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Abstract: In this paper, we introduce and prove several generalized algebraic-trigonometric
inequalities by considering negative exponents in the inequalities.
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1. Introduction

In recent years, an increasing amount of attention has been paid to the study of power-exponential
inequalities [1–10]. A review of some problems and historical landmarks are given in [2,11].
In particular, in order to contextualize, we recall that the basic problem of comparing ab and ba

for all positive real numbers a and b was presented in [12–14]. Increasing in algebraic difficulty, the
comparison of aa + bb and ab + ba was studied independently by Laub–Ilani and Zeikii–Cirtoaje–Berndt,
see [15–18], respectively. The result is the fact that the inequality

aa + bb ≥ ab + ba, a, b ∈ [0, ∞[ (1)

holds. An extension of (1) was proposed, analyzed and proved by Matejíčka, Cîrtoaje and
Coronel-Huancas in [2,17,19] obtaining the inequality

ara + brb ≥ arb + bra, a, b ∈ [0, ∞[, r ∈ [0, e[. (2)

More recently, other extensions and generalizations of (1) were introduced, proved and
conjectured by Özban in [11], where, in particular, the author proved the following inequalities:

(sin x)sin x + (sin y)sin y > (sin x)sin y + (sin y)sin x, 0 < x < y < π/2,

(cos x)cos x + (cos y)cos y > (cos x)cos y + (cos y)cos x, 0 < x < y < π/2,

(cos x)sin x + (cos y)sin y < (cos x)sin y + (cos y)sin x, 0 < x < y ≤ 1,

(cos x)x + (cos y)y < (cos x)y + (cos y)x, 0 < x < y ≤ π/2, (3)

(sin x)x + (sin y)y > (sin x)y + (sin y)x, 0 < x < y ≤ π/2,

xcos x + ycos y < xcos y + ycos x, 0 < x < y, 1 ≤ y ≤ π/2,

xsin x + ysin y > xsin y + ysin x, 0 < x < y ≤ π/2.

In order to extend or generalize (2) and (3), it seems natural to ask some questions: What happens
with the inequality (2) when r ∈ R− [0, e[? and what happens with the inequalities in (3) if we include
a negative power r? We note that the powers in question exist, since the basis of powers in (2) and (3)
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are positive. Indeed, in this article, we study (2) for r ∈]−∞, 0[ and establish reverse inequalities for
some cases. Moreover, we study the generalization of the inequalities in (3) with negative power r.

The main results of the paper are the following theorems:

Theorem 1. Let the function ϕα : R → R be defined by ϕα(m) = mαm for each α > 1 and consider the
following sets:

Aold =
{
(a, b, r) ∈ R3 : a ≥ 0, b ≥ 0, r ∈ [0, e[

}
,

Ad
new =

{
(a, b, r) ∈ R3 : a > 1, b > 1, r < 0, ϕb(rb) > ϕb(ra)

}
⋃{

(a, b, r) ∈ R3 : a > 1, b > 1, r < 0, ϕb(rb) < ϕb(ra), arb < γ
}

, (4)

Ar
new =

{
(a, b, r) ∈ R3 : 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, r < 0

}
⋃{

(a, b, r) ∈ R3 : a > 1, b > 1, r < 0, ϕb(rb) < ϕb(ra), arb > γ
}

,

where γ ∈]0, 1[ is such that γ 6= brb and (γ)a/b − γ− bra + brb = 0. Then, the following inequalities

ara + brb ≥ arb + bra, (a, b, r) ∈ Aold ∪ Ad
new, (5)

ara + brb ≤ arb + bra, (a, b, r) ∈ Ar
new (6)

are satisfied.

Remark 1. The inclusion of the notation γ is related with the fact that the argumentation of the proof is based
on the properties of function f (t) = (t)s − t− γs + γ with t = arb s = a/b and γ = brb. In particular, we
observe that, if 0 < t < γ < 1, there are two solutions of f (t) = 0 on the interval ]0, 1[; one solution is clearly
γ and the other solution is difficult to get explicitly and is denoted by γ.

Theorem 2. If x, y ∈ (0, π/2) and r < 0, then

(sin x)r sin x + (sin y)r sin y ≤ (sin x)r sin y + (sin y)r sin x, (7)

(cos x)r cos x + (cos y)r cos y ≤ (cos x)r cos y + (cos y)r cos x, (8)

(cos x)r sin x + (cos y)r sin y ≥ (cos x)r sin y + (cos y)r sin x. (9)

Theorem 3. If x, y ∈ (0, π/2) and r < 0, then

(cos x)rx + (cos y)ry ≥ (cos x)ry + (cos y)rx, (10)

(sin x)rx + (sin y)ry ≤ (sin x)ry + (sin y)rx. (11)

Theorem 4. If x, y ∈ (0, π/2), min{x, y} ∈ (0, 1] and r < 0, then

xr cos x + yr cos y ≥ xr cos y + yr cos x, (12)

xr sin x + yr sin y ≤ xr sin y + yr sin x. (13)

The rest of the paper is dedicated to the proof of Theorems 1–4.
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2. Proofs of Main Results

2.1. Proof of Theorem 1

For completeness and self-contained structure of the proof, we recall the notation and a result
given in [1]. Indeed, let us consider s ∈ R+ and we define the functions f and g from R+ to R by
the relations

f (t) = ts − t− γs + γ,

g(t) =


e− ln(t)/(t−1), for t 6∈ {0, 1},
e−1, for t = 1,
0, for t = 0.

Then, the following properties are satisfied: f (γ) = 0 and f (0) = f (1) = −γs + γ; if s > 1 (resp.
s < 1), f is strictly increasing (resp. decreasing) on ]g(s), ∞[ and strictly decreasing (resp. increasing) on
]0, g(s)[; and g is continuous on R+ ∪ {0}, strictly increasing on R+, y = 1 is a horizontal asymptote of
y = g(t), and the range of g is [0, 1]. Moreover, if we consider the function ξ : R+ → R ξ(m) = −ms +m
and ϕα defined in the enunciate of the theorem, we observe that the following following assertions are
satisfied: ξ(0) = ξ(1) = 0; if s > 1 (resp. s < 1) w has a maximum at g(s) (resp. minimum at g(s));
ϕα(0) = 0; ϕα has a minimum at m∗ = −1/ ln(α); ϕα has a inflection point at m∗∗ = −2/ ln(α); y = 0
is a left horizontal asymptote of ϕα and the range of g is [ϕα(m∗), ∞[ with ϕα(m∗) < 0.

Let us consider t = arb, γ = brb, and s = a/b and we observe that

f (t) = (arb)a/b − arb − (brb)a/b + brb = ara − arb − bra + brb. (14)

Then, the proofs of (5) and (6) are reduced to analyze the sign of f (t) for t ∈ [0, γ]. Indeed, without
loss of generality and by the symmetric form of the inequalities in (5) and (6), we assume that 0 ≤ b < a
(i.e., s = a/b > 1) and consider three cases:

(i) Let a, b such that 1 > a > b ≥ 0. Then, for r < 0, we note that 1 < ar < br or equivalently we have
that 1 < t < γ. Moreover, observing that s > 1 and g(s) < 1, by the strictly increasing behavior of
f on [g(s), ∞), we deduce that f (g(s)) < f (1) < f (t) < f (γ) = 0. Thus, from (14) and f (t) < 0,
we follow that the inequality ara + brb < arb + bra is satisfied.

(ii) Let a, b such that a > 1 > b ≥ 0. In this case, we have that ar < 1 < br or equivalently
t < 1 < γ. We note that s > 1 implies the strictly decreasing behavior of f on [0, g(s)] and the
strictly increasing behavior of f on [g(s), ∞[. Moreover, observing that g(s) ∈ [0, 1], we deduce
that f (t) < f (1) = −γs + γ := ξ(γ) for any t < 1 < γ. Now, by the fact that ξ is decreasing on
[g(s), ∞[, we have that ξ(γ) < ξ(1) = 0 for any γ > 1. Thus, f (t) < ξ(γ) < 0 for t < 1 < γ and,
from (14), the inequality ara + brb < arb + bra is satisfied.

(iii) Let a, b such that a > b > 1. Similarly to cases (i) and (ii), we have that s > 1 and 0 < ar < 1 < br <

1 or equivalently 0 < t < γ < 1. Here, we distinguish two subcases: γ ≤ g(s) and g(s) < γ < 1.
First, if γ ≤ g(s), we have that f is strictly decreasing on [0, γ] and consequently f (t) ≥ f (γ) = 0
for t ∈ [0, γ]. Second, if g(s) < γ < 1, by the fact that f (0) = ξ(γ) > 0 = f (γ) > f (g(s)), we
have that there exists γ ∈ [0, g(s)[ such that f (γ) = 0. Then, f (t) ≥ f (γ) = 0 for t ∈ [0, γ]

and f (t) ≤ f (γ) = f (γ) = 0 for t ∈ [γ, γ]. Thus, from both subcases, we conclude that the
inequality ara + brb < arb + bra is satisfied for t ∈ [γ, γ] with γ ∈]g(s), 1[ and the inequality
ara + brb > arb + bra is satisfied for t ∈ [0, γ] with γ ∈]g(s), 1[ or for t ∈ [0, γ] with γ ∈]0, g(s)].

On the other hand, by the definition of γ, s, g and ϕb, we observe that γ < g(s) (resp. γ > g(s)) is
equivalent to ϕb(rb) > ϕb(ra) (resp. ϕb(rb) < ϕb(ra)). Moreover, the relation t > γ (resp. t < γ)
is equivalent to arb > γ (resp. arb < γ). Thus, the subcases can be characterized in terms of the
function ϕb and arb > γ or arb < γ.
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Hence, translating (i), (ii) and (iii) to the corresponding notation in (4) and observing that the set
Aold is the set for the inequality in (2), we conclude the proof the theorem.

2.2. Proof of Theorem 2

Since sin t, cos t > 0 for t ∈ (0, π/2), Theorem 1 immediately implies inequalities (7) and (8).
To prove (9), we define

f (t) = (cos t)r sin t + (cos y)r sin y − (cos t)r sin y − (cos y)r sin t

for y is fixed and arbitrarily selected such that y ∈ (0, π/2) and 0 < t ≤ y. We note that f (y) = 0, then
the result follows if f is decreasing. Indeed, to see this, we write

f ′(t) = r
[

g(t) cos t +
sin t
cos t

h(t)
]

,

where

g(t) = (cos t)r sin t ln(cos t)− (cos y)r sin t ln(cos y),

h(t) = (cos t)r sin y sin y− (cos t)r sin t sin t.

Now, since r < 0, it is enough to show that g(t), h(t) > 0. For g, we have that

g(t) = −
∫ y

t

d
ds

(cos s)r sin t ln(cos s)

=
∫ y

t
((cos s)r sin t−1 sin s)(1 + r sin t ln(cos s)) ds > 0

and, similarly for h, we deduce that

h(t) =
∫ y

t

d
ds

(cos t)r sin s sin s

=
∫ y

t
((cos t)r sin s cos s)(1 + r sin s ln(cos t)) ds > 0.

2.3. Proof of Theorem 3

Set 0 < t ≤ y < π/2 and r < 0 arbitrarily. Along the proofs, we will use that sin s, cos s > 0 for
s ∈ (0, π/2).

In order to prove (10), let us consider f1(t) = (cos t)rt +(cos y)ry− (cos t)ry− (cos y)rt. Observing
that f1(y) = 0, it is enough to show that f1 is decreasing. Indeed, the decreasing behavior of f1 follows
immediately since

f ′1(t) = r
[

g1(t) +
sin t
cos t

h1(t)
]

,

where

g1(t) = (cos t)rt ln(cos t)− (cos y)rt ln(cos y) = −
∫ y

t

d
ds

(cos s)rt ln(cos s)

=
∫ y

t
((cos s)rt−1 sin s)(1 + rt ln(cos s)) ds > 0
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and

h1(t) = y(cos t)ry − t(cos t)rt =
∫ y

t

d
ds

s(cos t)rs

=
∫ y

t
(cos t)rs(1 + rs ln(cos t)) ds > 0.

We prove (11) by analogous arguments to the proof of (10). Indeed, let us introduce the notation
f2(t) = (sin t)ry + (sin y)rt − (sin t)rt − (sin y)ry. We observe that

f ′2(t) = r
[

g2(t) +
cos t
sin t

h2(t)
]
< 0,

since

g2(t) = (sin y)rt ln(sin y)− (sin t)rt ln(sin t) =
∫ y

t

d
ds

(sin s)rt ln(sin s)

=
∫ y

t
((sin s)rt−1 cos s)(1 + rt ln(sin s)) ds > 0

and

h2(t) = y(sin t)ry − t(sin t)rt =
∫ y

t

d
ds

s(sin t)rs

=
∫ y

t
(sin t)rs(1 + rs ln(sin t)) ds > 0.

Thus, (11) is a consequence of the decreasing behavior of f2 and the fact that f2(y) = 0.

2.4. Proof of Theorem 4

We set 0 < x ≤ y < π/2 with x ≤ 1 and r < 0 arbitrarily selected. Then, by the fact that
cos x ≥ cos y > 0, we deduce the following estimate:

xr cos x − xr cos y = xr cos y(xr(cos x−cos y) − 1)

≥ yr cos y(yr(cos x−cos y) − 1) = yr cos x − yr cos y,

which implies (12). Similarly, using the fact that sin y ≥ sin x > 0 implies that

xr sin y − xr sin x = xr sin x(xr(sin y−sin x) − 1)

≥ yr sin x(yr(sin y−sin x) − 1) = yr sin y − yr sin x,

and we get the proof of (13).
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