Positively Continuum-Wise Expansiveness for C^1 Differentiable Maps

Manseob Lee

Department of Mathematics, Mokwon University, Daejeon 302-729, Korea; lmsds@mokwon.ac.kr

Received: 2 September 2019; Accepted: 14 October 2019; Published: 16 October 2019

Abstract: We show that if a differentiable map f of a compact smooth Riemannian manifold M is C^1 robustly positive continuum-wise expansive, then f is expanding. Moreover, C^1-generically, if a differentiable map f of a compact smooth Riemannian manifold M is positively continuum-wise expansive, then f is expanding.

Keywords: positively expansive; positively measure expansive; generic; positively continuum-wise expansive; expanding

MSC: 58C25; 37C20; 37D20

1. Introduction and Statements

Starting with Utz [1], expansive dynamical systems have been studied by researchers. Regarding this concept, many researchers suggest various expansivenesses (e.g., N-expansive [2], measure expansive [3] and continuum-wise expansive [4]). These concepts were used to show chaotic systems (see References [3,5–7]) and hyperbolic structures (see References [8–14]).

For chaoticity, Morales and Sirvent proved in Reference [3] that every Li-Yorke chaotic map in the interval or the unit circle are measure-expansive. Kato proved in Reference [7] that, if a homeomorphism f of a compactum X with $\dim X > 0$ is continuum-wise expansive and Z is a chaotic continuum of f, then either f or f^{-1} is chaotic in the sense of Li and Yorke on almost all Cantor sets $C \subset Z$. Hertz [5,6] proved that if a homeomorphism f of locally compact metric space X or Polish continua X is expansive or continuum-wise expansive then f is sensitive dependent on the initial conditions.

For hyperbolicity, Mañé proved in Reference [12] that if a diffeomorphism f of a compact smooth Riemannian manifold M is robustly expansive then it is quasi-Anosov. Arbieto proved in Reference [8] that, C^1 generically, if a diffeomorphism f of a compact smooth Riemannian manifold M is expansive then it is Axiom A and has no cycles. Sakai proved in Reference [13] that, if a diffeomorphism f of a compact smooth Riemannian manifold M is robustly expansive then it is quasi-Anosov. Lee proved in Reference [9] that, C^1 generically, if a diffeomorphism f of a compact smooth Riemannian manifold M is continuum-wise expansive then it is Axiom A and has no cycles.

Through these results, we are interested in general concepts of expansiveness. Actively researching positive expansivities (positively expansive [15], positively measure-expansive [16,17]) is a motivation of this paper. In this paper, we study positively continuum-wise expansiveness, which is the generalized notion of positive expansiveness and positive measure expansiveness.

In this paper, we assume that M is a compact smooth Riemannian manifold. A differentiable map $f : M \to M$ is positively expansive (write $f \in \mathcal{PE}$) if there exists a constant $\delta > 0$ such that for any $x, y \in M$, if $d(f^i(x), f^i(y)) \leq \delta \forall i \geq 0$ then $x = y$. From Reference [18], if a differentiable map $f \in \mathcal{PE}$ then f is open and a local homeomorphism. For any $\delta > 0$, we define a dynamical δ-ball for $x \in M$ such as \{ $y \in M : d(f^i(x), f^i(y)) \leq \delta \forall i \geq 0$ \}. Put $\Gamma^+_{\delta}(x) = \{ y \in M : d(f^i(x), f^i(y)) \leq \delta \forall i \geq 0 \}$.
Note that if a differentiable map \(f \in \mathcal{P}\mathcal{E} \), then \(\Gamma^+_f(x) = \{x\} \) for any \(x \in M \). Here \(\delta > 0 \) is called an expansive constant of \(f \).

Let us introduce a generalization of the positively expansive called the positively measure-expansive (see Reference [3]). Let \(\mathcal{M}(M) \) be the space of a Borel probability measure of \(M \). A measure \(\mu \in \mathcal{M}(M) \) is atomic if \(\mu(\{x\}) \neq 0 \), for some point \(x \in M \). Let \(\mathcal{A}(M) \) be the set of atomic measures of \(M \). Note that \(\mathcal{A}(M) \) is dense in \(\mathcal{M}(M) \). Let \(\mathcal{M}^*(M) = \mathcal{M}(M) \setminus \mathcal{A}(M) \). A differentiable map \(f : M \to M \) is positively measure-expansive (write \(f \in \mathcal{P}\mathcal{M}\mathcal{E} \)) if there exists a constant \(\delta > 0 \) such that \(\mu(\Gamma^+_f(x)) = 0 \) for any \(\mu \in \mathcal{M}^*(M) \), where \(\delta > 0 \) is called a measure expansive constant. In Reference [17], the authors found that there exists a differentiable map \(f : S^1 \to S^1 \) that is positively \(\mu \)-expansive for any \(\mu \in \mathcal{M}^*_f(S^1) \) but not positively expansive where \(\mathcal{M}^*_f(M) \) is the set of non-atomic invariant measures of \(M \).

Now, we introduce another generalization of the positive expansiveness, which is called positively continuum-wise expansiveness (see Reference [4]). We say that \(C \) is a continuum if it is compact and connected.

Definition 1. A differentiable map \(f \) is positively continuum-wise expansive (write \(f \in \mathcal{P}\mathcal{C}\mathcal{W}\mathcal{E} \)) if there is a constant \(\varepsilon > 0 \) such that if \(C \subset M \) is a non-trivial continuum, then there is \(n \geq 0 \) such that \(\text{diam} f^n(C) > \varepsilon \), where if \(C \) is a trivial, then \(C \) is a one point set.

Note that \(f \in \mathcal{P}\mathcal{C}\mathcal{W}\mathcal{E} \) if and only if \(f^n \in \mathcal{P}\mathcal{C}\mathcal{W}\mathcal{E} \ \forall n \geq 1 \). We say that \(f \) is countably expansive (write \(f \in \mathcal{C}\mathcal{E} \)) if there is a constant \(\delta > 0 \) such that for all \(x \in M \), \(\Gamma^+_f(x) = \{y \in M : d(f^i(x), f^i(y)) \leq \delta \ \forall i \in \mathbb{Z}\} \) is countable. In Reference [19], the authors showed that if a homeomorphism \(f : M \to M \) is measure expansive then \(f \) is countably expansive. Moreover, the converse is true. Then, as in the proof of Theorem 2.1 in Reference [19], it is easy to show that \(f \) is positively countable-expansive if and only if \(f \) is positively measure expansive. In this paper, we consider the relationship between the positively measure-expansive and the positively continuum-wise expansive (see Lemma 1). We can know that if \(f \) is positively measure-expansive then it is not positively continuum-wise expansive because a continuum is not countable, in general.

Definition 2. A differentiable map \(f : M \to M \) is expanding if there exist constants \(C > 0 \) and \(\lambda > 1 \) such that

\[
\|D_x f^n(v)\| \geq C\lambda^n \|v\|,
\]

for any vector \(v \in T_x M(x \in M) \) and any \(n \geq 0 \).

Note that a positively measure-expansive differentiable map is not necessarily expanding. However, under the \(C^1 \) robust or \(C^1 \) generic condition, it is true.

A differentiable map \(f \) is \(C^1 \) robustly positive \(\Phi \) if there exists a \(C^1 \) neighborhood \(\mathcal{U}(f) \) of \(f \) such that for any \(g \in \mathcal{U}(f) \), \(g \) is positive \(\Psi \).

A point \(x \in M \) is a singular if \(D_x f : T_x M \to T_{f(x)} M \) is not injective. Denoted by \(S_f \) the set of singular points of \(f \).

Sakai proved in Reference [15] that if a differentiable map \(f \) is \(C^1 \) robustly positive expansive then \(S_f = \emptyset \) and it is an expanding map. Lee et al. [17] proved that if \(f \) is \(C^1 \) robustly positive measure-expansive, then \(S_f = \emptyset \) and it is expanding. Note that if a differentiable map \(f \) is expanding then it is expansive. According to these facts, we prove the following.

Theorem A If a differentiable map \(f : M \to M \) is \(C^1 \) robustly positive continuum-wise expansive (write \(f \in \mathcal{R}\mathcal{P}\mathcal{C}\mathcal{W}\mathcal{E} \)) then \(S_f = \emptyset \) and it is expanding.

Let \(D^1(M) \) be the set of differentiable maps \(f : M \to M \). Note that \(D^1(M) \) contains the set of diffeomorphisms \(\text{Diff}^1(M) \) on \(M \) and \(\text{Diff}^1(M) \) is open in \(D^1(M) \). We say that a subset
\(\mathcal{G} \subset D^1(M) \) is residual if it contains a countable intersection of open and dense subsets of \(D^1(M) \). Note that the countable intersection of residual subsets is a residual subset of \(D^1(M) \). A property “P” holds generically if there exists a residual subset \(\mathcal{G} \subset D^1(M) \) such that for any \(f \in \mathcal{G} \), \(f \) has the “P” property. Some times we write for \(C^1 \) generic \(f \in D^1(M) \) which means that there exists a residual set \(\mathcal{G} \subset D^1(M) \) such that for any \(f \in \mathcal{G} \). Arbieto [8] and Sakai [15] proved that, \(C^1 \) generically, a positively expansive map is expanding. Ahn et al. [16] proved that for a \(\lambda > 0 \) such that \(\lambda \) belongs to \(\Gamma_f^+ \), the “P”. Some times we write for \(\mathcal{G} \subset D^1(M) \) such that for any \(f \in \mathcal{G} \).

Theorem B For \(C^1 \) generic \(f \in D^1(M) \), if \(f \) is positively continuum-wise expansive then \(S_f = \emptyset \) and it is expanding.

2. The Proof of Theorem A

The following proof is similar to Lemma 2.2 in Reference [19].

Lemma 1. Let \(C \subset M \) be compact and connected. A differentiable map \(f \in PCWE \) if and only if there is a constant \(\delta > 0 \) such that for all \(x \in M \), if a continuum \(C \subset \Gamma_f^+ (x) \) then \(C \) is a trivial continuum set.

Proof. Let \(\delta > 0 \) be a continuum-wise expansive constant and \(C \) be compact and connected (that is, a continuum). Take \(c = \delta / 2 \). We assume that for any \(x \in M \), if \(C \subset \Gamma_f^+ (x) \) then \(\text{diam } f^n(C) \leq 2c \) for all \(n \geq 0 \). Since \(f \) is positively continuum-wise expansive, \(C \) should be a trivial continuum set. Thus, if \(f \in PCWE \), then for all \(x \in M \), if a continuum \(C \subset \Gamma_f^+ (x) \), then \(C \) is a trivial continuum set.

For the converse part, suppose that \(f \in PCWE \). Then, there is a constant \(c > 0 \) such that \(\text{diam } f^n(C) \leq c \) for all \(n \geq 0 \), where \(C \) is a continuum. Let \(x \in C \) be given. Since \(\text{diam } f^n(C) \leq c \), for all \(y \in C \) we have

\[
\text{d}(f^n(x), f^n(y)) \leq c \forall n \geq 0.
\]

Thus, we know \(y \in \Gamma_f(x) \). Since \(y \in C \) and \(y \) is arbitrary, we have \(C \subset \Gamma_f(x) \). Since a continuum \(C \subset \Gamma_f(x) \), we have that \(C \) is a trivial continuum set.

A periodic point \(p \in P(f) \) is hyperbolic if \(D_p f^{\pi(p)} : T_p M \to T_p M \) has no eigenvalue with a modulus equal to 0 or 1, where \(\pi(p) \) is the period of \(p \). Then, \(T_p M = E_{p}^{\sigma} \oplus E_{p}^{\mu} \) of subspaces such that

\[
\begin{align*}
(1) & \quad D_p f^{\pi(p)}(E_{p}^{\sigma}) = E_{p}^{\sigma} (\sigma = s, u), \\
(2) & \quad \text{there exist constants } C > 0, \text{ and } \lambda \in (0, 1) \text{ satisfies for all positive integer } n \in \mathbb{N},
\end{align*}
\]

- \(\| D_p f^n(v) \| \leq C \lambda^n \| v \| \text{ for any } v \in E_{p}^{\sigma} \text{ and} \)
- \(\| D_p f^{-n}(v) \| \leq C \lambda^n \| v \| \text{ for any } v \in E_{p}^{\mu} \)

A hyperbolic point \(p \in P(f) \) is a sink if \(E_{p}^{\sigma} = \{0\} \), a source if \(E_{p}^{\mu} = \{0\} \), and a saddle if \(E_{p}^{\sigma} \neq \{0\} \) and \(E_{p}^{\mu} \neq \{0\} \). Let \(P_i(f) \) be the set of hyperbolic periodic points of \(f \). The dimension of the stable manifold \(W^s(p) = \{ x \in M : d(f^n(x), f^n(p)) \to 0 \text{ as } n \to \infty \} \) is written by the index of \(p_i \) and denoted by \(\text{ind}(p) \). Then, we know \(0 \leq \text{ind}(p) \leq \text{dim } M \). Let \(P_i(f) \) be the set of all \(p \in P_i(f) \) with \(\text{ind}(p) = i \).

Lemma 2. If a differentiable map \(f \in PCWE \) then \(P_i(f) = \emptyset \) for \(1 \leq i \leq \text{dim } M \).

Proof. By contradiction, we assume that there is \(i \in [1, \text{dim } M] \) such that \(P_i(f) \neq \emptyset \). Take \(p \in P_i(f) \) and \(\delta > 0 \). Then, we can find a local stable manifold \(W_i^s(p) \) of \(p \) such that \(W_i^s(p) \neq \emptyset \). We can construct a continuum \(J_p \subset W_i^s(p) \) centered at \(p \) such that \(\text{diam } J_p = \delta/4 \). Let \(\Gamma_{i/2}^+ \) be \(\{ y \in M : \)
If a differentiable map \(f : S^1 \to S^1 \) such that \(S_f \neq \emptyset \). Thus, if \(f \) is positively measure-expansive then \(S_f \neq \emptyset \). But if \(f \) is \(C^1 \) robustly positive measure-expansive then \(S_f = \emptyset \). For that, we consider that \(f \) is \(C^1 \) robustly positive continuum-wise expansive.

The following is a version of differentiable maps of Franks’ lemma (see Lemma 2.1 in Reference [8]).

Lemma 3 ([20]). Let \(f : M \to M \) be a differentiable map and let \(U(f) \) be a \(C^1 \) neighborhood of \(f \). Then, there exists \(\delta > 0 \) such that for a finite set \(A = \{ x_1, x_2, \ldots, x_n \} \subset M \), a neighborhood \(U \) of \(A \) and a linear map \(L_i : T_{x_i}M \to T_{f(x_i)}M \) satisfying \(\| L_i - D_{x_i}f \| < \delta \) for \(1 \leq i \leq n \), there exist \(\epsilon_0 > 0 \) and \(g \in U(f) \) having the following properties:

(a) \(g(x) = f(x) \) if \(x \in A \), and
(b) \(g(x) = \exp_{f(x)} \circ L_i \circ \exp_{x_i}^{-1}(x) \) if \(x \in B_{\epsilon_0}(x_i) \) and \(\forall i \in \{1, \ldots, n\} \).

It is clear that assertion (b) implies that

\[g(x) = f(x) \quad \text{if} \quad x \in A \]

and that \(D_{x_i}g = L_i, \forall i \in \{1, \ldots, n\} \).

Theorem 1. If a differentiable map \(f \in \mathcal{R}PCWE \) then \(S_f = \emptyset \).

Proof. Suppose that there is \(x \in S_f \). Then, by Lemma 3, we can take \(g \) \(C^1 \) close to \(f \) such that \(g \) has a closed connected small arc \(B_\epsilon(x) \) centered at \(x \) with radius \(\epsilon > 0 \), such that \(\dim B_\epsilon(x) = 1 \) and \(g(B_\epsilon(x)) \) is one point. Take \(\delta = 2\epsilon \). Let \(\Gamma_\delta^+ (x) = \{ y : d(g^i(x), g^i(y)) \leq \delta \ \forall i \geq 0 \} \). It is clear \(B_\epsilon(x) \subset \Gamma_\delta^+ (x) \).

Since \(g(B_\epsilon(x)) \) is one point, for any \(y \in B_\epsilon(x) \), we know that \(\dim g^i(B_\epsilon(x)) \leq \delta \) for all \(i \geq 0 \). However, \(B_\epsilon(x) \) is not a trivial continuum set, by Lemma 1 this is a contradiction. \(\square \)

Recall that a differentiable map \(f : M \to M \) is star if every periodic point of \(g(C^1 \text{ nearby } f) \) is hyperbolic.

Lemma 4. If a differentiable map \(f \in \mathcal{R}PCWE \) then \(f \) is star.

Proof. Suppose that \(f \) is not star. Then, we can take \(g \) \(C^1 \) close to \(f \) such that \(g \) has a non-hyperbolic \(p \in P(g) \). As Lemma 3, we can find \(g_1 \) \(C^1 \) close to \(g \) \((g_1 \text{ close to } f)\) such that \(D_p g_1 \) has an eigenvalue \(\lambda \) with \(|\lambda| = 1 \). For simplicity, we assume that \(g_1^n(p) = p \). Let \(E^c_p \) be associated with \(\lambda \). If \(\lambda \in \mathbb{R} \) then \(\dim E^c_p = 1 \), and if \(\lambda \in \mathbb{C} \) then \(\dim E^c_p = 2 \).

First, we consider \(\dim E^c_p = 1 \). Then, we assume that \(\lambda = 1 \) (the other case can be proved similarly). By Lemma 3, there are \(\epsilon > 0 \) and \(h \) \(C^1 \) close to \(g_1 \) (also, \(C^1 \) close to \(f \)), having the following properties:

- \(h(p) = g_1(p) = p \),
- \(h(x) = \exp_p \circ D_p g_1 \circ \exp_p^{-1}(x) \) if \(x \in B_\epsilon(p) \), and
- \(h(x) = g_1(x) \) if \(x \notin B_\epsilon(p) \).

Since \(\lambda = 1 \), we can construct a closed connected small arc \(I_p \subset B_\epsilon(p) \cap \exp_p(E^c_p(\epsilon)) \) with its center at \(p \) such that

- \(\dim I_p = \epsilon/4 \),
- \(h(I_p) = I_p \), and
- the map \(h|_{I_p} : I_p \to I_p \) which is the identity.
Take $\delta = \epsilon/2$. Let $\Gamma^+_\delta(p) = \{x \in M : d(h^i(x), h^i(p)) \leq \delta \forall i \geq 0\}$. Then, it is clear $\mathcal{I}_p \subset \Gamma^+_\delta(p)$, and $\text{diam} h^i(\mathcal{I}_p) = \text{diam} \mathcal{I}_p$ for all $i \geq 0$. Since $f \in \text{RPCWE}$, according to Lemma 1, \mathcal{I}_p has to be just a trivial continuum set. This is a contradiction since \mathcal{I}_p is not a trivial continuum set.

Finally, we consider $\dim E^c_p = 2$. For convenience, we assume that $g^{\pi(p)}(p) = g(p) = p$. As Lemma 3, we can find $\|i\| > 0$ and $g_1 \in \mathcal{U}(f)$, which has the following properties:

- $g_1(p) = g(p) = p$,
- $g_1(x) = \exp_p \circ D_p g \circ \exp_p^{-1}(x)$ if $x \in B_c(p)$, and
- $g_1(x) = g(x)$ if $x \notin B_c(p)$.

For any $v \in E^c_p(e)$, there is $l > 0$ such that $D_p g^l(v) = v$. Take $u \in E^c_p(e)$ such that $\|u\| = \epsilon/2$. As in the previous arguments, we can construct a closed connected small arc $\mathcal{J}_p \subset B_c(p) \cap \exp_u(E^c_p(e))$ such that

- $\text{diam} \mathcal{J}_p = \epsilon/4$,
- $g_1^l(\mathcal{J}_p) = \mathcal{J}_p$, and
- $g_1^l|_{\mathcal{J}_p} : \mathcal{J}_p \to \mathcal{J}_p$ is the identity map.

As in the proof of the first case, take $\delta = \epsilon/2$. Let $\Gamma^+_\delta(p) = \{x \in M : d(g_1^l(x), g_1^l(p)) \leq \delta \forall i \geq 0\}$. It is clear that $\mathcal{J}_p \subset \Gamma^+_\delta(p)$. Then, by Lemma 1, \mathcal{J}_p must be a trivial continuum set but it is not possible since \mathcal{J}_p is a closed connected small arc. Thus, if $f \in \text{RPCWE}$ then f is star.

The differentiable maps $f, g : M \to M$ are conjugate if there is a homeomorphism $h : M \to M$ such that $f \circ h = h \circ g$. We say that a differentiable map f is structurally stable if there is a C^1 neighborhood $\mathcal{U}(f)$ of $f \in D^1(M)$ such that for any $g \in \mathcal{U}(f)$, g is conjugate to f. A differentiable map f is Ω stable if there is a C^1 neighborhood $\mathcal{U}(f)$ of $f \in D^1(M)$ such that for any $g \in \mathcal{U}(f)$, $g|_{\Omega(f)}$ is conjugate to $f|_{\Omega(f)}$, where $\Omega(f)$ denotes the nonwandering points of f. Przytycki proved in Reference [21] that if f is an Anosov differentiable map then it is not an Anosov diffeomorphism or expanding which are not structurally stable. Moreover, assume that f is Axiom A (i.e., $\overline{\mathcal{P}(f)} = \Omega(f)$ is hyperbolic) and has no singular points in the nonwandering set $\Omega(f)$. Then f is Ω stable if and only if f is strong Axiom A and has no cycles (see Reference [22]). Here, f is strong Axiom A means that f is Axiom A and $\Omega(f)$ is the disjoint union $\Lambda_1 \cup \Lambda_2$ of two closed f invariant sets.

According to the above results of a diffeomorphism $f \in \text{Diff}^1(M)$, one can consider the case of a differentiable $f \in D^1(M)$ which is an extension of a diffeomorphism. For instance, a diffeomorphism $f \in \text{Diff}(M)$ is said to be star if we can choose a C^1 neighborhood $\mathcal{U}(f)$ of f such that every periodic point of g is hyperbolic, for all $g \in \mathcal{U}(f)$.

If a diffeomorphism f is star then f is Axiom A and has no cycles (see References [23,24]). Aoki et al. Theorem A in Reference [25] proved that if a differentiable map f is star and the nonwandering set $\Omega(f) \cap S_f \subset \{p \in P(f) : p$ is a sink $\}$ then f is Axiom A and has no cycles.

Theorem 2. Let $f \in D^1(M)$. If $f \in \text{RPCWE}$ then f is Axiom A and has no cycles.

Proof. Suppose that $f \in \text{RPCWE}$. As Lemma 4, f is star. By Theorem 1, we know $S_f = \emptyset$, and so, $\Omega(f) \cap S_f = \emptyset$. By Lemma 2, there do not exist sinks in $P(f)$, that is, $\{p \in P(f) : p$ is a sink $\} = \emptyset$. Thus, by Theorem A in Reference [25], f is Axiom A and has no cycles.

Proof of Theorem A. Suppose that $f \in \text{RPCWE}$. Then, by Lemma 2, Theorem 2 and Proposition 2.7 in [17], $\Omega(f) = \widehat{P_0(\mathcal{E})}$ is hyperbolic and $\widehat{P_0(\mathcal{E})}$ is expanding. Then, by Lemma 2.8 in Reference [17], $M = \widehat{P_0(\mathcal{E})}$. Thus, f is expanding.

3. The Proof of Theorem B

Denote by $\mathcal{K}\mathcal{S}$ the set of Kupka–Smale C^1 maps of M. By Shub [26], $\mathcal{K}\mathcal{S}$ is a residual set of $D^1(M)$. If $f \in \mathcal{K}\mathcal{S}$ then every $p \in P(f)$ is hyperbolic. Then, we can see the following.
Lemma 5. Let \(f \in K.S \). If \(f \in \mathcal{PCWE} \) then \(P(f) = P_0(f) \).

Proof. Let \(f \in \mathcal{PCWE} \). Suppose, by contradiction, that \(P(f) \neq \emptyset \) for some \(1 \leq i \leq \dim M \). Take \(p \in P_i(f) \) and \(\delta > 0 \). Then, we can define a local stable manifold \(W^s_p(f) \) of \(p \) such that \(W^s_p(f) \neq \emptyset \). We can construct a closed connected small arc \(\mathcal{J}_p \subset W^s_p(f) \) with its center at \(p \) such that \(\text{diam} \mathcal{J}_p = \delta / 4 \). Let \(\Gamma^s_\delta(p) = \{ x \in M : d(f^n(x), f^n(p)) \leq \delta \text{ for all } n \geq 0 \} \). Then, it is clear \(\mathcal{J}_p \subset \Gamma^s_\delta(p) \). Since \(f \in \mathcal{PCWE} \), by Lemma 1, \(\mathcal{J}_p \) must be a trivial continuum set. This is a contradiction since \(\mathcal{J}_p \) is not a trivial continuum set. Thus, every \(p \in P(f) \) is a source so that \(P(f) = P_0(f) \).

Lemma 6. Lemma 8 in [15]. There exists a residual subset \(G_1 \subset D^1(M) \) such that for a given \(f \in G_1 \), if for any \(C^1 \) neighborhood \(U(f) \) of \(f \) there exist \(g \in U(f) \) and \(p \in P_h(g) \) with \(\text{ind}(p) = i(0 \leq i \leq \dim M) \), then there is \(p' \in P_h(f) \) with \(\text{ind}(p') = i \).

Lemma 7. There exists a residual subset \(G_2 \subset D^1(M) \) such that for a given \(f \in G_2 \), if \(f \in \mathcal{PCWE} \) then \(S_f \cap \overline{P_0(f)} = \emptyset \).

Proof. Let \(f \in G_2 = K.S \cap G_1 \) and \(f \in \mathcal{PCWE} \). Suppose, by contradiction, that \(S_f \cap \overline{P_0(f)} \neq \emptyset \). Since \(S_f \cap \overline{P_0(f)} \neq \emptyset \), we can choose a point \(x \in S_f \cap \overline{P_0(f)} \). Then, we can find a sequence of periodic points \(\{ p_n \} \subset P_0(f) \) with period \(\pi(p_n) \) such that \(p_n \to x \) as \(n \to \infty \). As Lemma 3, there exists \(g \in C^1 \) close to \(f \) such that \(g^{\pi(p_n)}(p_n) = p_n \) and \(p_n \in S_\delta \). Again using Lemma 3, there exists \(g_1 \in C^1 \) closed to \(g \) such that \(g_1 \in C^1 \) is close to \(f \), \(g_1^{\pi(p_n)}(p_n) = p_n \), and \(\pi(p_n) = i(1 \leq i \leq \dim M) \). Since \(f \in G_1 \), by Lemma 6, \(f \) has a hyperbolic saddle periodic point \(q \) with \(\text{ind}(q) = i(1 \leq i \leq \dim M) \). This is a contradiction by Lemma 2.

For a \(\delta > 0 \), a point \(p \in P(f)(f^{\pi(p)}(p) = p) \) said to be a \(\delta \)-hyperbolic (see Reference [27]) if for an eigenvalue of \(DF^{\pi(p)}(p) \), we can take an eigenvalue \(\lambda \) of \(DF^{\pi(p)}(p) \) such that

\[
(1 - \delta)^{\pi(p)} < |\lambda| < (1 + \delta)^{\pi(p)}.
\]

Lemma 8. There exists a residual subset \(G_3 \subset D^1(M) \) such that for a given \(f \in G_3 \), if \(f \in \mathcal{PCWE} \), then we can take \(\delta > 0 \) such that \(f \) has no \(\delta \)-hyperbolic.

Proof. Let \(f \in G_3 = K.S \cap G_1 \cap G_2 \), and let \(f \in \mathcal{PCWE} \). Since \(f \in K.S \cap G_1 \cap G_2 \), by Lemma 2 and Lemma 7, we know \(S_f \cap \overline{P_0(f)} = \emptyset \). Assume that for any \(\delta > 0 \), there is a \(p \in P_h(f) \) with a \(\delta \)-hyperbolic. By Lemma 3, we can take \(g \in C^1 \) close to \(f \) such that \(p \) has an eigenvalue with modulus one. Again using Lemma 3, there exists \(g_1 \in C^1 \) close to \(g \) such that \(g_1 \) has a saddle \(q \in P_h(g_1) \) with \(\text{ind}(q) = i(1 \leq i \leq \dim M) \), where \(P_h(g_1) \) is the set of all hyperbolic periodic points of \(g_1 \). Since \(f \in G_1 \), \(f \) has a saddle \(q' \in P_h(f) \) with \(\text{ind}(q') = i(1 \leq i \leq \dim M) \). This is a contradiction by Lemma 2.

Lemma 9. Lemma 7 in Reference [15]. There exists a residual subset \(G_4 \subset D^1(M) \) such that for a given \(f \in G_4 \) and \(\delta > 0 \), if any \(C^1 \) neighborhood \(U(f) \) of \(f \) there exist \(g \in U(f) \) and \(p \in P_h(g) \) with a \(\delta \)-hyperbolic, then we can find \(p' \in P_h(f) \) with a \(2\delta \)-hyperbolic.

Lemma 10. There exists a residual subset \(G_5 \subset D^1(M) \) such that for a given \(f \in G_5 \), if \(f \in \mathcal{PCWE} \) then \(f \) is star.

Proof. Let \(f \in G_5 = G_3 \cap G_4 \) and \(f \in \mathcal{PCWE} \). Suppose that \(f \) is not star. Then, as Lemma 3, we can take \(g \in C^1 \) close to \(f \) such that \(g \) has a \(q \in P_h(g) \) with a \(\delta / 2 \)-hyperbolic for some \(\delta > 0 \). Since \(f \in G_4 \), \(f \) has a hyperbolic periodic point \(p' \) with a \(\delta \)-hyperbolic. This is a contradiction by Lemma 8.
\(\Omega(f) = \overline{P(f)} \).

Proof of Theorem B. Let \(f \in \mathcal{G} = \mathcal{G}_S \cap \mathcal{CL} \) and \(f \in \mathcal{PCWE} \). It is enough to show that \(M = \overline{P_0(f)} \).

By Lemmas 5 and 7, \(P(f) = P_0(f) \) and \(S_f \cap P_0(f) = \emptyset \). Since \(f \in \mathcal{CL} \), \(\Omega(f) = P(f) \). According to Lemma 10, \(f \) is star, and so \(\{ \Omega(f) \setminus P(f) \} \cap S_f = \emptyset \). Thus we have \(\Omega(f) = \overline{P(f)} = \overline{P_0(f)} \) is hyperbolic. As Proposition 2.7 in Reference [17], we have that \(P_0(f) \) is expanding. Then, as in the proof of Lemma 3.8 in Reference [17], we have \(M = \overline{P_0(f)} \). \(\square \)

Funding: This work is supported by the National Research Foundation of Korea (NRF) of the Korea government (MSIP) (No. NRF-2017R1A2B4001892).

Acknowledgments: The author would like to thank the referee for valuable help in improving the presentation of this article.

Conflicts of Interest: The author declares no conflict of interest.

References

24. Hayashi, S. Diffeomorphisms in \(\mathcal{J}^1(M) \) satisfy Axiom A. *Ergod. Theory Dynam. Syst.* 1992, 12, 233–253. [CrossRef]

