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Abstract

:

Throughout the history of the study of Einstein manifolds, researchers have sought relationships between the curvature and topology of such manifolds. In this paper, first, we prove that a compact Einstein manifold   ( M , g )   with an Einstein constant   α > 0   is a homological sphere when the minimum of its sectional curvatures   > α / ( n + 2 )  ; in particular,   ( M , g )   is a spherical space form when the minimum of its sectional curvatures   > α / n  . Second, we prove two propositions (similar to the above ones) for Tachibana numbers of a compact Einstein manifold with   α < 0  .
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1. Introduction


The study of Einstein manifolds has a long history in Riemannian geometry. Throughout the history of the study of Einstein manifolds, researchers have sought relationships between curvature and topology of such manifolds. A. Besse [1] summarized the results. We present here some interesting facts related to the classification of all compact Einstein manifolds satisfying a suitable curvature inequality, which is one of the subjects of our research.



Recall that an n-dimensional   ( n ≥ 2 )   connected manifold M with a Riemannian metric g is said to be an Einstein manifold with Einstein constant  α  if its Ricci tensor satisfies   Ric = α  g  ; moreover, we have   α = s / n   for its scalar curvature s. Therefore, any Einstein manifold of dimensions two and three is a space form (i.e., has constant sectional curvature). The study of Einstein manifolds is more complicated in dimension four and higher (see [1] (p. 44)).



An important problem in differential geometry is to determine whether a smooth manifold admits an Einstein metric. When   α > 0  , the example are symmetric spaces, which include the sphere    S n   ( 1 )    with   α = n − 1   and the sectional curvature   sec = 1  , the product of two spheres    S n   ( 1 )  ×  S n   ( 1 )    with   α = n − 1   and   0 ≤ sec ≤ 1  , and the complex projective space   C  P m  =  S  2 m + 1   /   S 1    with the Fubini–Study metric,   α = 2 m + 2   and   1 ≤ sec ≤ 4   (see [2] (pp. 86, 118, 149–150)). Recall that if   ( M , g )   is a compact Einstein manifold with curvature bounds of the type   3 n / ( 7 n − 4 ) < sec ≤ 1  , then   ( M , g )   is isometric to a spherical space form. This might be not the best estimate: for   n = 4   the sharp bound is   1 / 4   (see [1] (p. 6)). In both these cases, the manifolds are real homology spheres (see [3] (p. XVI)). Therefore, any such manifold has the homology groups of an n-sphere; in particular, its Betti numbers are    b 1   ( M )  = … =  b  n − 1    ( M )  = 0  .



One of the basic problems in Riemannian geometry was to classify Einstein four-manifolds with positive or nonnegative sectional curvature in the categories of either topology, diffeomorphism, or isometry (see, for example, [4,5,6,7]). It was conjectured that an Einstein four-manifold with   α > 0   and non-negative sectional curvature must be either    S 4  ,  C   P  2   ,    S 2   ( 1 )  ×  S 2   ( 1 )    or a quotient. For example, if the maximum of the sectional curvatures of a compact Einstein four-manifold is bounded above by   ( 2 / 3 )  α  , or if   α = 1   and the minimum of the sectional curvatures   ≥  ( 1 / 6 )   ( 2 −  2  )   , then the manifold is isometric to    S 4  ,  R   P  4    or   C   P  2    (see [6]). Classification of four-dimensional complete Einstein manifolds with   α > 0   and pinched sectional curvature was obtained in [7].



Here, we consider this problem from another side. Given a Riemannian manifold   ( M , g )  , the notion of symmetric curvature operator  R ¯  , acting on the space    Λ 2  M   of 2-forms, is an important invariant of a Riemannian metric (see [2] (p. 83); [8,9]). The Tachibana Theorem (see [10]) asserts that a compact Einstein manifold   ( M , g )   with    R ¯  > 0   is a spherical space form. Later on, it was proved that compact manifolds with    R ¯  > 0   are spherical space forms (see [11]).



Denote by   R ∘   the symmetric curvature operator of the second kind, acting on the space    S  0  2  M   of traceless symmetric two-tensors (see [1] (p. 52); [9,12]). Kashiwada (see [9]) proved that a compact Einstein manifold with    R ∘  > 0   is a spherical space form. This statement is an analogue of the theorem of Tachibana in [10]. In contrast, if a complete Riemannian manifold   ( M , g )   satisfies   sec ≥ δ > 0  , then M is compact with   diam  ( M , g )  ≤ π /  δ    (see [2] (p. 251)).



Remark 1

(By [2] (Theorem 10.3.7)). There are manifolds with metrics of positive or nonnegative sectional curvature but not admitting any metric with    R ¯  ≥ 0   (see also [2] (p. 352)). In particular, for three-dimensional manifolds the inequality   sec > 0   is equivalent to the inequality    R ¯  > 0   (see [9]).





Using Kashiwada’s theorem from [9] we can prove the following.



Theorem 1.

Let   ( M , g )   be a compact Einstein manifold with Einstein constant   α > 0  , and let δ be the minimum of its positive sectional curvature. If   δ > α / n  , then   ( M , g )   is a spherical space form.





We can present a generalization of above result in the following form.



Theorem 2.

Let   ( M , g )   be a compact Einstein manifold with Einstein constant   α > 0   and let δ be the minimum of its positive sectional curvature. If   δ > α / ( n + 2 )  , then   ( M , g )   is a homological sphere.





Obviously,    S n   ( 1 )  ×  S n   ( 1 )    is not an example for Theorem 1 because the minimum of its sectional curvature is zero and   α = n − 1  . On the other hand, the complex projective space   C   P  m    is an Einstein manifold with   α = 2 m + 2   and sectional curvature bounded below by   δ = 1  . Then the inequality   α < ( n + 2 )  δ   can be rewritten in the form   δ > 1   because   n = 2 m  . Therefore,   C   P  m    is not an example for Theorem 1. Moreover, all even dimensional Riemannian manifolds with positive sectional curvature have vanishing odd-dimensional homology groups. Thus, Theorem 1 complements this statement (see [2] (p. 328)).



Let   ( M , g )   be an n-dimensional compact connected Riemannian manifold. Denote by   Δ  ( p )    the Hodge Laplacian acting on differential p-forms on M for   p = 1 , … , n − 1  . The spectrum of   Δ  ( p )    consists of an unbounded sequence of nonnegative eigenvalues which starts from zero if and only if the p-th Betti number    b p   ( M )    of   ( M , g )   does not vanish (see [13]). The sequence of positive eigenvalues of   Δ  ( p )    is denoted by


  0 <  λ  1   ( p )   < … <  λ  m   ( p )   < … → ∞ .  











In addition, if    F p   ( ω )  ≥ σ > 0   (see Equation (4) of   F p  ) at every point of M, then    λ  1   ( p )   ≥ σ   (see [13] (p. 342)). Using this and Theorem 1, we get the following.



Corollary 1.

Let   ( M , g )   be a compact Einstein manifold with positive Einstein constant α and sectional curvature bounded below by a constant   δ > 0   such that   δ > α / ( n + 2 )  . Then the first eigenvalue   λ  1   ( p )    of the Hodge Laplacian   Δ  ( p )    satisfies the inequality    λ  1   ( p )   ≥  ( 1 / 3 )    (  ( n + 2 )   δ − α )    ( n − p )   .





Remark 2.

In particular, if   ( M , g )   is a Riemannian manifold with curvature operator of the second kind bounded below by a positive constant   ρ > 0  , then using the main theorem from [14], we conclude that    λ  1   ( p )   ≥  ρ   ( n − p )   .





Conformal Killing p-forms (  p = 1 , … , n − 1  ) were defined on Riemannian manifolds more than fifty years ago by S. Tachibana and T. Kashiwada (see [15,16]) as a natural generalization of conformal Killing vector fields.



The vector space of conformal Killing p-forms on a compact Riemannian manifold   ( M , g )   has finite dimension    t p   ( M )    named the Tachibana number (see e.g., [17,18,19]). Tachibana numbers    t 1   ( M )  , … ,  t  n − 1    ( M )    are conformal scalar invariants of   ( M , g )   satisfying the duality condition    t p   ( M )  =  t  n − p    ( M )   . The condition is an analog of the Poincaré duality for Betti numbers. Moreover, Tachibana numbers    t 1   ( M )  , … ,  t  n − 1    ( M )    are equal to zero on a compact Riemannian manifold with negative curvature operator or negative curvature operator of the second kind (see [18,19]).



We obtain the following theorem, which is an analog of Theorem 1.



Theorem 3.

Let   ( M , g )   be an Einstein manifold with sectional curvature bounded above by a negative constant   − δ   such that   δ > − α / ( n + 2 )   for the Einstein constant α. Then Tachibana numbers    t 1   ( M )  , … ,  t  n − 1    ( M )    are zero.






2. Proof of Results


Let   ( M , g )   be an n-dimensional   ( n ≥ 2 )   Riemannian manifold and let   R  i j k l    and   R  i j    be, respectively, the components of the Riemannian curvature tensor and the Ricci tensor in orthonormal basis   {  e 1  , … ,  e n  }   of    T x  M   at any point   x ∈ M  . We consider an arbitrary symmetric two-tensor  φ  on   ( M , g )  . At any point   x ∈ M  , we can diagonalize  φ  with respect to g, using orthonormal basis   {  e 1  , … ,  e n  }   of    T x  M  . In this case, the components of  φ  have the form    φ  i j   =  λ i    δ  i j    . Let   sec  (  e i  ,  e j  )   be the sectional curvature of the plane of    T x  M   generated by   e i   and   e j  . We can express   sec  (  e i  ,   e j  )   in the following form (see [1] (p. 436); [20]):


   1 2   ∑   i ≠ j   sec   (  e i  ,  e j  )     (  λ i  −  λ j  )  2  =  R  i j l k    φ  i k    φ  j l   +  R  i j    φ  i k    φ  k  j   



(1)







If   ( M , g )   is an Einstein manifold and its sectional curvature satisfies the inequality   sec ≥ δ   for a positive constant  δ , then from Equation (1) we obtain the inequality


   R  i j l k    φ  i k    φ  j l   +  s n    φ  i k    φ  i k    ≥  ( δ / 2 )   ∑   i ≠ j     (  λ i  −  λ j  )    2  .  



(2)







If    trace g   φ =  ∑ i   λ i  = 0  , then the identity holds    ∑ i    (  λ i  )  2  = − 2  ∑  i < j    λ  i     λ  j     . In this case, the following identities are true:


   1 2   ∑  i ≠ j      (  λ i  −  λ j  )  2  =  ( n − 1 )   ∑ i     (  λ i  )  2  − 2  ∑  i < j     λ i    λ j  = n  ∑ i     λ  i     2  = n   ∥  φ  ∥  2  .  











Then the inequality in Equation (2) can be rewritten in the form


   R  i j l k    φ  i k    φ  j l   +  s n    φ  i k    φ  i k   ≥  n  δ   ∥ φ ∥  2  .  



(3)







From Equation (3) we obtain the inequality


   R  i j l k    φ  i k    φ  j l   ≥  ( n  δ − α )    ∥ φ  ∥  2  .  











Then    R ∘  > 0   for the case when   α < n  δ  , where   α = s / n   is the Einstein constant of   ( M , g )  . If   ( M , g )   is compact then it is a spherical space form (see [9]). Theorem 1 is proven.



Define the quadratic form


   F p   ( ω )  =  R  i j     ω  i   i 2  …   i p     ω    i 2  …   i p   j  −   p − 1  2    R  i j k l     ω  i j   i 3  …   i p      ω    i 2  …   i p    k l    



(4)




for the components    ω   i 1  …  i p    = ω  (  e  i 1   , … ,  e  i p   )    of an arbitrary differential p-form  ω . If the quadratic form    F p   ( ω )    is positive definite on a compact Riemannian manifold   ( M , g )  , then the p-th Betti number of the manifold vanishes (see [21] (p. 61); [3] (p. 88)). At the same time, in [22] the following inequality


   F p   ( ω )  ≥ p   ( n − p )   ε    ∥ ω ∥  2  > 0  








was proved for any nonzero p-form  ω  on a Riemannian manifold with    R ¯  ≥ ε > 0  . On the other hand, in [14] the inequality


   F p   ( ω )  ≥ p  ( n − p )   δ   ∥ ω ∥  2  > 0  








was proved for any nonzero p-form  ω  on a Riemannian manifold with    R ∘  ≥ δ > 0  . In these cases,    b 1   ( M )  , … ,  b  n − 1    ( M )    are zero (see [21]). We can improve these results for the case of Einstein manifolds. First, we will prove the following.



Lemma 1.

Let   ( M , g )   be an Einstein manifold with Einstein constant α and sectional curvature bounded below by a constant   δ > 0  . If   α < ( n + 2 ) δ   then


    F p   ( ω )  ≥  ( 1 / 3 )   (  ( n + 2 )   δ − α )   ( n − p )     ∥ ω ∥  2  > 0   











for any nonzero p-form ω and an arbitrary   1 ≤ p ≤ n − 1  .





Proof. 

Let   p ≤ [ n / 2 ]  , then we can define the symmetric traceless two-tensor   φ   i 1   i 2  …  i p     with components (see [14])


   φ  j k    i 1   i 2  …  i p    =  ∑  a = 1  p    ω   i 1  …  i  a − 1   j i    a + 1   …  i p     g  k  i a    +  ω   i 1  …  i  a − 1   k  i  a + 1   …  i p     g  j  i a     −   2 p  n    g  j k     ω   i 1  …  i p     








for each set of values of indices    i 1    i 2  …  i p    such that   1 ≤  i 1  <  i 2  < … <  i p  ≤ n  . After long but simple calculations we obtain the identities (see also [14]),


         R  i j k l     φ  i l    i 1  …  i p      φ     i 1  …  i p     j k   = p  (   2 ( n + 4 p )  n   R  i j     ω  i   i 2  …  i p     ω    i 2  …  i p   j      










     − 3  p − 1   R  i j k l     ω  i j   i 3  …  i p     ω    i 3  …  i p    k l   −   4 p   n 2   s    ∥ ω ∥  2  ) ;     



(5)






            φ ¯    2  =    2 p ( n + 2 ) ( n − p )  n     ∥ ω ∥  2  ,     



(6)




where


         φ ¯    2  =   g  i k    g  j l    g   i 1   j 1    …  g   i p   j p     φ  i j         i 1  …  i p        φ  k l    j 1  …  j p    ,         ∥ ω ∥  2  =  ω   i 1   i 2  …  i p     ω    i 1   i 2  …  i p     =  g   i 1   j 1    …  g   i p   j p     ω    i 1  …  i p       ω    j 1  …  j p        








for    g  i j   =   (  g   − 1   )   i j    . If   ( M , g )   is an Einstein manifold, then Equations (4) and (5) can be rewritten in the form


   F p   ( ω )  =  s n     ∥ ω ∥  2  −   p − 1  2    R  i j k l     ω  i j   i 3  …  i p      ω     i 3  …  i p    k l   ,  










    R  i j k l     φ  i l (  i 1  …  i p  )    φ    i 1  …  i p     j k   = p    2 n + 4 p   n 2    s    ∥ ω ∥  2  − 3  ( p − 1 )   R  i j k l     ω  i j   i 3  …  i p      ω    i 3  …  i p    k l    .  



(7)







On the other hand, for a fixed set of values of indices   (  i 1  ,  i 2  , … ,  i p  )   such that   1 ≤  i 1  <  i 2  < … <  i p  ≤ n  , the equality in Equation (3) can be rewritten in the form


   R  i j k l     φ  i l    i 1  …  i p      φ     j k   i 1  …  i p     +  s n    φ  i k    i 1  …  i p      φ  i k      i 1  …  i p     ≥ n  δ   φ   k l    i 1  …  i p       φ     k l        i 1  …  i p     .  



(8)







Then from Equation (8) we obtain the inequality


   R  i j k l     φ  i l    i 1  …  i p      φ     i 1  …  i p     j k   ≥  n δ −  s n        φ ¯    2  .  



(9)







Using Equation (9) we deduce from Equation (7) the following inequality:


  6 p   F p   ( ω )  ≥  n  δ −  s  n + 2         φ ¯    2  .  



(10)







Thus, using Equation (6) we can rewrite Equation (10) in the following form:


   F p   ( ω )  ≥  ( 1 / 3 )   (  ( n + 2 )   δ − α )    ( n − p )    ∥ ω ∥  2  .  



(11)







It is obvious that if the sectional curvature of an Einstein manifold   ( M , g )   satisfies the inequality   sec ≥ δ   for a positive constant  δ , then the scalar curvature of   ( M , g )   satisfies the inequality   s ≥ n ( n − 1 )  δ > 0  . In this case, if   ( n − 1 )  δ ≤ α < ( n + 2 )  δ  , then from Equation (11) we deduce that the quadratic form    F p   ( ω )    is positive definite for any   p ≤ [ n / 2 ]  . It is known [23] that    F p   ( ω )  =  F  n − p    ( ∗  ω )    and     ∥ ω ∥  2  =   ∥ ∗ ω ∥  2    for any p-form  ω  with   1 ≤ p ≤ n − 1   and the Hodge star operator   ∗ :  Λ p  M →  Λ  n − p   M   acting on the space of p-forms    Λ p  M  . Therefore, the inequality in Equation (11) holds for any   p = 1 ,  … ,  n − 1  . □





Recall that if on an n-dimensional compact Riemannian manifold   ( M , g )   the quadratic form    F p   ( ω )    is positive definite for any smooth p-form  ω  with   p = 1 , … , n − 1  , then the Betti numbers    b 1   ( M )  , … ,  b  n − 1    ( M )    vanish (see [3] (p. 88); [13] (pp. 336–337)). In this case, Theorem 2 directly follows from Lemma 1.



If the curvature of an Einstein manifold   ( M , g )   satisfies   sec ≤ − δ < 0   for a positive constant  δ , then the Einstein constant of   ( M , g )   satisfies the the obvious inequality   α ≤ − ( n − 1 )  δ < 0  . On the other hand, from Equation (1) we deduce the inequality    R  i j l k    φ  i k    φ  j l   ≤ −  n  δ + α    φ   2   . Therefore, if    δ > − α / n  , then    R ∘  < 0  . In this case, the Tachibana numbers    t 1   ( M )  , … ,  t  n − 1    ( M )    are equal to zero (see [19]). We proved the following.



Proposition 1.

Let   (  M n  , g )   be an Einstein manifold with sectional curvature bounded above by a negative constant   − δ   such that   δ > − α / n   for the Einstein constant α. Then the Tachibana numbers    t 1   ( M )  , … ,  t  n − 1    ( M )    are zero.





We can complete this result. If an Einstein manifold   (  M n  , g )   satisfies the curvature inequality   sec ≤ − δ < 0   for a positive constant  δ , then from Equations (3) and (7) we deduce the inequality    F p   ( ω )  ≤ −  1 3   (  ( n + 2 )   δ + α )   ( n − p )    ∥ ω ∥  2    for any   p = 1 , … , n − 1  . Therefore, the Tachibana numbers    t 1   ( M )  , … ,  t  n − 1    ( M )    of a compact Einstein manifold with sectional curvature bounded above by a negative constant   − δ   such that   δ ≥ − α / ( n + 2 )   are zero.
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