
mathematics

Article

A Statistical Investigation into Assembly Tolerances
of Gradient Field Magnetic Angle Sensors with
Hall Plates

Serkan Ergun 1,† , Udo Ausserlechner 1,† , Michael Holliber 1,† and Wolfgang Granig 1,†,‡,*
and Hubert Zangl 2

1 Infineon Technologies Austria AG, 9500 Villach, Austria; serkan.ergun@stud.unileoben.ac.at (S.E.);
udo.ausserlechner@infineon.com (U.A.); michael.holliber@infineon.com (M.H.)

2 Institut für Intelligente Systemtechnologien, Alpen Adria Universitaet Klagenfurt, 9020 Klagenfurt, Austria;
hubert.zangl@aau.at

* Correspondence: wolfgang.granig@infineon.com
† These authors contributed equally to this work.
‡ Current address: Siemensstrasse 2, 9500 Villach, Austria.

Received: 11 September 2019; Accepted: 8 October 2019; Published: 14 October 2019
����������
�������

Abstract: Magnetic field-based sensors are used for reliable applications in automotive and aerospace
industry because of their robustness. The electrification of powertrains and propulsion requires
gradiometric sensing principles, because they suppress ubiquitous electromagnetic disturbances very
efficiently. A prominent solution for the mass market uses a small permanent magnet attached to
the end of a rotatable shaft and a small sensor chip with four Hall plates placed on the rotation axis
and ahead of the magnet. Small misplacements of chip and magnet lead to errors in the detected
angle of the shaft. The lateral position errors and tilts of the magnet and the chip give eight degrees
of freedom (DoF). This large number of DoF and the nonlinearity of the system obscure the view on
how to optimize such angle sensor systems. Therefore, this work presents a statistical description of
angle errors caused by assembly tolerances. Probability distributions of angle errors are given and
marked differences to Gaussian distributions are shown. The influence of spacing between sensor
and magnet and the dominant influence of the shape of the magnet are clarified. The results obtained
by numerical computations are in excellent agreement to recently published analytical theories. This
work gives evident conclusions for statistical optimizations of such angle sensor systems.

Keywords: magnetic angle sensor; gradiometric angle sensor; strayfield robust; statistical error;
system optimization

1. Introduction

Magnetic sensing principles are well established in the automotive industry because of their
robust and reliable operation without abrasion, even in dirty environments [1]. The automotive sector
is presently moving from combustion engines to electric driven propulsion with high-power cables
causing electromagnetic interference (EMI) to other electromagnetic sensitive devices inside a car.
The trend for safe and autonomous systems, on the other hand, increases the number of sensors
and actuators inside a vehicle, which therefore have to be smaller and more robust and reliable.
Such magnetic angle sensors for 360◦ detection are traditionally made with magnetoresistive sensors
(e.g., GMRand TMR) [2,3] or with vertical Hall-effect devices. Their angle accuracy is limited roughly
to ∼0.3◦. . .∼1◦ by the assembly tolerances of the sensor and magnet with respect to the rotation
axis [4–6]. Their main limitation nowadays is that relatively small magnetic disturbance fields of 5 mT
give large errors of 5◦. In-shaft magnetic angle sensing solves these problems and improves the angle
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accuracy to ∼0.2◦ [7]. There the angle sensor devices are placed in the center of a cheap ferrite injection
molded Halbach ring magnet inside the bore of a ferrous shaft, which perfectly shields external
disturbances. Due to the high symmetry of the field in the Halbach magnet, assembly tolerances lead
only to very small angle errors. Another strategy to cope with disturbance fields is to use gradiometric
magnetic sensors. They are cheaper, because they need no magnetic shielding, and they need only
smaller, simpler magnets. The basic principle of a widely used angle sensor system with Hall plates is
described in [8], but the idea dates back to [9]. A similar system was developed in [10]. Other angle
sensor systems add small magnetic fluxguides or concentrators on the sensor chip [11]. However,
these are not gradiometers, and therefore they do not cancel out disturbances of external magnetic
fields. Yet, this basic principle can be used to construct more complex gradiometers with robustness
against disturbance fields [12]. Unfortunately, it can be shown that gradiometric sensors are less
robust against assembly tolerances than systems that respond to homogeneous magnetic fields [13].
This is not a consequence of the sensing elements (e.g., TMRs or Hall plates). It is caused by the
gradiometric sensing principle itself: gradients are less homogeneous than absolute field values, and
therefore they are more prone to placement tolerances. This is explained in Chapter 7 of [14] with
a thorough comparison of all common magnetic sensor technologies. Apart from permanent magnetic
angle sensors also inductive angle sensors are known [15]. They are very accurate and robust against
electromagnetic disturbances, and they are well suited for through-shaft arrangements, where the
end of a shaft is not available. However, they are more complex and expensive for full 360◦ detection
and they need more space (diameters > 30 mm). The purpose of this paper is to look at the statistical
distribution of angle errors of gradiometric angle sensors of type [8] and to indicate how the angle
accuracy can be optimized. In our case, the magnetic field component perpendicular to a chip is
detected by four Hall plates, which are located at 0◦, 90◦, 180◦, and 270◦ on a circle [8]. The radius of
the circle is called the reading radius, RR. A schematic overview of this sensing principle is shown
in Figure 1.
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Figure 1. Schematic overview of the angle sensor system.
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Two opposite Hall plates make up one gradiometer, which detects the fields on two spaced apart
positions and derives the difference of both. Therefore, in good approximation the system detects
the gradients of the axial field component dBz/dx = (Bz(0◦) − Bz(180◦)/(2 RR) and dBz/dy =

(Bz(90◦)− Bz(270◦)/(2 RR). Therefore, it cancels out homogeneous disturbances. Imhomogeneous
disturbances are not canceled out; however, as their sources are much farther away than the magnet,
they are much weaker. An analytic theory of such an axial field gradient angle sensor is published
in [13]. Statistical distributions of errors due to assembly tolerances are also given in [13]. We verified
our approach by comparing our results to the ones given by [13] in Appendix A of this publication.

2. Methods

This section explains the methods used to deploy a mathematical model of a 3D magnetic field
solution, allowing translations and rotations of the magnet and the sensor elements.

The basic concept of our program code is to (i) assume a set of assembly tolerances with random
number generators; (ii) compute the test points of the four Hall plates in the magnet’s reference frame;
(iii) compute the magnetic field vector in these test points; (iv) rotate the magnetic field vectors back into
the chip’s reference frame, so as to compute the magnetic field component perpendicular to the Hall
plates; and (v) estimate the angular position via ϕ′ = arctan2(Bz(0◦)− Bz(180◦), Bz(90◦)− Bz(270◦)).
Thereby, we assume that the Hall plates measure the perpendicular magnetic field component in their
gravity centers without any error (no offset error, no gain error, perfect linearity, and no noise). We also
neglect any curvature of the chip in its package [16]. These assumptions were checked theoretically
and also experimentally in [13], which proved reasonable. Due to the high geometrical accuracy of
microelectronic manufacturing, we can also assume that the positions of the Hall plates relative to
each other are perfectly accurate.

2.1. Magnetic Field Solution

For this purpose, a MATLAB code was generated, which is split into a main script and additional
supporting functions. In the main script, all input variables are set. The script then calls functions to
conduct the coordinate transformations as well as a set of functions, which do the actual computation
of the magnetic field. Afterwards, the postcomputations include the calculation of the measured angle
using the z-component of the magnetic field solution at each sensor’s position.

The accuracy of the results can only be as accurate as the magnetic field calculation. In our
program code, we implemented the method of Furlani et al. [17], because it can be adapted to
different magnet shapes. It is also a good compromise in computational speed and accuracy. Basically,
any analytical or numerical solution may be used. In this paper, we assume a disc magnet with
homogeneous diametrical magnetization. For further details about the numerical approach, please
refer to [17].

Figure 2 shows the schematic setup of all relevant coordinate transformations. A set of three
coordinate systems (CS) was chosen: A reference coordinate system positioned on the ideal shaft center
and two coordinate systems describing the relative positioning of the magnet and the sensor.

The system has twelve degrees of freedom (DoF) in total; eight of which are used to describe
assembly tolerances. The axial position errors of sensor and magnet (see zS and zM in Table 1) are
accounted for by the air gap AG, which we regard as a deterministic quantity and sweep it through
the required operating window. The rotational alignments of the sensor and magnet (see γS and γM in
Table 1) do not cause any nonlinearity in the angle reading versus rotation angle—they lead only to
additive errors (offsets). In practice, these misalignments are calibrated after installation, where the
user moves the rotor in a reference position and teaches-in this offset angle. Cartesian coordinates
were chosen to represent all positions and orientations. All DoF are listed in Table 1.
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Figure 2. Schematic overview of the different coordinate systems.

Table 1. Overview of degrees of freedom (DoF). DoF in bold were used in the model input.

Sensor DoF Magnet DoF

Position (
−→
dS ) Position (

−→
dM)

xS xM
yS yM
zS zM

Orientation (w.r.t. shaft CS) Orientation (w.r.t. shaft CS)

αS αM
βS βM
γS γM

In practice, the “air gap” AG is an important parameter. It is defined as the (perpendicular)
distance between the lower surface of the magnet and the top surface of the sensor chip:

AG = zM + zS − H/2 (1)

where H is the height of the permanent magnet.
To change between different coordinate systems, the orientation of each CS needs to be rotated

until it meets the same orientation as the reference coordinate system. A point in space represented by
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its position vector −→x w.r.t., a relative coordinate system is rotated to acquire the coordinates of that
point in space w.r.t. to a reference coordinate system −→x ′.

−→x ′ = T(−→n , α)−→x (2)

where T(−→n , α) is the transformation matrix for rotations. T(−→n , α) can be found in [18,19]. Equation (3)
is applicable for any rotation by an angle α around an axis given by its vector −→n = [n1, n2, n3]

T with
unit length.

T(−→n , α) =


n2

1(1− cos(α)) + cos(α) n1n2(1− cos(α))− n3sin(α) n1n3(1− cos(α)) + n2sin(α)

n2n1(1− cos(α)) + n3sin(α) n2
2(1− cos(α)) + cos(α) n2n3(1− cos(α))− n1sin(α)

n3n1(1− cos(α))− n2sin(α) n3n2(1− cos(α)) + n1sin(α) n2
3(1− cos(α)) + cos(α)

 (3)

For rotations around Cartesian axes [x, y, z]T , this matrix simplifies greatly. To rotate α around
−→n x = [1, 0, 0]T by a certain angle, T(−→n , α) becomes

Tx(α) =


1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)

 (4)

The rotation matrices for rotations around the y- (−→n y = [0, 1, 0]T) and z- (−→n z = [0, 0, 1]T) axes are
derived in the same way:

Ty(β) =


cos(β) 0 sin(β)

0 1 0
−sin(β) 0 cos(β)

 (5)

Tz(γ) =


cos(γ) −sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 (6)

It is possible to group all three rotation matrices into a single line of code:

−→x ′ = (Tx(α)Ty(β)Tz(γ))
−→x (7)

Remark 1. These matrix multiplications are not commutative in general [20]; this means the order of the
transformations matrices has an effect on the result. This has to be taken into account if reverse rotations need to
be performed.

The computation starts with defining the relative position of each Hall plate with respect to the
sensor center.

−→
h1 =


0
−RR

0

 −→
h2 =


−RR

0
0

 (8)

−→
h3 =


0

+RR
0

 −→
h4 =


+RR

0
0

 (9)

As the sensor can be tilted into any orientation, a coordinate transformation needs to be applied
to meet the orientation of the reference CS:

−→
hn
′ = (Tx(αS)Ty(βS)Tz(γS))

−→
hn (10)
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with
n = {1, 2, 3, 4} (11)

By adding the offset vector
−→
dS to

−→
hn
′ the absolute position with respect to the center of the reference,

CS can be obtained.

−→
dS =


xS
yS
zS

 (12)

−−→
habs,n =

−→
dS +

−→
hn
′ (13)

With this, the absolute position of each Hall plate is known; in the next step, all four Hall plates
need to be rotated around the axis of rotation z. Each position vector now becomes an array of
positions Hn.

Hn = Tz([0, 360]◦)
−−→
habs,n (14)

All sensor transformations are now complete. In the next steps, these sets of coordinates need to
be transformed to meet the orientation of the magnet.

Hn
′ = (Tx(−αM)Ty(−βM)Tz(−γM))Hn (15)

The final step is it to add the magnet offset
−→
dM to Hn

′:

Hmagnet,n =
−→
dM + Hn

′ (16)

The set of coordinates Hmagnet,n can now be used to compute the magnetic field solution by
using any desired mathematical model (the model used in this publication was presented in [17]).
The magnetic field solution for all Hall elements shall be denoted by

Bn =


Bx,n

By,n

Bz,n

 (17)

Bn is the magnetic field solution with respect to the magnet CS. In a multistep process, the array
of field vectors need to be transformed to the sensor orientation. The first step is to transform Bn to the
reference CS:

Bn
′ = (Tz(γM)Ty(βM)Tx(αM))Bn (18)

Bn
′ is actually the static field solution for all positions of every Hall element. In the next step the

magnet needs to be rotated around the rotation axis z to acquire the dynamic field solution Brot,n:

Brot,n = Tz([0,−360]◦)Bn
′ (19)

Finally, Brot,n needs to be rotated once more to meet the sensor orientation:

Bsensor,n = (Tx(−αS)Ty(−βS)Tz(−γS))Brot,n (20)

All coordinate transformations are now complete, and the 3D magnetic field solution for each
Hall element is obtained. Bsensor,n can now be used to calculate the measured angle ϕ′. The Hall
elements in use are only sensitive to the z-component of the magnetic field vector Bsensor,z,n. To reduce
the overhead in the notations caused by multiple coordinate transformations, Bsensor,z,n will be denoted
as Bz n. ϕ′ can be calculated by using the “arctan2” function (which is unique in [0, 360]◦).

ϕ′ = arctan2((Bz2 − Bz4), (Bz1 − Bz3)) (21)
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The angle error ∆ϕ is the difference between the true angle (also referred to as mechanical angle)
ϕ and the measured angle ϕ′:

∆ϕ = ϕ′ − ϕ (22)

2.2. Performing Monte Carlo Simulations

Coding fast computing Monte Carlo simulations is done quite easily using the MATLAB
environment. Random variables with Gaussian distributions N (µ, σ2) can be created using a single
line of code [21]:

−→r =normrnd(µ,σ,size) (23)

where size defines the dimension [rows,columns] of the array created.
Uniformly distributed random numbers U (min, max) are also created similarly [22]:

−→r =rand(size) (24)

creates random distributed numbers in [0, 1].

3. Model Input

This section summarizes the input values used in the computations.
We chose a diametrically polarized disc magnet with commonly used dimensions:

• Diameter D = 6 mm
• Height H = 2.5 mm

Table 2 specifies all statistical position and angle tolerances. Eccentricities and tilts were
Gaussian-distributed with standard deviations of σ = 0.1 mm and σ = 1◦, respectively
(Gaussian-distributed random variables are denoted by N (µ, σ2) and uniformly distributed random
variables are denoted by U ([min, max]) in Table 2). These values for assembly parameters are realistic
in today’s manufacturing equipment for mass production.

Table 2. Overview of assembly tolerances (eccentricities and tilts) for the sensor and magnet. Note
that N (0, 0.01) mm means an average of 0 mm and a variance of 0.01 mm2, which is equivalent to
a standard deviation of 0.1 mm.

Sensor Tolerances Magnet Tolerances

xS ∼ N (0, 0.01) mm xM ∼ N (0, 0.01) mm
yS ∼ N (0, 0.01) mm yM ∼ N (0, 0.01) mm

zS ∼ N (0, 0) mm zM ∼ N (0, 0) mm
δS ∼ N (0, 1)◦ δM ∼ N (0, 1)◦

ηS ∼ U (0, 360)◦ ηM ∼ U (0, 360)◦

αS ∼ δS cos(ηS) αM ∼ δM cos(ηM)
βS ∼ δS sin(ηS) βM ∼ δM sin(ηM)
γS ∼ N (0, 0)◦ γM ∼ N (0, 0)◦

Remark 2. Uniformly distributed auxiliary angles ηS and ηM were introduced to assure an equal probability for
the sensor and the magnet to be tilted around arbitrary axes in the x–y plane of the sensor /magnet. The tilt angles
of sensor and magnet are δS and δM. It holds that αM = δM cos(ηM), βM = δM sin(ηM), αS = δS cos(ηS),
and βS = δS sin(ηS). This leads to non-Gaussian distributions of αS, βS, αM, and βM.

A statistical investigation was done for a set of different reading radii RR (0.1 , 0.5 , 0.75 , 1 , 1.25 ,
and 1.5 mm) at two different air gaps: AG 1.5 and 2.5 mm with 100,000 Monte Carlo runs per setup.
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4. Results

The results of the two Monte Carlo simulations for 1.5 and 2.5 mm air gaps are depicted in Figure 3
as normal probability plots. All distributions of angle errors relate to an angular position, ϕ = 33.75◦;
however, the distributions are identical at any other rotational position ϕ. In this plot, a Gaussian
distribution appears as a straight ascending line through the median, and its slope is determined by
the interquartile range of the distribution. We plotted one such Gaussian distribution with standard
deviation equal to the one of the Monte Carlo results for RR = 1.0 mm. Obviously, there is a striking
difference between the Monte Carlo results and the approximated Gaussian distribution: the Gaussian
distribution underestimates the 99.9 % percentile by more than three times (Figure 3).
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 AG=1.5mm
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Figure 3. Cumulative probability distribution of the angle error ∆ϕ at the rotation angle ϕ = 33.75◦

for various reading radii RR at an air gap AG of (a) 1.5 mm and (b) 2.5 mm. Magnet parameters:
D = 6 mm and H = 2.5 mm. Assembly tolerances are according to Table 2. The dashed straight line
denotes a Gaussian distribution with equal average and standard deviation. Note to legend: “+”:
Monte Carlo simulation; “- - -”: Gaussian distribution with the same standard deviation as Monte
Carlo simulation for RR = 1 mm; 100,000 Monte Carlo runs per configuration.
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Figure 4 shows the standard deviation and the 99.9% percentiles versus RR for the data of Figure 3.
Apparently, the angle error increases only slightly with the reading radius, especially near the optimum
air gap of 1.5 mm. (Compare with Figure 6.) It appears that the reading radius should at least be
smaller than one third of the magnet radius (RR < D/6).

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105
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0.115

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Figure 4. (a) Standard deviation and (b) 99.9% percentile of ∆ϕ (at ϕ = 33.75◦) over reading radius RR
for two air gaps AG. Data are from Figure 3. The ratio of percentile versus standard deviation is ≈ 5.03
and it varies about ±3.5% versus both AG.

5. Discussion

The results of the Monte Carlo simulations in Figures 3 and 4 led us to the following conclusions.

• The distribution of ∆ϕ is clearly non-Gaussian: The angle errors of rare outliers are much bigger
than one would predict with a Gaussian. Non-Gaussian error distributions have also been
reported for MEMS based inclinometers by [23].

• A variation of the reading radius has less influence on ∆ϕ than assembly tolerances.
• Typical angle errors (= standard deviation) and rare outliers (= 99.9% percentiles) are similarly

affected by RR, whereby small RR give slightly smaller angle errors.

With the analytical theory presented in [13], we can show why the distribution of angle errors has
such a long tail. In [13], this angle error was expressed as a Taylor series in powers of small eccentricities
and tilts (Appendix B lists assembly parameters defined in this publication and equivalent ones defined
in [13]):
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∆ϕ =
3
4

δ2
Msin(2ηM) +

3
4

δ2
Ssin(2(ηM + ηS + ϕ)) + δMδS(sin(ηS + ϕ)

+ 3sin(ηM)cos(ηM + ηS + ϕ))− γS + {(δMcos(ηM) + δScos(ηM + ηS + ϕ))

+ (yM +
√

x2
S + y2

Ssin(ηM + arctan2(xS, yS) + ϕ) + δMzSsin(ηM))

+
1
4
(δ2

MzSsin(2ηM) + δM

√
x2

M + y2
Msin(ηM + arctan2(xM, yM))

+ δM

√
x2

S + y2
Ssin(2ηM + arctan2(xS, yS) + ϕ) + δMzSδSsin(2ηM + ηS + ϕ)

+
√

x2
M + y2

MδSsin(ηM + arctan2(xM, yM) + ηS + ϕ)

+
√

x2
S + y2

SδSsin(2ηM + arctan2(xS, yS) + ηS + 2ϕ))}T̃axial

+
1
8
{2xMyM + (x2

S + y2
S)sin(2(ηM + arctan2(xS, yS) + ϕ)) + δ2

Mz2
Ssin(2ηM)

+ 2δMzS

√
x2

M + y2
M sin(ηM + arctan2(xM, yM))

+ 2δMzS

√
x2

S + y2
S sin(2ηM + arctan2(xS, yS) + ϕ)

+ 2
√

x2
M + y2

M

√
x2

S + y2
S sin(ηM + arctan2(xS, yS) + arctan2(xM, yM) + ϕ)}Ẽaxial

(25)

with the tilt shape function of the magnet:

T̃axial = lim
y→0

1
Bz(x = 0, y, zS + zM)

∂Bz(x = 0, y, zS + zM)

∂z
(26)

and the eccentricity shape function of the magnet:

Ẽaxial = lim
y→0

1
Bz(x = 0, y, zS + zM)

∂2Bz(x = 0, y, zS + zM)

∂z2 (27)

whereby the dipole moment of the magnet points is in the y-direction. In Appendix C, we give these
shape functions homogeneously magnetized for cylindrical magnets. In Equation (25), there are no
linear terms of placement tolerance parameters. This is due to the symmetry of the arrangement: in the
ideal case the Hall plates are located symmetrically around the rotation axis. Therefore, all first-order
terms in the angle error cancel out. The dominant lowest order error terms are of second order: the
angle error rises with the second power of eccentricities and tilts. The important point is that there are
also mixed 2nd order terms, such as the product of eccentricity of the magnet times tilt of magnet or the
eccentricity of magnet times the eccentricity of the sensor. These mixed error terms have an important
consequence: the total error is more than the sum of individual errors.

Example 1. If a 1st system is perfectly accurate except for an eccentricity of the magnet, the angle error is

∆ϕ1 = Ẽaxial

8 2xMyM

If a 2nd system is perfectly accurate except for an eccentricity of the sensor, the angle error is

∆ϕ2 = Ẽaxial

8 (x2
S + y2

S)sin(2ϕ + 2arctan2(xS, yS))

However, if a 3rd system is perfectly accurate except for the eccentricities of the magnet and sensor,
the angle error is

∆ϕ3 = ∆ϕ1 + ∆ϕ2 +
Ẽaxial

8 2
√

x2
M + y2

M

√
x2

S + y2
S sin(ϕ + arctan2(xS, yS) + arctan2(xM, yM))
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The angle error of the 1st system comprises one term and the error of the 2nd system also comprises
one term; however, the error of the 3rd system comprises not just two terms, but three terms. The 3rd

term is proportional to the product of eccentricities of sensor and magnet. Therefore, the distribution
of ∆ϕ3 is wider than the statistical sum of ∆ϕ1 and ∆ϕ2. For xM = yM = 0.3 mm, xS = −0.2 mm,
yS = 0.1 mm, and Ẽaxial = 35000 m−2, it follows that ∆ϕ1 = 0.045◦, ∆ϕ2 = 0.016◦, and ∆ϕ3 = 0.109◦.

The absence of 1st order error terms means that the typical angle error is small. If a typical tilt
occurs, it gives an angle error, which is proportional to the square of the small tilt.

Only in rare cases are several ones of the assembly tolerance parameters large. However, once
this rare event happens, it gives a much bigger error, because the total angle error is more than the
sum of individual errors for each misplacement parameter; in addition, we have to add all mixed error
terms, which gives a larger total error.

With the following shorthand notation,
eM worst case angle error ∆ϕ if only the magnet is placed eccentrically
eS worst case angle error ∆ϕ if only the sensor is placed eccentrically
tM worst case angle error ∆ϕ if only the magnet is tilted
tS worst case angle error ∆ϕ if only the sensor is tilted

the total worst case angle error is given by

(
√

eM +
√

eS +
√

tM +
√

tS)
2 = eM + eS + tM + tS

+ 2(
√

eMeS +
√

eMtM +
√

eMtS +
√

eStM +
√

eStS +
√

tMtS)
(28)

We clearly see that a single assembly parameter gives only a single term in the 1st line; however,
all four assembly parameters give 10 error terms, sic of which are mixed errors. It is obvious that in the
rare cases, when all four assembly parameters are large, we will end up with a much larger total error
due to the six mixed error terms. This is also verified numerically in Figure 5.

According to the central limit theorem of probability theory, the sum of many Gaussian-distributed
stochastic variables is again Gaussian-distributed. Yet, the angle error is the square of the sum of several
Gaussian-distributed stochastic variables, and this leads to a long tail in the distribution function.

The angle error in Equation (25) consists of three parts: the first part is proportional to T̃axial ,
the second part is proportional to Ẽaxial , and the third comprises the remainder. The remainder
comprises only tilts, not eccentricities, and it gives notably smaller values than the first two parts.
If the magnet produces a homogeneous field gradient (that means dBz/dy does not vary in space),
both shape functions vanish: T̃axial = 0 and Ẽaxial = 0. In the optimization of an axial field gradient
angle sensor system, one looks for magnets with vanishing shape functions. For simple magnet
shapes like short cylinders, it turns out that both shape functions have a zero, yet at different air
gaps. The tilt shape function vanishes at smaller air gaps than the eccentricity shape function. Due
to the statistical superposition of T̃axial− terms and Ẽaxial− terms in the angle error, the total error
has a relative minimum versus air gap for air gaps between both zeros. The exact location of the
minimum depends on the relative magnitudes of the T̃axial- and Ẽaxial-terms. This is shown in Figure 6,
where we plot the standard deviation of ∆ϕ versus AG for RR = 1 mm. In the same plot, we added
an exemplary tilt error term, 1◦ × 0.2 mm x |T̃axial |, and an exemplary eccentricity error term,
1/8 × (0.2 mm)2 × 180◦/π|Ẽaxial |.
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Figure 5. Cumulative probability distribution of angle errors for assembly tolerances of Table 2.
∆ϕME = angle error for magnet eccentricity only, ∆ϕSE for sensor eccentricity only, ∆ϕST for sensor tilt
only, ∆ϕMT for magnet tilt only, sum= |∆ϕME|+ |∆ϕSE|+ |∆ϕST |+ |∆ϕMT |, and total= real angle error
if all assembly tolerances of Table 2 are simultaneously present; 1000 Monte Carlo runs conducted.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
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0.15

0.2

0.25

Figure 6. Simulated effects of statistical superposition of angle errors for a magnet as given in Section 3
with assembly tolerances according to Table 2 compared to the shape functions |T̃axial | and |Ẽaxial |.
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Experiments conducted on a single test chip (with RR = 1 mm) prove the statements above.
Figure 7 shows the angle error versus air gap, whereby each curve was measured for a different
sensor eccentricity. The sensor eccentricity xS and yS was changed in the range of [−0.3, 0.3] mm by
mounting the sensor on a translation stage. The sensor tilt was nominally zero but we could not avoid
possible tilts of the sensor chip inside the sensor package (up to 2◦). Also, the magnet was mounted
as perfectly as possible, but again here we cannot exclude that there might have been small magnet
eccentricities (up to 0.1 mm), small tilts of the magnet (up to 2◦), and small tilts of the magnetization
inside the magnet (up to 3◦). However, all these unavoidable small assembly tolerances were constant
for all curves, because we used a single chip and we did not change the mounting of the chip on
the translation stage during the experiment, so that only the sensor eccentricity was changed via the
translation stage. The measured AE angle error is defined as half the difference of maximum and
minimum angle error in a 360◦ rotation: AE=[max(∆ϕ) −min(∆ϕ)]/2. The remaining error results
from unavoidable sensor tilt, magnet tilt, and magnet eccentricity, as well as errors generated in the
signal processing path of this non calibrated part. Note that all curves were measured with the same
chip and magnet with constant tilts and magnet eccentricity—only the sensor eccentricity was changed.
The highlighted curves show the typical AG dependency from Figure 6.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

Figure 7. Measured AE angle error vs. AG for a single piece of test chip with RR = 1 mm. Each curve
was measured for a specific sensor eccentricity xS, yS in the range of [−0.3, 0.3] mm. All other assembly
tolerances were too small to be measured, but it is very likely that they did not vanish altogether
(magnet eccentricity < 0.1 mm and tilts up to a few degrees). During the experiment, the sensor was
mounted only once on the translation stage, and therefore all assembly tolerances were constant, except
for xS and yS. Note that the combined action of inevitable assembly tolerances and intentionally
changed sensor eccentricity produces a wide variety of curves that fill up the entire area below the
curve with maximum sensor eccentricity. The curve for (xS, yS) = (0, 0) mm is flat for medium and
large air gap, but it increases at small air gap, which is probably due to inevitable tilt errors. The curve
for (xS, yS) = (−0.3, 0.3) mm has identical behavior at small air gap; yet, at large air gap, we clearly
see the strong effect of eccentricity proportional to the rise in Ẽaxial versus air gap.

The angle error ∆ϕ versus rotation angle for the two bold curves (yellow, blue) in Figure 7 is shown
explicitly in Figure 8. The angle error curves show one pattern at large air gaps of AG > 1.1 mm and
a different pattern at small air gaps of AG 6 0.5 mm (compare this with the zeros of T̃axial and Ẽaxial in
Figure 6). T̃axial is dominating the error contribution for small AG, whereas Ẽaxial is the dominating
error contributor for larger AG. The curves for AG = 0.2 mm should be similar in both plots (as the
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tilts were not changed), and their respective minima and maxima are roughly at the same angle. The
deviations between the two curves result from the contribution of Ẽaxial .

-45 0 45 90 135 180 225 270 315
-3

-1.5

0

1.5

3

-45 0 45 90 135 180 225 270 315
-1.5

-0.75

0

0.75

1.5

Figure 8. ∆ϕ versus rotation angle for (a) (xS, yS) = (−0.3, 0.3) mm and (b) (xS, yS) = (0, 0) mm from
Figure 7. Two different patterns are detectable: T̃axial dominates for small AG and Ẽaxial dominates for
large AG. Tilts and magnet eccentricity are not quantified but small and equal for all curves.

6. Conclusions

In summary, we show that assembly tolerances have a significant impact on gradient magnetic
angle sensors. Thereby, the statistical distribution of angle errors shows significantly larger errors of
rare outliers than one would predict with a Gaussian distribution. The reason for the non-Gaussian
distribution of angle errors is the symmetry of the sensor arrangement, which cancels out linear error
terms and leaves second-order error terms. Typical errors (=standard deviation of errors) are below
0.1◦ and 99.9% percentiles are five times larger. Judicious choice of magnet and air gap can reduce
the angle error further. Within reasonable limits, the sensor layout (reading radius being smaller than
one sixth of the magnet diameter) has much less effect on the angle error than the shape functions of
the magnet.

Author Contributions: The mathematical model and the graphs were created by S.E. The experiments were
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Abbreviations

The following abbreviations are used in this manuscript:

AE Average Angle Error: [max(∆ϕ) - min(∆ϕ)]/2
AG Air gap
Brem Remnant magnetization
D Magnet diameter
DoF Degree(s) of Freedom
EMI Electromagnetic Interference
H Magnet height
Hcb Magnetic coercivity
GMR Giant Magnetoresistance
MDPI Multidisciplinary Digital Publishing Institute
ME Maximum Angle Error: max(|max(∆ϕ)|, |min(∆ϕ)|)
MEMS Microelectromechanical Systems
TMR Tunnel Magnetoresistance
RR Reading Radius
w.r.t. with respect to

Appendix A

The results of the model were validated against previously conducted Monte Carlo simulations
in [13]. There, the magnet was a diametrically polarized disc magnet.

• Diameter D = 10 mm
• Height H = 2 mm

The air gap was 1 mm and the reading radius was assumed to be sufficiently small (theoretically
infinitesimally small). The assembly tolerances are given in Table 2. A Monte Carlo simulation with
10,000 runs is shown in Figure 9 in [13]. There, the angle error distribution was plotted versus the
ME-angle error, which is the largest absolute value of ∆ϕ in [0, 360]◦. In [13] the author compared the
ME-angle error of an axial angle sensor (as discussed in this work) to a perpendicular angle sensor.
Perpendicular angle sensors are GMRs, TMRs, or Vertical Hall sensors, which respond to the magnetic
field components perpendicular to the rotation axis. For this axial gradient field angle sensor we
computed the distribution of angle errors with our method explained in Section 2. All parameters are
identical to [13], except that we account for a reading radius of 0.1 mm. In Figure A1, we plotted the
original data of [13] and our own data: both curves are fairly similar.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-4

10-3

10-2

10-1

100

In [13]
This publication

Figure A1. Complementary Cumulative Probability Density Function (CCDF) versus ME-angle error
for the approaches presented in this publication and the one presented in [13] for RR = 0.1 mm at
AG = 1 mm. Magnet parameters: D = 10 mm and H = 2 mm. Assembly tolerances according to
Table 2; 10,000 Monte Carlo samples taken.
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The key parameters of the distributions in Figure A1 are summarized in Table A1. They match
perfectly with the values reported in [13]. The relatively large angle error (0.1% of all manufactured
systems have an error exceeding ~0.8◦) is due to the fact that the magnet is not optimal for this gradient
field type of angle sensors.

Table A1. Comparison of ME-angle errors extracted from the data in Figure A1.

CCDF Value This Publication In [13]

0.1 0.31◦ 0.32◦

0.01 0.54◦ 0.56◦

0.001 0.78◦ 0.81◦

Appendix B

Table A2. Comparison of assembly parameters used in [13] with corresponding variables in
this publication.

This Publication In [13]

αM β cos(α)
βM β sin(α)

ηM = arctan2(αM, βM) α
δM β
αS λ cos(γ)
βS λ sin(γ)

ηS = arctan2(αS, βS) γ
δS λ
γS ϑ
xS εx = εrcos(χ)
yS εy = εrsin(χ)

arctan2(xS, yS) χ
zS εz
xM δx = δr cos(η)
yM δy = δr sin(η)

arctan2(xM, yM) η
zM δz

Remark A1. These equivalences are valid in good approximation for small eccentricities and tilts, but the
higher-order terms differ. However, the equivalences are exact in the lowest order terms of the Taylor series
approximation used in [13] and therefore they are well suited for a comparison of this work with [13]. The
reason for differences in higher-order terms is that this work uses a different sequential order in the coordinate
transformations than [13].

Appendix C

From Figure 12a–f in [13], we get the following expressions for the shape functions of cylinder
magnets with homogeneous magnetization in diametrical direction:

T̃axial =
g(D, H, AG, H/2)− g(D, H, AG,−H/2)
b(D, H, AG, H/2)− b(D, H, AG,−H/2)

(A1)

Ẽaxial =
f (D, H, AG, H/2)− f (D, H, AG,−H/2)
b(D, H, AG, H/2)− b(D, H, AG,−H/2)

(A2)
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with

b(D, H, AG, zS) =
1

16(D2/4+(AG+H/2−zS)2)3/2 (A3)

f (D, H, AG, zS) = 6 (16AG2−D2+16AG(H−2zS)+4(H−2zS)
2)

(4AG2+D2+4AG(H−2zS)+(H−2zS)2)7/2 (A4)

g(D, H, AG, zS) = − 3(2AG+H−2zS)
(4AG2+D2+4AG(H−2zS)+(H−2zS)2)5/2 (A5)

Thereby, the peak amplitude of the magnetic induction on a single Hall plate is equal to
Brem RR D2(b(D, H, AG, H/2) − b(D, H, AG,−H/2). Equations (A1–A5) were used to compute
T̃axial and Ẽaxial in Figure 6.

These equations neglect the small recoil permeability µrrecoil = Brem/(µ0 ∗ |Hcb|) of permanent
magnetic materials, with Brem being the remanence of the permanent magnet; meaning that instead
of common values of µrrecoil ≈ 1.1, they assume µrrecoil = 1. The accuracy of these approximations is
all the better if H/D << 1. However, all the reasonable magnet geometries function as good starting
points for more refined investigations of shape functions with finite element simulations (FEM).

Attention: If the magnet is attached to a ferrous shaft, this will change the magnetic field and
the shape functions. Then, one has to resort to FEM simulation. Moreover, in the presence of soft
magnetic parts near the sensor chip, one has to take care not to wreck the robustness of the system
against electromagnetic disturbances.

For more refined shapes of magnets, it is possible to make both shape functions vanish
simultaneously over a wide range of air gaps [24]. This gives angle sensors that are robust against huge
magnetic disturbances without ferrous shields and extremely accurate, in spite of position tolerances.
If a ferrous shaft cannot be avoided, it is better to switch the strategy and use different angle sensor
systems [7].
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