ν (p, s)

]
−L−1

p L−1
s

[
1
s2

∫ p

0
Lµ

x Lν
t [Φ] dp

]
(31)

furthermore, the nonlinear terms u ∂µu
∂xµ and u2 can be defined by:

u2 = N1 =
∞

∑
n=0

An, u
∂µu
∂xµ = N2 =

∞

∑
n=0

Bn. (32)

We have a few terms of the Adomian polynomials for An and Bn that are denoted by

An =
1
n!

(
dn

dλn

[
N1

∞

∑
i=0

(λnun)

])
λ=0

, (33)

and

Bn =
1
n!

(
dn

dλn

[
N2

∞

∑
i=0

(λnun)

])
λ=0

, (34)

where n = 0, 1, 2, .... By putting Equations (33)–(32) into Equation (31), we get

∞

∑
n=0

un

(
xµ

µ
,

tν

ν

)
= f1

(
xµ

µ

)
+

tν

ν
f2

(
xµ

µ

)
+ L−1

p L−1
s

[
1
s2 Fµ,ν (p, s)

]

−L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ

(
∞

∑
n=0

un

))]
dp

]

−L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[(
xµ

µ

∂µ+ν

∂xµ∂tν

(
∞

∑
n=0

un

(
xµ

µ
,

tν

ν

)))]
dp

]

−L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
xµ

µ

(
∞

∑
n=0

An

)]
dp

]

+L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x L

[
a(x)

xµ

µ

∞

∑
n=0

Bn

]
dp

]
, (35)

the few components of the Adomian polynomials of Equations (33) and (34) are given as follows

A0 = u2
0,

A1 = 2u0u1,

A2 = 2u0u2 + u2
1

A3 = 2u0u3 + 2uu2, (36)
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and

B0 = u0
∂µu0

∂xµ ,

B1 = u0
∂µu1

∂xµ + u1
∂µu0

∂xµ ,

B2 = u0
∂µu2

∂xµ + u1
∂µu1

∂xµ + u2
∂µu0

∂xµ ,

B3 = u0
∂µu3

∂xµ + u1
∂µu2

∂xµ + u2
∂µu1

∂xµ + u3
∂µu0

∂xµ . (37)

Hence, the zeroth component u0 from Equation (35) is given by

u0

(
xµ

µ
,

tν

ν

)
= f1

(
xµ

µ

)
+

tν

ν
f2

(
xµ

µ

)
+ L−1

p L−1
s

[
1
s2 Fµ,ν (p, s)

]
(38)

and

uk+1

(
xµ

µ
,

tν

ν

)
= −L−1

p L−1
s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µuk
∂xµ

)]
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[(
xµ

µ

∂µ+νuk
∂xµ∂tν

)]
dp
]

+L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
a(x)

xµ

µ
Ak −

xµ

µ
Bk

]
dp
]

, (39)

where k ≥ 0.

Example 4. Consider the nonlinear singular pseudohyperbolic equation in one dimensional is governed by

∂2νu
∂t2ν

− µ

xµ

∂µ

∂xµ

(
xµ

µ

∂µu
∂xµ

)
− µ

xµ

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µu
∂xµ

)
− 1

2
xµ

µ
u

∂µu
∂xµ + u2 =

(
xµ

µ

)2
e−

tν
ν , (40)

subject to the following initial conditions

u
(

xµ

µ
, 0
)
=

(
xµ

µ

)2
,

∂νu
(

xµ

µ , 0
)

∂tν
= −

(
xµ

µ

)2
. (41)

The conformable double Laplace transform decomposition method leads to the following scheme

u0

(
xµ

µ
,

tν

ν

)
=

(
xµ

µ

)2
e−

tν
ν ,

and

u1

(
xµ

µ
,

tν

ν

)
= −L−1

p L−1
s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µu0

∂xµ +
xµ

µ

∂µ+νu0

∂xµ∂tν

)]
dp
]

+L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
xµ

µ
u0

∂µu0

∂xµ −
xµ

µ
u2

0

]
dp
]

= −L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
4
(

xµ

µ

)
e−

tν
ν − 4

(
xµ

µ

)
e−

tν
ν

]
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[(
xµ

µ

)5
e−

tν
ν −

(
xµ

µ

)5
e−

tν
ν

]
dp

]
= 0,
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proceeding in a similar manner, we have

u2

(
xµ

µ
,

tν

ν

)
= 0, u3

(
xµ

µ
,

tν

ν

)
= 0, u4

(
xµ

µ
,

tν

ν

)
= 0, . . .

so that the solution u
(

xµ

µ , tν

ν

)
is given by

u
(

xµ

µ
,

tν

ν

)
=

∞

∑
n=0

un

(
xµ

µ
,

tν

ν

)
= u0 + u1 + u2 + . . .

=

(
xµ

µ

)2
e−

tν
ν

and hence the conformable solution is given by

u
(

xµ

µ
,

tν

ν

)
=

(
xµ

µ

)2
e−

tν
ν . (42)

By substituting µ = 1 and ν = 1 into Equation (42), the solution becomes

ψ (x, t) = x2e−t.

Conformable double Laplace transform method and Singular conformable coupled
pseudohyperbolic equation.

In this section, conformable double Laplace decomposition method is considered for the
one-dimensional conformable derivatives coupled pseudohyperbolic equation since the method is
much simpler and more efficient in the study of linear equations.

The thrid problem: Let us consider the conformable derivatives coupled pseudohyperbolic equations

∂2νu
∂t2ν

− µ

xµ

∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ u
)
− µ

xµ

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ u
)
+ ζv = f

(
xµ

µ
,

tν

ν

)
∂2νv
∂t2ν

− µ

xµ

∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ v
)
− µ

xµ

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ v
)
+ ζu = g

(
xµ

µ
,

tν

ν

)
, (43)

subject to

u
(

xµ

µ , 0
)
= f1

(
xµ

µ

)
,

∂νu
(

xµ

µ ,0
)

∂tν = f2

(
xµ

µ

)
and v

(
xµ

µ , 0
)
= g1 (x) ,

∂νu
(

xµ

µ ,0
)

∂tν = g2

(
xµ

µ

)
(44)

where the linear terms µ
xµ

∂µ

∂xµ

(
xµ

µ
∂µ

∂xµ

)
are the so-called conformable Bessel operators. Here, f

(
xµ

µ , tν

ν

)
,

g
(

xµ

µ , tν

ν

)
, f1

(
xµ

µ

)
, f2

(
xµ

µ

)
, g1

(
xµ

µ

)
, and g2

(
xµ

µ

)
are given functions, ζ is the coupling parameter.

One can obtain the solution of Equation (43), by using the following steps.
(1): Multiply both sides of Equation (43) by xµ

µ , we have

xµ

µ

∂2νu
∂t2ν

− ∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ u
)
− ∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ u
)
+ ζ

xµ

µ
v =

xµ

µ
f
(

xµ

µ
,

tν

ν

)
xµ

µ

∂2νv
∂t2ν

− ∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ v
)
− ∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ v
)
+ ζ

xµ

µ
u =

xµ

µ
g
(

xµ

µ
,

tν

ν

)
. (45)
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(2): We apply conformable double Laplace transform on both sides of Equation (45) and single
conformable Laplace transform for Equation (44), we get

Lµ
x Lν

t

[
xµ

µ

∂2νu
∂t2ν

]
= Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ u
)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ u
)
− ζ

xµ

µ
v +

xµ

µ
f
(

xµ

µ
,

tν

ν

)]
,

Lµ
x Lν

t

[
xµ

µ

∂2νv
∂t2ν

]
= Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ v
)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ v
)
− ζ

xµ

µ
u +

xµ

µ
g
(

xµ

µ
,

tν

ν

)]
, (46)

on using theorem 1 and theorem 2, we obtain

d
dp
[
Uµ,ν(p, s)

]
=

1
s

d
dp

F1 (p, 0) +
1
s2

d
dp

F2 (p, 0)

1
s2 Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ u
)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ u
)
− ζ

xµ

µ
v
]

+
1
s2

d
dp

(
Lµ

x Lν
t

[
f
(

xµ

µ
,

tν

ν

)])
,

d
dp
[
Uµ,ν(p, s)

]
=

1
s

d
dp

G1 (p, 0) +
1
s2

d
dp

G2 (p, 0)

− 1
s2 Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ v
)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ v
)
− ζ

xµ

µ
u
]

+
1
s2

d
dp

(
Lµ

x Lν
t

[
g
(

xµ

µ
,

tν

ν

)])
. (47)

(3): By integrating both sides of Equation (47) from 0 to p with respect to p, we have

Uµ,ν(p, s) =
F1 (p, 0)

s
+

F2 (p, 0)
s2

− 1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ u
)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ u
)
− ζ

xµ

µ
v
]

dp

+
1
s2

∫ p

0

(
d

dp

(
Lµ

x Lν
t

[
f
(

xµ

µ
,

tν

ν

)]))
dp,

Vµ,ν(p, s) =
G1 (p, 0)

s
+

G2 (p, 0)
s2

− 1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ v
)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ v
)
− ζ

xµ

µ
u
]

dp

+
1
s2

∫ p

0

(
d

dp

(
Lµ

x Lν
t

[
g
(

xµ

µ
,

tν

ν

)]))
dp, (48)

where F1 (p, 0) , F2 (p, 0) , G1 (p, 0) , and G2 (p, 0) are conformable Laplace transform of the functions
f1

(
xµ

µ

)
, f2

(
xµ

µ

)
, g1

(
xµ

µ

)
, and g2

(
xµ

µ

)
, respectively. By applying double inverse Laplace transform

for Equation (48), we have

u
(

xµ

µ
,

tν

ν

)
= f1

(
xµ

µ

)
+

tν

ν
f2

(
xµ

µ

)
+ L−1

p L−1
s

[
1
s2

∫ p

0

(
d

dp

(
Lµ

x Lν
t

[
f
(

xµ

µ
,

tν

ν

)]))
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ u
)]

dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ u
)
− ζ

xµ

µ
v
]

dp
]

(49)
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and

v
(

xµ

µ
,

tν

ν

)
= g1

(
xµ

µ

)
+

tν

ν
g2

(
xµ

µ

)
+ L−1

p L−1
s

[
1
s2

∫ p

0

(
d

dp

(
Lµ

x Lν
t

[
g
(

xµ

µ
,

tν

ν

)]))
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ v
)]

dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
Lµ

x Lν
t

[
∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ v
)
− ζ

xµ

µ
u
]

dp
]

. (50)

The conformable double Laplace decomposition methods represent the solutions of Equation (43),
by the infinite series

u
(

xµ

µ
,

tν

ν

)
=

∞

∑
n=0

un

(
xµ

µ
,

tν

ν

)
, v

(
xµ

µ
,

tν

ν

)
=

∞

∑
n=0

vn

(
xµ

µ
,

tν

ν

)
. (51)

By substituting Equation (51) into Equations (49) and (50), we get

∞

∑
n=0

un

(
xµ

µ
,

tν

ν

)
= f1

(
xµ

µ

)
+

tν

ν
f2

(
xµ

µ

)
+ L−1

p L−1
s

[
1
s2

∫ p

0

(
d

dp

(
Lµ

x Lν
t

[
f
(

xµ

µ
,

tν

ν

)]))
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0

(
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ

(
∞

∑
n=0

un

))])
dp

]

−L−1
p L−1

s

[
1
s2

∫ p

0

(
Lµ

x Lν
t

[
∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ

(
∞

∑
n=0

un

))])
dp

]

+L−1
p L−1

s

[
1
s2 LxLt

[
ζ

xµ

µ

∞

∑
n=0

vn

]]
, (52)

and

∞

∑
n=0

vn

(
xµ

µ
,

tν

ν

)
= g1

(
xµ

µ

)
+

tν

ν
g2

(
xµ

µ

)
+ L−1

p L−1
s

[
1
s2

∫ p

0

(
d

dp

(
Lµ

x Lν
t

[
g
(

xµ

µ
,

tν

ν

)]))
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0

(
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ

(
∞

∑
n=0

vn

))])
dp

]

−L−1
p L−1

s

[
1
s2

∫ p

0

(
Lµ

x Lν
t

[
∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ

(
∞

∑
n=0

vn

))])
dp

]

+L−1
p L−1

s

[
1
s2 LxLt

[
ζ

xµ

µ

∞

∑
n=0

un

]]
. (53)

Our method suggests that the zeroth components u0 and v0 are identified by the initial conditions
and from source terms as follows

u0 = f1

(
xµ

µ

)
+

tν

ν
f2

(
xµ

µ

)
+ L−1

p L−1
s

[
1
s

∫ p

0

(
d

dp

(
Lµ

x Lν
t

[
f
(

xµ

µ
,

tν

ν

)]))
dp
]

,

v0 = g1

(
xµ

µ

)
+

tν

ν
g2

(
xµ

µ

)
+ L−1

p L−1
s

[
1
s

∫ p

0

(
d

dp

(
Lµ

x Lν
t

[
g
(

xµ

µ
,

tν

ν

)]))
dp
]

. (54)
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The remaining terms are given by

uk+1 = −L−1
p L−1

s

[
1
s2

∫ p

0

(
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ uk

)])
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0

(
Lµ

x Lν
t

[
∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ uk

)])
dp
]

+L−1
p L−1

s

[
1
s2 LxLt

[
ζ

xµ

µ
vk

]]
, (55)

and

vk+1 = −L−1
p L−1

s

[
1
s2

∫ p

0

(
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ vk

)])
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0

(
Lµ

x Lν
t

[
∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ vk

)])
dp
]

+L−1
p L−1

s

[
1
s2 LxLt

[
ζ

xµ

µ
uk

]]
. (56)

Here, we assume that the double inverse Laplace transform with respect to p and s exists for each
term in the right hand side of the above equations.

To illustrate our method for solving the conformable derivatives coupled pseudohyperbolic
equations, we will consider the following example:

Example 5. Consider the following homogeneous form of a conformable derivatives coupled pseudohyperbolic equation

∂2νv
∂t2ν

− µ

xµ

∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ u
)
− µ

xµ

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ u
)
− v = 0

∂2νv
∂t2ν

− µ

xµ

∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ v
)
− µ

xµ

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ v
)
− u = 0, (57)

with initial condition

u
(

xµ

µ
, 0
)

=

(
xµ

µ

)2
,

∂νu
(

xµ

µ , 0
)

∂tν
= −

(
xµ

µ

)2

v
(

xµ

µ
, 0
)

=

(
xµ

µ

)2
,

∂νv
(

xµ

µ , 0
)

∂tν
= −

(
xµ

µ

)2
. (58)

By applying above method for Equations (57) and (58), we obtain

∞

∑
n=0

un

(
xµ

µ
,

tν

ν

)
=

(
xµ

µ

)2
−
(

xµ

µ

)2 tν

ν

−L−1
p L−1

s

[
1
s2

∫ p

0

(
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ

(
∞

∑
n=0

un

))])
dp

]

−L−1
p L−1

s

[
1
s2

∫ p

0

(
Lµ

x Lν
t

[
∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ

(
∞

∑
n=0

un

))])
dp

]

−L−1
p L−1

s

[
1
s2 LxLt

[
xµ

µ

∞

∑
n=0

vn

]]
, (59)



Mathematics 2019, 7, 949 16 of 21

and

∞

∑
n=0

vn

(
xµ

µ
,

tν

ν

)
=

(
xµ

µ

)2
−
(

xµ

µ

)2 tν

ν

−L−1
p L−1

s

[
1
s2

∫ p

0

(
Lµ

x Lν
t

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ

(
∞

∑
n=0

vn

))])
dp

]

−L−1
p L−1

s

[
1
s2

∫ p

0

(
Lµ

x Lν
t

[
∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ

(
∞

∑
n=0

vn

))])
dp

]

−L−1
p L−1

s

[
1
s2 LxLt

[
ζ

xµ

µ

∞

∑
n=0

un

]]
. (60)

By applying equations Equations (54)–(56), we have

u0 =

(
xµ

µ

)2
−
(

xµ

µ

)2 tν

ν
, v0 =

(
xµ

µ

)2
−
(

xµ

µ

)2 tν

ν

u1 = −L−1
p L−1

s

[
1
s2 LxLt

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ u0

)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ u0

)
+

xµ

µ
v0

]]
= −2

3

(
tν

ν

)3
+

1
2

(
xµ

µ

)2 ( tν

ν

)2
− 1

6

(
xµ

µ

)2 ( tν

ν

)3
,

v1 = −L−1
p L−1

s

[
1
s2 LxLt

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ v0

)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ v0

)
+

xµ

µ
u0

]]
= −2

3

(
tν

ν

)3
+

1
2

(
xµ

µ

)2 ( tν

ν

)2
− 1

6

(
xµ

µ

)2 ( tν

ν

)3
,

u2 = −L−1
p L−1

s

[
1
s2 LxLt

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ u1

)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ u1

)
+

xµ

µ
v1

]]
=

2
3

(
tν

ν

)3
+

1
24

(
xµ

µ

)2 ( tν

ν

)4
− 1

120

(
xµ

µ

)2 ( tν

ν

)5
,

v2 = −L−1
p L−1

s

[
1
s2 LxLt

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ v1

)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ v1

)
+

xµ

µ
u1

]]
=

2
3

(
tν

ν

)3
+

1
24

(
xµ

µ

)2 ( tν

ν

)4
− 1

120

(
xµ

µ

)2 ( tν

ν

)5
,

and

u3 = −L−1
p L−1

s

[
1
s2 LxLt

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ u2

)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ u2

)
+

xµ

µ
v2

]]
=

1
15

(
tν

ν

)5
− 1

1260

(
tν

ν

)7
+

1
720

(
xµ

µ

)2 ( tν

ν

)6
− 1

5040

(
xµ

µ

)2 ( tν

ν

)7
,

v3 = −L−1
p L−1

s

[
1
s

LxLt

[
∂µ

∂xµ

(
xµ

µ

∂µ

∂xµ v2

)
+

∂µ+ν

∂xµ∂tν

(
xµ

µ

∂µ

∂xµ v2

)
+

xµ

µ
u2

]]
=

1
15

(
tν

ν

)5
− 1

1260

(
tν

ν

)7
+

1
720

(
xµ

µ

)2 ( tν

ν

)6
− 1

5040

(
xµ

µ

)2 ( tν

ν

)7
,
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and so on for other components. Using Equation (51), our required solutions are given below

u
(

xµ

µ
,

tν

ν

)
= u0 + u1 + u2 + u3 + ... =

1− tν

ν
+

(
tν

ν

)2

2!
−

(
tν

ν

)3

3!
+

(
tν

ν

)4

4!
− ...

( xµ

µ

)2

v
(

xµ

µ
,

tν

ν

)
= v0 + v1 + v2 + v3 + ... =

1− tν

ν
+

(
tν

ν

)2

2!
−

(
tν

ν

)3

3!
+

(
tν

ν

)4

4!
− ...

( xµ

µ

)2

and hence the exact solution becomes

u
(

xµ

µ
,

tν

ν

)
=

(
xµ

µ

)2
e−

tν
ν , v

(
xµ

µ
,

tν

ν

)
=

(
xµ

µ

)2
e−

tν
ν .

By taking µ = 1 and ν = 1, the conformable solution becomes

u (x, t) = x2e−t, v (x, t) = x2e−t.

4. Numerical Result

In this section, we shall illustrate the accuracy and effciency of the double conformable Laplace
transform method by numerical results of u(x, t) for the exact solution when µ = ν = 1, and
approximate solutions when µ and ν taken different fractional values in Equations (20) and (40),
which are depicted through Figures 1–4, respectively.

The three dimensional surface in Figure 1 shows the exact solution of Equation (20) in standard
form of singular pseudohyperbolic equation at µ = ν = 1. Figure 2 compares the approximate
solutions of Equation (20) when t = π

2 . In Figure 2a, the numerical solution at 0 < µ = ν ≤ 1, in this
case u(x, t), increases hastily at fractional derivative decrease, Figure 2b shows the solution at µ = 0.99
and ν = 0.95, 0.90, 0.85 and we see u(x, t) increasing regularly when ν decreases, and in Figure 2c we
can observe u(x, t) increasing slowly at µ = 0.95, 0.90, 0.85 and ν = 0.99 when µ decreases.

Figure 1. The Exact Solutions u(x, t) for Equation (20) when µ = ν = 1.
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Similarly, the exact solution and approximate solution of Equation (40) were demonstrated
in Figures 3 and 4 when t = 1. In the case ν = µ = 1, we get the exact solution of a singular
pseudohyperbolic equation, as seen in Figure 3. Figure 4 shows the approximate solution of
Equation (40) with different values of µ and ν. Figure 4a gives plots of the behavior of Equation (40)
when 0 < µ = ν ≤ 1, in this case the function u(x, t) increases quickly, and in Figure 4b we have
obtained the solution for the values of µ = 0.99 and different values of 0 < ν ≤ 1, in this case the
function u(x, t) increases gradually, and Figure 4c gives the behavior of Equation (40) at ν = 0.99 and
different values of µ, in this case the function u(x, t) increasing tardily.

It is clear from the solutions of Equations (20) and (40) that the conformable double
Laplace decomposition method has good agreement with the exact solutions of the problems.
The fractional-order solution of these two problems and exact solution of integer order problems
are equal at 0 < µ = ν ≤ 1, in this case we have no error.

(a) (b)

(c)

Figure 2. The solutions u(x, t) for Equation (20) for different values of µ and ν when t = π
2 . (a) Plot

solutions u(x, t) for Equation (20) at µ = ν. (b) Plot solutions u(x, t) for Equation (20) when µ = 0.99
and different values of ν. (c) Plot solutions u(x, t) for Equation (20) for different values of µ at ν = 0.99.
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Figure 3. The Exact Solutions u(x, t) for Equation (40) when µ = ν = 1.

(a) (b)

(c)

Figure 4. The solutions u(x, t) for Equation (40) for different values of µ and ν when t = 1. (a) Plot
solutions u(x, t) for Equation (40) at µ = ν. (b) Plot solutions u(x, t) for Equation (40) when µ = 0.99
and different values of ν. (c) Plot solutions u(x, t) for Equation (40) for different values of µ at ν = 0.99.
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5. Conclusions

In the present work we have studied singular linear and nonlinear pseudohyperbolic equations
by employing the conformable double Laplace transform decomposition method (CDLDM), and we
obtain analytic solutions when µ = ν = 1 and numerical solutions for different fractional values.
Further, we also studied singular coupled pseudohyperbolic equations. It is clear that the solutions
of Equations (20) and (40) were obtained as infinite series by using the conformable double Laplace
decomposition method and they are in good agreement with the exact solutions of the problems.
We have provided three different examples in order to demonstrate the efficiency, high accuracy, and
the simplicity of the present method. Further, we plot the exact solutions, as well as the numerical
solutions, in Figures 1–4, and we can easily see the efficieny of and agreement among the solutions.
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