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Abstract: A convex combined expectations regularized gap function with uncertain variable is
presented to deal with uncertain nonlinear variational inequality problems (UNVIP). The UNVIP is
transformed into a minimization problem through an uncertain weighted expected residual function.
Moreover, the convergence of the global optimal solutions of the uncertain weighted expected residual
minimization model is given through the integration by parts method under the compact space of
the uncertain event. The limiting behaviors of the transformed model are analyzed. Furthermore,
a compact approximation method is proposed in the unbounded uncertain event space. Through
analysis of the convergence of UWERM model and reasonable hypothesis, the compact approximation
method is verified under the circumstance of Holder continuity.
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1. Introduction

Let S ∈ Rn be a nonempty closed convex set and f : S → Rn be a mapping. If there is a vector
x∗ ∈ S such that

(x− x∗)T f (x∗) ≥ 0, x ∈ S

holds, it is called the variational inequality problem (denoted by VIP(f, S)). In the past several years,
the VIP is always a very hot problem in the field of the operation research. The developments of
VIP involve theoretic research, effective algorithm for finding solution and applications. Yao [1]
established a generalized quasi-variational inequality model. The study of the existence of the
variational inequality problem is extended in finite dimensional spaces and the class of problems
modeled by the variational inequality theory is enlarged. Some significant existence results are
established based on mild assumptions without convexity. In [2], the existence of the variational and
the generalized variational inequality problems are presented under the discontinuous mappings.
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The uniqueness of the solution of the generalized variational inequality problem is given and the
existence of the generalized complementarity problem is investigated. In [3], they study the existence
of the set-valued variational inequalities (VVI) based on vector mappings. The necessary and sufficient
conditions of the existence are established based on the gap functions of VVI. The above shows that
the VIP can be transformed into a semi-infinite programming problem by a proper gap function.
Postolache et al. [4–7] made a contribution to the solution and application of variational inequalities.
In [4], they consider three classes of variational problem including multitime multiobjective variational
problem (VVP), multitime vector fractional variational problem (VFP), and multitime scalar variational
problem (SVP). The necessary optimality conditions are established for SVP. The efficient solution and
the normal efficiency solution of the two vector variational problems VVP and VFP are presented,
and necessary efficiency of conditions of the efficient solution and the normal efficiency solution are
established. In [5], the authors construct algorithms for a class of monotone variational inequalities.
In [6], the writers prove the existence and approximation of solutions for generalized extended
nonlinear variational inequalities. In [7], the authors propose the variant extragradient-type method
for monotone variational inequalities. Yao et al. have done a lot of research into the variational
inequality problem in the last few years (see [8–10]); also, Facchinei and Pang [11] have done similar
research. However, for Variational Inequalities with uncertain variables, they involve very little.
Uncertainty theory [12] models a kind of degree of belief that the uncertain event will happen. Many
applications also contain some uncertain variable, such as a new stock, emergencies, devastating
military experiments, etc. Subsequently, the uncertain variational inequality problem is proposed
by Chen and Zhu [13]. In their paper, a new class of uncertain variational inequality problems are
proposed to find x∗ ∈ S such that

M {γ ∈ Γ|(x− x∗)T F(x∗, ξ(γ)) ≥ 0, ∀x ∈ S} = 1, (1)

where ξ(γ) is the uncertain variable, Γ is a nonempty set, F : Rn × Γ→ Rn is a mapping. They solve
the expected value model based on uncertainty theory.

Li and Jia [14] introduced the uncertain variable in the VIP model, they established an expected
residual model about the uncertain variable through a regularized gap function. It is given as

min θ(x)

θ(x) := E[g(x, ξ)] =
∫

T
g(x, t)dΦ(t)

s.t. x ∈ S,

(2)

here, ξ ∈ B, E stands for the expectation with respect to the uncertain variable ξ, Φ(t) stands for the
uncertain distribution function with respect to the uncertain variable ξ. T stands for domain of Φ(t).
Recall that, for ∀x ∈ Rn and ∀ξ ∈ B,

g(x, ξ) = (x− H(x, ξ))T F(x, ξ)− α

2
‖x− H(x, ξ)‖2

G, (3)

where
H(x, ξ) := ProjS.G(x− α−1G−1F(x, ξ))

F : Rn ×R → Rn is a mapping. α is a positive parameter, G is an n× n symmetric positive-definite
matrix, and ‖ · ‖G means the G-norm defined by ‖x‖G =

√
xTGx for x ∈ Rn.

In [14], Li and Jia considered a linear uncertain variational inequality problem. The properties and
convergence analysis of the ERM problem were discussed. Integration by parts method is proposed
to solve (2). The purpose of this paper is to introduce UWERM model for dealing with nonlinear
uncertain variational inequality problem.



Mathematics 2019, 7, 974 3 of 22

The paper is organized as following. We recall some preliminary results about uncertainty theory and
other preliminaries in Section 2. Then, the convergence of global optimal solutions and convergence of
stationary points of UWERM model are discussed in Section 3. Furthermore, the compact approximations
of UWERM model are covered in Section 4. Finally, the conclusions are given in Section 5.

2. Preliminaries

2.1. Uncertainty Theory

In this section, some fundamental concepts, properties concerning uncertain variables, uncertain
distribution and expectation are recalled. Let Γ be a nonempty set, and L a σ-algebra over Γ. Each element
Λ in L is called an event and assigned a number M{Λ} to indicate the belief degree with which the Λ
will happen. In order to deal with belief degrees correctly, Liu put forward the following three axioms:
Axiom 1 (Normality Axiom). M {Γ} = 1 for the universal set Γ;
Axiom 2 (Duality Axiom). M {Λ}+M {Λc} = 1 for any event Λ;
Axiom 3 (Subadditivity Axiom). For each countable sequence of events Λ1, Λ2, . . ., we have

M

{
∞⋃

i=1

Λi

}
≤

∞

∑
i=1

M {Λi}.

Definition 1 (Liu [12]). The set function M is called an uncertain measure if it satisfies the normality, duality,
and subadditivity axioms.

The triplet (Γ, L , M ) is called an uncertainty space. Furthermore, the product uncertain measure
on the product σ-algebra L was defined by Liu as follows:
Axiom 4 (Product Axiom). Let (Γk, Lk, Mk) be uncertainty spaces for k = 1, 2, . . .. The product
uncertain measure M is an uncertain measure satisfying

M

{
∞

∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk}

where Λk are arbitrary events chosen from Lk for k = 1, 2, . . ., respectively.

Definition 2 (Liu [12]). An uncertain variable is a measurable function ξ from an uncertainty space (Γ, L , M )

to the set of real numbers, i.e., for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈ B}

is an event.

Theorem 1 (Liu [12]). Let ξ1, ξ2, . . . , ξn be uncertain variables, and f a real-valued measurable function. Then
ξ = f (ξ1, ξ2, . . . , ξn) is an uncertain variable defined by

ξ(γ) = f (ξ1(γ), ξ2(γ), . . . , ξn(γ)), ∀γ ∈ Γ.

Definition 3 (Liu [12]). Suppose ξ is an uncertain variable. Then the uncertainty distribution of ξ is defined by

Φ(t) = M {ξ ≤ t}

for any real number t.

For ranking uncertain variables, the concept of expected value was proposed by Liu [12] as follows:
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Definition 4 (Liu [12]). Let ξ be an uncertain variable. Then the expected value of ξ is defined by

E[ξ] =
∫ +∞

0
M {ξ ≥ t}dt−

∫ 0

−∞
M {ξ ≤ t}dt

provided that at least one of the two integrals is finite.

Theorem 2 (Liu [12]). Let ξ be an uncertain variable with uncertainty distribution Φ. If the expected value exists, then

E[ξ] =
∫ +∞

−∞
tdΦ(t).

Corollary 1 (Liu [12]). Let ξ be an uncertain variable with uncertainty distribution Φ and let f(t) be a strictly
monotone function, then we have

E[ f (ξ)] =
∫ +∞

−∞
f (t)dΦ(t).

2.2. Other Preliminaries

From Theorem 4.2 of [14] and the continuity of (F,∇xF), θ is continuously differentiable over S and

∇θ(x) = E[∇xg(x, ξ)], ∀x ∈ S. (4)

From non-additivity of the uncertain variable, we can tell there is no density function for uncertain
variable. So Φ(x) usually is not differentiable in uncertainty theory. By the results given in [15], g(·, ξ)

is a continuously differentiable function over S for any ξ ∈ B, and

∇xg(x, ξ) = F(x, ξ)− (∇xF(x, ξ)− αG)(H(x, ξ)− x). (5)

Theorem 3. Through [16], we can get the following conclusion

lim
k→∞

1
Nk

∑
ti∈Tk

Φ(ti)g′(x, ti) =
∫

T
Φ(t)g′(x, t)dt (6)

For any x ∈ Rn, we also have√
λmin‖x‖ ≤ ‖x‖G ≤

√
λmax‖x‖ (7)

where G is a positive definite matrix, λmin and λmax are its smallest and largest eigenvalues,
respectively. ‖A‖ and ‖A‖F denote the spectral norm and the Frobenius norm of matrix A, respectively.
The relationship between ‖A‖ and ‖A‖F , ‖x‖ and ‖x‖G are as follows,

‖A‖ ≤ ‖A‖F . (8)

‖A‖F ≤
n

∑
j=1
‖Aj‖. (9)

where Aj is the jth column vector of A.
These definitions and properties will be used in the latter theorem.

3. Convergence Analysis

3.1. UWERM Establishment and Hypothesis

In this paper, the next formulation (10) is called a uncertain weighted expected residual
minimization model with λ ∈ [0, 1].
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min θ(x) : = λE[g(x, ξ)] + (1− λ)E[g2(x, ξ)]

=
∫

T
(λg(x, t) + (1− λ)g2(x, t))dΦ(t)

s.t. x ∈ S,

(10)

where g is defined as (3), E stands for the expectation with respect to the uncertain variable ξ, Φ(t)
stands for the uncertain distribution function with respect to the uncertain variable ξ.

In this section, we assume that the uncertain space T is compact. Under this assumption, we will
investigate the convergence results for (10).

Definition 5. Let θk(x) minimum be as follows:

min θk(x) = λg(x, t)Φ(t)|t∈T −
λ

Nk
∑

ti∈Tk

Φ(ti)g′(x, ti)

+ (1− λ)g2(x, t)Φ(t)|t∈T −
2(1− λ)

Nk
∑

ti∈Tk

Φ(ti)g(x, ti)g′(x, ti)

(11)

where the sets Tk = {ti|i = 1, 2, . . . , Nk} is generated by [16], and satisfy Nk → ∞ as k → ∞, we call T
uncertain event space, theoretically T is domain of Φ(t), g(x, t)Φ(t)|t∈T is a function merely related to x.

We will study the following approximations problem to the UWERM problem (10) as follows:

min θk(x) = λg(x, t)Φ(t)|t∈T −
λ

Nk
∑

ti∈Tk

Φ(ti)g′(x, ti)

+ (1− λ)g2(x, t)Φ(t)|t∈T

− 2(1− λ)

Nk
∑

ti∈Tk

Φ(ti)g(x, ti)g′(x, ti)

s.t. x ∈ S

(12)

We study the limiting problems (12) in the next section. Let the function F be affine. Some
assumptions such as the positive definiteness and the square integrability are given, see [14] for details.
To prove the latter theorem, we suppose that the uncertain distribution function Φ(t) is continuous
on t ∈ T, and that a third order derivative of the function F exists (denoted by F′′′xtx). Owing to
H(x, t) := ProjS.G(x− α−1G−1F(x, t)) and H′(x, t) := ProjS.G(x− α−1G−1F′(x, t)), it is easy to get H,
H′x, and H′t are continuous. First, the convergence of global optimal solutions is considered.

3.2. Convergence of Global Optimal Solutions

For convenience, we denote by S∗ and S∗k the sets of optimal solutions of problems (10) and (12),
respectively. Now, we first give the following lemma which is the robust convergence version of ERM
approximate problem.

Lemma 1. For any fixed x ∈ S, we have

θ(x) = lim
k→∞

θk(x).

Proof. It is known from the definition of θ(x) function of (10) and integration by parts method that



Mathematics 2019, 7, 974 6 of 22

θ(x) : = λE[g(x, ξ)] + (1− λ)E[g2(x, ξ)]

=
∫

T
(λg(x, t) + (1− λ)g2(x, t))dΦ(t)

= λg(x, t)Φ(t)|t∈T − λ
∫

T
Φ(t)g′(x, t)dt

+ (1− λ)g2(x, t)Φ(t)|t∈T

− (1− λ)
∫

T
Φ(t)2g(x, t)g′(x, t)dt

while by the definition of θk(x) function of (11) that

θk(x) = λg(x, t)Φ(t)|t∈T −
λ

Nk
∑

ti∈Tk

Φ(ti)g′(x, ti)

+ (1− λ)g2(x, t)Φ(t)|t∈T −
2(1− λ)

Nk
∑

ti∈Tk

Φ(ti)g(x, ti)g′(x, ti)

It can be straightforwardly obtained from (6) that

lim
k→∞

1
Nk

∑
ti∈Tk

Φ(ti)g′(x, ti) =
∫

T
Φ(t)g′(x, t)dt.

and
lim
k→∞

1
Nk

∑
ti∈Tk

Φ(ti)g(x, ti)g′(x, ti) =
∫

T
Φ(t)g(x, t)g′(x, t)dt.

Thus it holds that θ(x) = lim
k→∞

θk(x).

Theorem 4. Assume that xk ∈ S∗k for each sufficiently large k. and x∗ is an accumulation point of {xk}. Then,
we have x∗ ∈ S∗

Proof. Let x∗ be an accumulation point of {xk}. Without loss of generality, we assume that {xk}
converges to x∗. It is obvious that x∗ ∈ S. We first show that

lim
k→∞

(θk(xk)− θk(x∗)) = 0.

Let B ⊂ S be a compact convex set containing the sequence xk. By the continuity of g′′tx,g′ and g on the
compact set B× T, there exists a constant C1, C2, C3 > 0 such that

‖g′′tx(x, t)‖ ≤ C1, ∀(x, ξ) ∈ B× T. (13)

‖g′(x, t)‖ ≤ C2, ∀(x, ξ) ∈ B× T. (14)

‖g(x, t)‖ ≤ C3, ∀(x, ξ) ∈ B× T. (15)

Moreover, we have from the mean-value theorem that, for each xk and each ξi, there exists yki =

αkixk + (1− αki)x∗ ∈ B with αki ∈ [0, 1] such that

|g′t(xk, ti)− g′t(x∗, ti)| = |g′′tx(yki, ti)
T(xk − x∗)|.

also there exists zki = βkixk + (1− βki)x∗ ∈ B with βki ∈ [0, 1] such that

|(g(xk, t)g′t(xk, ti)− g(x∗, t)g′t(x∗, ti))|
= |(g′xg′t + gg′′tx)(zki, ti)

T(xk − x∗)|
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So, we have

|θk(xk)− θk(x∗)|

=|λg(xk, t)Φ(t)|t∈T −
λ

Nk
∑

ti∈Tk

Φ(ti)g′t(xk, ti)

+ (1− λ)g2(xk, t)Φ(t)|t∈T

− 1− λ

Nk
∑

ti∈Tk

2Φ(ti)g(xk, t)g′t(xk, ti)

− λg(x∗, t)Φ(t)|t∈T +
λ

Nk
∑

ti∈Tk

Φ(ti)g′t(x∗, ti)

− (1− λ)g2(x∗, t)Φ(t)|t∈T

+
1− λ

Nk
∑

ti∈Tk

Φ(ti)2g(x∗, t)g′t(x∗, ti)|

≤|λg(xk, t)Φ(t)|t∈T − λg(x∗, t)Φ(t)|t∈T |
+ |(1− λ)g2(xk, t)Φ(t)|t∈T − (1− λ)g2(x∗, t)Φ(t)|t∈T |

+ | λ

Nk
∑

ti∈Tk

Φ(ti)(g′t(xk, ti)− g′t(x∗, ti))|

+ |1− λ

Nk
∑

ti∈Tk

2Φ(ti)(g(xk, t)g′t(xk, ti)− g(x∗, t)g′t(x∗, ti))|

≤|λg(xk, t)Φ(t)|t∈T − λg(x∗, t)Φ(t)|t∈T |
+ |(1− λ)g2(xk, t)Φ(t)|t∈T − (1− λ)g2(x∗, t)Φ(t)|t∈T |

+
λ

Nk
∑

ti∈Tk

Φ(ti)|(g′t(xk, ti)− g′t(x∗, ti))|

+
1− λ

Nk
∑

ti∈Tk

Φ(ti)|(g(xk, t)g′t(xk, ti)− g(x∗, t)g′t(x∗, ti))|

=|λg(xk, t)Φ(t)|t∈T − λg(x∗, t)Φ(t)|t∈T |
+ |(1− λ)g2(xk, t)Φ(t)|t∈T − (1− λ)g2(x∗, t)Φ(t)|t∈T |

+
λ

Nk
∑

ti∈Tk

Φ(t)|g′′tx(yki, ti)
T(xk − x∗)|

+
1− λ

Nk
∑

ti∈Tk

Φ(t)|(g′xg′t + gg′′tx)(zki, ti)
T(xk − x∗)|

≤|λg(xk, t)Φ(t)|t∈T − λg(x∗, t)Φ(t)|t∈T |
+ |(1− λ)g2(xk, t)Φ(t)|t∈T − (1− λ)g2(x∗, t)Φ(t)|t∈T |

+
λ

Nk
∑

ti∈Tk

Φ(ti)‖g′′tx(yki, ti)‖ · ‖(xk − x∗)‖

+
1− λ

Nk
∑

ti∈Tk

Φ(ti)‖(g′xg′t + gg′′tx)(zki, ti)‖ · ‖(xk − x∗)‖

≤|λg(xk, t)Φ(t)|t∈T − λg(x∗, t)Φ(t)|t∈T |
+ |(1− λ)g2(xk, t)Φ(t)|t∈T − (1− λ)g2(x∗, t)Φ(t)|t∈T |

+ C1‖(xk − x∗)‖ λ

Nk
∑

ti∈Tk

Φ(ti)

+ (C2
2 + C1C3)‖(xk − x∗)‖1− λ

Nk
∑

ti∈Tk

Φ(ti)
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Owing to ∑
ti∈Tk

Φ(ti) ≤ Nk, so 1
Nk

∑
ti∈Tk

Φ(ti) ≤ 1. Because of the fact that the sequence {xk} converges

to {x∗}. Therefore,

|θk(xk)− θk(x∗)| k→∞−−−→ 0. (16)

On the other hand, noting that

|θk(xk)− θ(x∗)| ≤ |θk(xk)− θk(x∗)|+ |θk(x∗)− θ(x∗)|, (17)

so, we have from Lemma 1 and (16) that

lim
k→∞

θk(xk) = θ(x∗). (18)

Since, for each sufficiently large k, xk ∈ S∗k , there exist ε > 0 such that

θk(xk) ≤ θk(x) + ε (19)

holds for any x ∈ S. Letting k→ +∞ in (19) and taking (18) and lemma 1 into account, we get

θ(x∗) ≤ θ(x) + ε, ∀x ∈ S,

which means x∗ ∈ S∗.

3.3. Convergence of Stationary Points

Theorem 5. If lim
k→∞

xk = x∗, then

lim
k→∞
∇θk(xk) = ∇θ(x∗).

Proof. Let B ⊆ S be a compact convex set containing the sequence xk. By the continuity of
F′t , F′′tx, g′t, g′′tx H, H′t , and ∇2

xFj on the compact set B × T, there exists a constant C ≥ sup{‖xk‖, k =

1, 2, . . .} such that, for any (x, t) ∈ B× T,
‖F′t‖ ≤ C, (20)

‖F′′tx‖ ≤ C, (21)

‖g′t‖ ≤ C, (22)

‖g′′tx‖ ≤ C, (23)

‖F′′′xtx‖ ≤ C, (24)

‖H‖ ≤ C, (25)

‖H′t‖ ≤ C, (26)

where F′′tx denotes the derivative of F(x, t) with respect to x,t. We first show that

lim
k→0

λ

Nk
∑

ti∈Tk

Φ(ti)‖F′t (xk, ti)− F′t (x∗, ti)‖ = 0. (27)
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In fact, from (8) and (9), we have

1
Nk

∑
ti∈Tk

Φ(ti)‖F′t (xk, ti)− F′t (x∗, ti)‖

≤ 1
Nk

∑
ti∈Tk

Φ(ti)‖F′t (xk, ti)− F′t (x∗, ti)‖F

≤
n

∑
j=1

1
Nk

∑
ti∈Tk

Φ(ti)‖F′t (xk, ti)j − F′t (x∗, ti)j‖.

(28)

Moreover, for each xk, ξi and any fixed j, from the mean-value theorem, there exists ykij = τkijxk +

(1− τkij)x̄ ∈ B with τkij ∈ [0, 1] such that

1
Nk

∑
ti∈Tk

Φ(ti)‖F′t (xk, ti)j − F′t (x∗, ti)j‖

≤ 1
Nk

∑
ti∈Tk

Φ(ti)‖F′′tx(ykij, ti)‖‖xk − x∗‖

≤C‖xk − x∗‖ 1
Nk

∑
ti∈Tk

Φ(ti)

k→∞−−−→ 0,

(29)

where the second inequality follows from (21), while (27) holds immediately from (28) and (29). In a
similar way, it holds that

lim
k→0

λ

Nk
∑

ti∈Tk

Φ(ti)‖F(xk, ti)− F(x∗, ti)‖ = 0 (30)

and

lim
k→0

λ

Nk
∑

ti∈Tk

Φ(ti)‖F′x(xk, ti)− F′x(x∗, ti)‖ = 0 (31)

and

lim
k→0

λ

Nk
∑

ti∈Tk

Φ(ti)‖F′′xt(xk, ti)− F′′xt(x∗, ti)‖ = 0. (32)

It then follows from (7), (30), and the non-expansive property of ProjS,G that

1
Nk

∑
ti∈Tk

Φ(ti)‖H(x∗, ti)− H(xk, ti)‖

≤λ
− 1

2
min

1
Nk

∑
ti∈Tk

Φ(ti)‖H(x∗, ti)− H(xk, ti)‖G

≤λ
− 1

2
min

1
Nk

∑
ti∈Tk

Φ(ti)‖(x∗ − α−1G−1F(x∗, ti)

− (xk − α−1G−1F(xk, ti)‖G

≤λ
1
2
maxλ

− 1
2

min
1

Nk
∑

ti∈Tk

Φ(ti)(‖xk − x∗‖

+ α−1‖G−1‖‖F(xk, ti)− F(x∗, ti)‖)
k→∞−−−→ 0.
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So

λ

Nk
∑

ti∈Tk

Φ(ti)‖H(x∗, ti)− H(xk, ti)‖
k→∞−−−→ 0 (33)

On the other hand, by (21), (25), (32), and (33), we have

1
Nk

∑
ti∈Tk

Φ(ti)‖F′′xt(xk, ti)H(xk, ti)− F′′xt(x∗, ti)H(x∗, ti)‖

=
1

Nk
∑

ti∈Tk

Φ(ti)‖F′′xt(xk, ti)(H(xk, ti)− H(x∗, ti))

+ (F′′xt(xk, ti)− F′′xt(x∗, ti)H(x∗, ti)‖

≤ 1
Nk

∑
ti∈Tk

Φ(ti)(‖F′′xt(xk, ti)‖(H(xk, ti)− H(x∗, ti)‖

+ ‖F′′xt(xk, ti)− F′′xt(x∗, ti)‖‖H(x∗, ti)‖)

≤C · 1
Nk

∑
ti∈Tk

Φ(ti)(‖(H(xk, ti)− H(x∗, ti)‖

+ ‖F′′xt(xk, ti)− F′′xt(x∗, ti)‖)
k→∞−−−→ 0.

So

λ

Nk
∑

ti∈Tk

Φ(ti)‖F′′xt(xk, ti)H(xk, ti)

− F′′xt(x∗, ti)H(x∗, ti)‖
k→∞−−−→ 0

Noting that C ≥ sup{‖xk‖, k = 1, 2, . . .}, from (24) and (33), it implies that

1
Nk

∑
ti∈Tk

Φ(ti)‖F′′xt(xk, ti)xk − F′′xt(x∗, ti)x∗‖

≤ 1
Nk

∑
ti∈Tk

Φ(ti)(‖F′′xt(xk, ti)xk − F′′xt(x∗, ti)‖‖xk‖)

+ ‖F′′xt(x∗, ξi)‖‖xk − x∗‖

≤C · 1
Nk

∑
ti∈Tk

Φ(ti)(‖F′′xt(xk, ti)− F′′xt(x∗, ti)‖+ ‖xk − x∗‖)

k→∞−−−→ 0.

So

λ

Nk
∑

ti∈Tk

Φ(ti)‖F′′xt(xk, ti)xk − F′′xt(x∗, ti)x∗‖ k→∞−−−→ 0.
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By the same way as (33), we have

lim
k→0

λ

Nk
∑

ti∈Tk

Φ(ti)‖H′t(xk, ti)− H′t(x∗, ti)‖ = 0. (34)

Thus, from (20), (26), (31), and (34), we can get

1
Nk

∑
ti∈Tk

Φ(ti)‖F′x(xk, ti)H′t(xk, ti)− F′x(x∗, ti)H′t(x∗, ti)‖

=
1

Nk
∑

ti∈Tk

Φ(ti)‖F′x(xk, ti)(H′t(xk, ti)− H′t(x∗, ti))

+ (F′x(xk, ti)− F′x(x∗, ti)‖H′t(x∗, ti)‖

≤ 1
Nk

∑
ti∈Tk

Φ(ti)(‖F′x(xk, ti)‖(H′t(xk, ti)− H′t(x∗, ti)‖

+ ‖F′x(xk, ti)− F′x(x∗, ti)‖‖H′t(x∗, ti)‖)

≤C · 1
Nk

∑
ti∈Tk

Φ(ti)(‖(H′t(xk, ti)

− H′t(x∗, ti)‖+ ‖F′x(xk, ti)− F′x(x∗, ti)‖)
k→∞−−−→ 0.

Hence

λ

Nk
∑

ti∈Tk

Φ(ti)‖F′x(xk, ti)H′t(xk, ti)− F′x(x∗, ti)H′t(x∗, ti)‖

k→∞−−−→ 0. (35)



Mathematics 2019, 7, 974 12 of 22

Through the above analysis, our main purpose is to prove the conclusion of ∇θk(xk) = ∇θk(x∗),
in order to prove ∇θk(xk) = ∇θ(x∗). By (5) and (33)–(35), we have following naturally

‖∇θk(xk)−∇θ(x∗)‖

=‖λ g′x(xk, t)Φ(t)|t∈T −
λ

Nk
∑

ti∈Tk

Φ(ti)g′′xt(xk, ti)

+ (1− λ) 2gg′x(xk, t)Φ(t)|t∈T

− 1− λ

Nk
∑

ti∈Tk

Φ(ti)(g′tg
′
x + gg′′xt)(xk, ti)

− λ g′x(x∗, t)Φ(t)|t∈T +
λ

Nk
∑

ti∈Tk

Φ(ti)g′′xt(x∗, ti)‖

− (1− λ) 2gg′x(xk, t)Φ(t)|t∈T

+
1− λ

Nk
∑

ti∈Tk

Φ(ti)(g′tg
′
x + gg′′xt)(x∗, ti)‖

≤|λ g′x(xk, t)Φ(t)|t∈T − λ g′x(x∗, t)Φ(t)|t∈T |
+ |(1− λ) 2gg′x(xk, t)Φ(t)|t∈T

− (1− λ) 2gg′x(x∗, t)Φ(t)|t∈T |

+ ‖ λ

Nk
∑

ti∈Tk

Φ(ti)g′′xt(xk, ti)

− λ

Nk
∑

ti∈Tk

Φ(ti)g′′xt(x∗, ti)‖

+ ‖1− λ

Nk
∑

ti∈Tk

Φ(ti) (g′tg
′
x + gg′′xt)(xk, ti)

− 1− λ

Nk
∑

ti∈Tk

Φ(ti) (g′tg
′
x + gg′′xt)(x∗, ti)‖

≤|λ g′x(xk, t)Φ(t)|t∈T − λ g′x(x∗, t)Φ(t)|t∈T |
+ |(1− λ) 2gg′x(xk, t)Φ(t)|t∈T

− (1− λ) 2gg′x(x∗, t)Φ(t)|t∈T |

+ ‖ λ

Nk
∑

ti∈Tk

Φ(ti)(g′′xt(xk, ti)− g′′xt(x∗, ti))‖

+ ‖1− λ

Nk
∑

ti∈Tk

Φ(ti)((g′tg
′
x + gg′′xt)(xk, ti)

− (g′tg
′
x + gg′′xt)(x∗, ti))‖

≤|λ g′x(xk, t)Φ(t)|t∈T − λ g′x(x∗, t)Φ(t)|t∈T |

+ |(1− λ) g′x(xk, t)Φ(t)|t∈T − (1− λ) g′x(x∗, t)Φ(t)|t∈T |

+ ‖ λ

Nk
∑

ti∈Tk

Φ(ti)([F′t (xk, ti)− λF′′xt(xk, ti)(H(xk, ti)− xk)

− λ(F′x(xk, ti)− αG)H′t(xk, ti)]

− λ[F′t (x∗, ti)− F′′xt(x∗, ti)(H(x∗, ti)− x∗)

− λ(F′x(x∗, ti)− αG)H′t(x∗, ti)])‖

+ ‖1− λ

Nk
∑

ti∈Tk

Φ(ti)((g′tg
′
x + gg′′xt)(xk, ti)

− (g′tg
′
x + gg′′xt)(x∗, ti))‖.
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While

‖1− λ

Nk
∑

ti∈Tk

Φ(ti)((g′tg
′
x + gg′′xt)(xk, ti)

− (g′tg
′
x + gg′′xt)(x∗, ti))‖

= ‖1− λ

Nk
∑

ti∈Tk

Φ(ti)((g′tg
′
x(xk, ti)

− g′tg
′
x(x∗, ti)) + (gg′′xt(xk, ti)− gg′′xt(x∗, ti)))‖.

and

‖(g′tg
′
x(xk, ti)− g′tg

′
x(x∗, ti))‖

=‖(g′t(xk, ti)g′x(xk, ti)− g′t(xk, ti)g′x(x∗, ti))

+ (g′t(xk, ti)g′x(x∗, ti)− g′t(x∗, ti)g′x(x∗, ti))‖
≤‖g′t(xk, ti)‖‖g′x(xk, ti)− g′x(x∗, ti)‖
+ ‖g′t(xk, ti)− g′t(x∗, ti)‖‖g′x(x∗, ti))‖.

Moreover, we have from the mean-value theorem that, for each xk and each ξi, there exists
ηki = αkixk + (1− αki)x∗ ∈ B with αki ∈ [0, 1] such that

‖g′t(xk, ti)− g′t(x∗, ti)‖ = g′′tx(ηki, ti)(xk − x∗),

and

‖g′x(xk, ti)− g′x(x∗, ti)‖
≤ ‖F(xk, ti)− F(x∗, ti)‖
+ ‖F′x(xk, ti)H′t(xk, ti)− F′x(x∗, ti)H′t(x∗, ti)‖
+ ‖F′x(xk, ti)xk − F′x(x∗, ti)x∗‖
α‖G‖‖H(xk, ti)− H(x∗, ti)‖+ α‖G‖‖xk − x∗‖,

and

‖F′x(xk, ti)H′t(xk, ti)− F′x(x∗, ti)H′t(x∗, ti)‖
=‖F′x(xk, ti)(H′t(xk, ti)− H′t(x∗, ti))

+ (F′x(xk, ti)− F′x(x∗, ti))H′t(x∗, ti)‖
≤‖F′x(xk, ti)‖‖H′t(xk, ti)− H′t(x∗, ti)‖
+ ‖F′x(xk, ti)− F′x(x∗, ti)‖‖H′t(x∗, ti)‖,

and

‖F′x(xk, ti)xk − F′x(x∗, ti)x∗‖
=‖(F′x(xk, ti)− F′x(x∗, ti))xk

+ F′x(xk, ti)(xk − x∗)‖
≤‖F′x(xk, ti)− F′x(x∗, ti)‖xk‖
+ ‖F′x(xk, ti)‖‖(xk − x∗)‖,
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and also

‖(gg′′xt(xk, ti)− gg′′xt(x∗, ti))‖
=‖(g(xk, ti)g′′xt(xk, ti)− g(xk, ti)g′′xt(x∗, ti))

+ (g(xk, ti)g′′xt(x∗, ti)− g(x∗, ti)g′′xt(x∗, ti))‖
≤‖g(xk, ti)‖‖g′′xt(xk, ti)− g′′xt(x∗, ti)‖
+ ‖g(xk, ti)− g(x∗, ti)‖‖g′′xt(x∗, ti))‖,

also there exists zki = βkixk + (1− βki)x∗ ∈ B with βki ∈ [0, 1] such that

‖g(xk, ti)− g(x∗, ti)‖ = g′x(zki, ti)(xk − x∗).

Through the above discussion and analysis, we get

‖∇θk(xk)−∇θk(x∗)‖ k→∞−−−→ 0,

through integration by parts, we also know that

∇θ(x∗) = E[∇x(λg(x∗, ξ) + (1− λ)g2(x∗, ξ))]

= λE[∇xg(x∗, ξ)] + (1− λ)E[∇xg2(x∗, ξ)]

= λE[∇xg(x∗, ξ)] + 2(1− λ)E[g(x∗, ξ)g′(x∗, ξ)],

and

E[∇xg(x∗, ξ)] =
∫

T
∇xg(x∗, t)dΦ(t)

=∇xg(x∗, t)Φ(t)|t∈T −
∫

T
Φ(t)d∇xg(x∗, t)

=∇xg(x∗, t)Φ(t)|t∈T −
∫

T
Φ(t)g′′xt(x∗, t)dt,

and

E[g(x∗, ξ)g′(x∗, ξ)] =
∫

T
g(x∗, t)g′(x∗, t)dΦ(t)

= g(x∗, t)g′(x∗, t)Φ(t)|t∈T −
∫

T
Φ(t)dg(x∗, t)g′(x∗, t)

= g(x∗, t)g′(x∗, t)Φ(t)|t∈T −
∫

T
Φ(t)dg(x∗, t)g′(x∗, t)

= g(x∗, t)g′(x∗, t)Φ(t)|t∈T

−
∫

T
Φ(t)((g′(x∗, t))2 + g(x∗, t)g′′(x∗, t))dt.

Notice that

θk(x∗) = λ∇xg(x∗, t)Φ(t)|t∈T −
λ

Nk
∑

ti∈Tk

Φ(ti)g′′(x∗, ti)

+ 2(1− λ)g(x∗, t)g′(x∗, t)Φ(t)|t∈T

− 2(1− λ)

Nk
∑

ti∈Tk

Φ(ti)((g′(x∗, ti))
2 + g(x∗, ti)g′′(x∗, ti)),
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Owing to

lim
k→∞

1
Nk

∑
ti∈Tk

Φ(ti)g′′xt(x∗, ti) =
∫

T
Φ(t)g′′xt(x∗, t)dt.

and

lim
k→∞

1
Nk

∑
ti∈Tk

Φ(ti)((g′(x∗, ti))
2 + g(x∗, ti)g′′(x∗, ti)),

=
∫

T
Φ(t)((g′(x∗, t))2 + g(x∗, t)g′′(x∗, t))dt.

So it is easy to see that lim
k→∞
∇θk(x∗) = ∇θ(x∗). Thus, It is clear that lim

k→∞
∇θk(xk) = ∇θ(x∗).

Definition 6. Suppose that S = {x ∈ Rn|c(x) ≤ 0}, where ci : Rn → R, i = 1, 2, . . . , m, are all continuously
differentiable convex functions. A point xk is said to be stationary point of (12) if there exists a Lagrange
multiplier vector µk ∈ Rm such that

∇θk(xk) +
m

∑
i=1

(µi)k∇ci(xk) = 0, (36)

0 ≤ µk, c(xk) ≤ 0 and (µk)
Tc(xk) = 0. (37)

x∗ is said to be a stationary point of (10) if there exists a Lagrange multiplier vector µ∗ ∈ Rm such that

∇θ(x∗) +
m

∑
i=1

µ∗i ∇ci(x∗) = 0, (38)

0 ≤ µ∗, c(x∗) ≤ 0 and (µ∗)Tc(x∗) = 0. (39)

Definition 7. The Slater’s constraint qualification holds if there exists a vector y ∈ Rn such that ci(y) < 0 for
each i = 1, 2, . . . , m.

Theorem 6. Let xk be stationary point to (12) for each k and x∗ be an accumulation point of {xk}. If the Slater
constraint qualification holds, then x∗ is stationary point to problem (10).

Proof. Without loss of generality, we assume that lim
k→∞

xk = x∗. Let µk be the corresponding multiplier

vector satisfying (36) and (37).
(i) We first show that the sequence {µk} is bounded. To this end, we denote

υk :=
m

∑
i=1

(µi)k. (40)

Let {µk} be unbounded, which means lim
k→∞

υk = +∞. Taking a subsequence, we may assume that the

limits µ∗i := lim
k→∞

(µi)k
υk

(i = 1, 2, . . . , m) exist. For every i 6∈ Υ(x∗) := {i|ci(x∗) = 0, 1 ≤ i ≤ m}, it holds

ci(x∗) ≤ 0 by (37), further more (µ∗i )
Tci(x∗) = 0, it holds µ∗i = 0. Then, from (40),

∑
i∈Υ(x∗)

µ∗i =
m

∑
i=1

µ∗i = 1. (41)
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Note that∇ci is continuous for each i and {∇θk(xk)} is convergent by theorem 5. Because of lim
k→∞

υk =

+∞, lim
k→∞

∇θk(xk)
υk

→ 0. Dividing (36) by υk and taking a limit, we obtain

∑
i∈Υ(x∗)

µ∗i ∇ci(x∗) =
m

∑
i=1

µ∗i ∇ci(x∗) = 0. (42)

Owing to the Slater’s constraint qualification, there exists a vector y ∈ Rn such that ci(y) < 0 for each
i = 1, 2, . . . , m. Noting that each ci is convex, we have

(y− x∗)T∇ci(x∗) ≤ ci(y)− ci(x∗) = ci(y) < 0,

∀i ∈ Υ(x∗).
(43)

From (42) and µ∗i ≥ 0 for each i by (37), we get µ∗i ∇ci(x∗) = 0. Furthermore, ∇ci(x∗) 6= 0 from (43), it
implies that µ∗i = 0 for each i ∈ Υ(x∗). This contradicts (41). Hence {µk} is bounded.
(ii) By (i), then µk must exists a subsequence such that µ∗ := lim

k→∞
µk, we still denote it as µk. Note that

both ci and ∇ci are continuous for each i, by Theorem 5, it holds

lim
k→∞
∇θk(x∗) = ∇θ(x∗).

Taking a limit in (36) and (37), we obtain (38) and (39) immediately. Therefore, x∗ is stationary point to
problem (10).

For the sake of completeness, we will propose a compact approximation approach for the case
where T is noncompact in the next section.

4. Case Where Uncertain Event Space T Is Unbounded

The uncertain event space T is supposed to be compact in the last section. From a technical
point of view, it might be worthy to study whether approximation problem of (10) remain true under
uncertain event space T is unbounded. We now discuss the case where T is an unbounded and closed
subset of Rl in this section. For this case, given a sufficiently large number ν, we consider its compact
approximation. we define a compact approximation of T by

Tν := {t ∈ T|‖t‖ ≤ ν}

and consider the following approximation problem of (10):

min θν(x) := E[g(x, ξ)] =
∫

Tν

g(x, t)dΦ(t)

s.t. x ∈ S.
(44)

Since problem (44) has a compact uncertain set, we use the method proposed in the last section to
solve (44). We make the following assumptions in this section:
(A1) The function F(x, t) is Holder continuous in x on S with order τ > 0 and Holder constant κ(t),
which means

‖F(x, t)− F(y, t)‖ ≤ κ(t)‖x− y‖τ , ∀x, y ∈ S.

We further suppose that E[κ2(ξ)] < +∞
(A2) Satisfying E[‖F(x, ξ)‖4] < +∞, ∀x ∈ S,

Theorem 7. Under the Assumptions (A1) and (A2), we have

E[g2(x, ξ)] < +∞, ∀x ∈ S,
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Proof. Since g(x, t) ≥ 0 for t ∈ T, it follows from (3) that

α

2
‖x− H(x, t)‖2

G ≤ (x− H(x, t))T F(x, t)

≤ ‖(x− H(x, t))‖‖F(x, t)‖

From (7), it holds that

‖(x− H(x, t))‖‖F(x, t)‖ ≤ λ
− 1

2
min‖x− H(x, t)‖G‖F(x, t)‖.

We then have
‖x− H(x, t)‖G ≤

2
α

λ
− 1

2
min‖F(x, t)‖, (45)

and hence

‖x− H(x, t)‖ ≤ λ
− 1

2
min‖x− H(x, t)‖G

≤ 2
αλmin

‖F(x, t)‖.
(46)

As a result, it holds

g2(x, t) =((x− H(x, t))T F(x, t)− α

2
‖x− H(x, t)‖2

G)
2

≤ (‖x− H(x, t)‖‖F(x, t)‖+ α

2
‖x− H(x, t)‖2

G)
2

≤ (
4

αλmin
‖F(x, t)‖2)2.

So

g2(x, t) ≤ 16
α2λ2

min
‖F(x, t)‖4.

This, together with (44), implies that E[g(x, ξ)] < +∞. We obtain the desired result.

Theorem 8. Let xν be an optimal solution of problem (44) for each ν and let x̃ be an accumulation point of xν.
Then, under the Assumptions (A1) and (A2), x̃ is an optimal solution of problem (10).

Proof. For simplicity, we assume that lim
ν→∞

xν = x̃. It is obvious that x̃ ∈ S.

We first show that
lim

ν→∞
θν(xν) = θ(x̃). (47)

It holds that

|θν(xν)− θν(x̃)|

=|λ
∫

Tν

g(xν, t)dΦ(t) + (1− λ)
∫

Tν

g2(xν, t)dΦ(t)

− λ
∫

Tν

g(x̃, t)dΦ(t)− (1− λ)
∫

Tν

g2(x̃, t)dΦ(t)

≤λ
∫

T
|g(xν, t)− g(x̃, t)|dΦ(t)

+ (1− λ)
∫

T
|g2(xν, t)− g2(x̃, t)|dΦ(t)
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Firstly, we prove λ
∫

T |g(xν, t)− g(x̃, t)|dΦ(t)→ 0.

|
∫

Tν

(g(xν, t)− g(x̃, t))dΦ(t)|

=|
∫

Tν

((xν − H(xν, t))T F(xν, t)− α

2
‖xν − H(xν, t)‖2

G

− (x̃− H(x̃, t))T F(x̃, t) +
α

2
‖x̃− H(x̃, t)‖2

G)dΦ(t)|,

≤
∫

T
|(xν − x̃ + H(x̃, t)− H(xν, t))T F(xν, t)|dΦ(t)

+
∫

T
|(x̃− H(x̃, t))T(F(xν, t)− F(x̃, t))|dΦ(t)

+
α

2

∫
T
|‖x̃− H(x̃, t)‖2

G − ‖xν − H(xν, t)‖2
G|dΦ(t).

Next, we prove
∫

T |(xν − x̃ + H(x̃, t) − H(xν, t))T F(xν, t)|dΦ(t) → 0,
∫

T |(x̃ − H(x̃, t))T(F(xν, t) −
F(x̃, t))|dΦ(t) → 0 and α

2

∫
T |‖x̃ − H(x̃, t)‖2

G − ‖xν − H(xν, t)‖2
G|dΦ(t) → 0, respectively. Before

proving them, we have (48). By the nonexpansive property of ProjS,G, the holder continuity of F,
and (7), we have

‖H(x̃, t)− H(xν, t)‖G

= ‖(x̃− α−1G−1F(x̃, t)− (xν − α−1G−1F(xν, t)‖G

≤ ‖(x̃− xν‖G + ‖α−1G−1F(x̃, t)− α−1G−1F(xν, t)‖G

≤ λ
1
2
max(‖xν − x̃‖+ α−1‖G−1‖‖F(xν, t)− F(x̃, t)‖)

≤ σ(‖xν − x̃‖+ ‖xν − x̃‖τκ(t)),

(48)

where σ := max{λ
1
2
max, λ

1
2
maxα−1‖G−1‖} .

‖H(x̃, t)− H(xν, t)‖ ≤ λ
− 1

2
min‖H(x̃, t)− H(xν, t)‖G

≤ σλ
− 1

2
min(‖xν − x̃‖+ ‖xν − x̃‖τκ(t)).

(49)

We have from Theorem 7 and the Cauchy-Schwarz inequality that, for any x ∈ S,

E[κ(ξ)] ≤
√

E[κ2(ξ)] < +∞, (50)

and
E[‖F(x, ξ)‖] ≤

√
E[‖F(x, ξ)‖2] < +∞, (51)

and

|E[κ(ξ)‖F(x, ξ)‖]| ≤
√

E[κ2(ξ)]
√

E[‖F(x, ξ)‖2] < +∞. (52)
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Therefore, we can infer that∫
T
|(xν − x̃ + H(x̃, t)− H(xν, t))T F(xν, t)|dΦ(t)

≤
∫

T
|(‖xν − x̃‖+ ‖H(x̃, t)− H(xν, t)‖)

× (‖F(x̃, t)‖+ ‖F(x̃, t)− F(xν, t)‖)dΦ(t)

≤
∫

T
|((1 + σλ

− 1
2

min)‖xν − x̃‖+ σλ
− 1

2
min‖xν − x̃‖τκ(t))

× (‖F(x̃, t)‖+ ‖xν − x̃‖τκ(t)dΦ(t)

=(1 + σλ
− 1

2
min)‖xν − x̃‖E[‖F(x̃, ξ)‖]

+ σλ
− 1

2
min‖xν − x̃‖τE[κ(ξ)‖F(x̃, ξ)‖]

+ (1 + σλ
− 1

2
min)‖xν − x̃‖τ+1E[κ(ξ)]

+ σλ
− 1

2
min‖xν − x̃‖2τE[κ2(ξ)]

ν→∞−−−→ 0,

where the second inequality follows from (49) and the holder continuity of F.
Similarly, from Assumption (A1), Theorem 7, and (45)–(52), we obtain∫

T
|(x̃− H(x̃, t))T(F(xν, t)− F(x̃, t))|dΦ(t)

≤
∫

T
‖x̃− H(x̃, t)‖‖F(xν, t)− F(x̃, t)‖dΦ(t)

≤
∫

T

2
αλmin

‖F(x̃, t)‖‖F(xν, t)− F(x̃, t)‖dΦ(t)

≤ 2
αλmin

‖xν − x̃‖τ
∫

T
κ(t)‖F(x̃, t)‖dΦ(t)

=
2

αλmin
‖xν − x̃‖τE[κ(t)‖F(x̃, t)‖]

ν→∞−−−→ 0,
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and

α

2

∫
T
|‖(x̃− H(x̃, t))‖2

G − ‖xν − H(xν, t))‖2
G|dΦ(t)

=
α

2

∫
T
|(‖x̃− H(x̃, t)‖G + ‖xν − H(xν, t)‖G)

× (‖x̃− H(x̃, t)‖G − ‖xν − H(xν, t)‖G)|dΦ(t)

≤α

2

∫
T
(‖x̃− H(x̃, t)‖G + ‖xν − H(xν, t)‖G)

× ‖x̃− H(x̃, t)− xν + H(xν, t)‖GdΦ(t)

≤λ
− 1

2
min

∫
T
(‖F(x̃, t)‖+ ‖F(xν, t)‖)

× (λ
1
2
max‖xν − x̃‖+ ‖H(x̃, t)− H(xν, t)‖G)dΦ(t)

≤λ
− 1

2
min

∫
T
(2‖F(x̃, t)‖+ ‖xν − x̃‖τκ(t))

× ((λ
1
2
max + σ)‖xν − x̃‖+ σ‖xν − x̃‖τκ(t))dΦ(t)

=2λ
− 1

2
min(λ

1
2
max + σ)‖xν − x̃‖E[‖F(x̃, ξ)‖]

+ 2σλ
− 1

2
min‖xν − x̃‖τE[κ(ξ)‖F(x̃, ξ)‖]

+ (λ
− 1

2
min(λ

1
2
max + σ)‖xν − x̃‖τ+1E[κ(ξ)]

+ σλ
− 1

2
min‖xν − x̃‖2τE[κ2(ξ))]

ν→∞−−−→ 0.

By consequence, it holds that

|
∫

T
(g(xν, t)− g(x̃, t))dΦ(t)| ν→∞−−−→ 0. (53)

Then, we prove (1− λ)
∫

T |g
2(xν, t)− g2(x̃, t)|dΦ(t)→ 0.

By mean-value theorem, for each xν and each ξ, there exist yν = aνxν + (1− aν)x̃ with aν ∈ [0, 1]
such that

g2(xν, t)− g2(x̃, t) = 2g(yν, ξ) g′x(y
ν, ξ)T(xν − x̃),

it follows that
|g2(xν, t)− g2(x̃, t)| ≤ 2g(yν, ξ)‖ g′x(y

ν, ξ)T‖ · ‖(xν − x̃)‖.

Furthermore, in view of the continuity of g, g′x and the compactness of {yν} × Tν, as ν → ∞, we
have that

(1− λ)
∫

Tν

|g2(xν, t)− g2(x̃, t)|dΦ(t)→ 0. (54)

From (53) and (54), it holds that

|θν(xν)− θν(x̃)| ν→∞−−−→ 0. (55)

On the other hand, it is easy to see from Theorem 7 that

lim
ν→∞

(θν(x̃)− θ(x̃))

= lim
ν→∞

∫
T\Tν

(λg(x̃, t) + (1− λ)g2(x̃, t))dΦ(t) = 0. (56)
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Noting that

|θν(xν)− θ(x̃)| ≤ |θν(xν)− θν(x̃)|+ |θν(x̃)− θ(x̃)|,

we get (47) from (55) and (56) immediately.
(ii) Since xν is an optimal solution of problem (44) for each ν, we have

θν(xν) ≤ θν(x) ≤ θ(x), ∀x ∈ S. (57)

Consequently, letting ν→ ∞ in (57) and taking (47) into account, we obtain

θ(x̃) ≤ θ(x), ∀x ∈ S.

This manifests that x̃ is an optimal solution of (10).

5. Conclusions

Based on the discussion of the previous section, we proposed a method of convex combined
expectations of the least absolute deviation and least squares about the so-called regularized gap
function for nonlinear uncertain variational inequality problems (for short, UNVIP). We succeeded
in establishing the UWERM model and extend the results given in [14] to the case where the
uncertain event space is compact. As shown in the paper, convergence of global optimal solutions
and convergence of stationary points are analyzed respectively. Moreover, we present a compact
approximation approach for the case where the uncertain event space is unbounded.
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