
Bashir Ahmad 1, Ymnah Alruwaily 1, Ahmed Alsaedi 1,* and Sotiris K. Ntouyas 1,2

1 Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; bashirahmad_qau@yahoo.com (B.A.); ymnah@ju.edu.sa (Y.A.); sntouyas@uoi.gr (S.K.N.)

2 Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece

* Correspondence: aalsaedi@hotmail.com

Received: 21 November 2019; Accepted: 29 November 2019; Published: 10 December 2019

In [1], the authors wish to make the following corrections.

1. Throughout the original paper, the co-efficient of \(g_3(t) \) (see (5), (21), (28), proof of Theorem 6) is

\[
\int_{a}^{b} \left(\int_{a}^{s} \frac{(s-u)^{q-1}}{\Gamma(q)} \hat{f}(u) \, du \right) \, dA(s).
\]

It should be

\[
\left[\sum_{i=1}^{n-2} \left| \alpha_i \right| \int_{a}^{b} \left(\int_{a}^{s} \frac{(s-u)^{q-1}}{\Gamma(q)} \hat{f}(u) \, du \right) \, dA(s) \right].
\]

2. In (15) of the original paper, it was

\[
I_3 = \int_{a}^{b} \left(\int_{a}^{s} \frac{(s-u)^{q-1}}{\Gamma(q)} \hat{f}(u) \, du \right) \, dA(s).
\]

It should be

\[
I_3 = \sum_{i=1}^{n-2} \alpha_i \int_{a}^{b} \left(\int_{a}^{s} \frac{(s-u)^{q-1}}{\Gamma(q)} \hat{f}(u) \, du \right) \, dA(s).
\]

3. Throughout the original paper, the coefficient of \(g_3 \) (for instance, see (19), proofs of Theorems 2, 4, 6, and 7) is

\[
\int_{a}^{b} \frac{(s-a)^{q}}{\Gamma(q+1)} \, dA(s).
\]

It should be

\[
\left[\sum_{i=1}^{n-2} \left| \alpha_i \right| \frac{(\eta_i-a)^{q}}{\Gamma(q+1)} + \int_{a}^{b} \frac{(s-a)^{q}}{\Gamma(q+1)} \, dA(s) \right].
\]

The coefficient of \(\frac{\left| g_3(t_2) - g_3(t_1) \right|}{\Gamma(q+1)} \) in the proof of Theorem 2 is

\[
\int_{a}^{b} \left(\int_{a}^{s} \frac{(s-a)^{q}}{\Gamma(q+1)} \, dA(s) \right).
\]

It should be

\[
\left[\sum_{i=1}^{n-2} \left| \alpha_i \right| (\eta_i-a)^{q} + \int_{a}^{b} (s-a)^{q} \, dA(s) \right].
\]
4. Throughout the original paper, the co-efficient of \(|g_3(t)|\) (see proofs of Theorems 2, 4, 6, and 7) and \(|g_3(t) - g_3(t_1)|\) in the proof Theorem 2 is

\[
\int_a^b \left(\int_a^s \frac{(s-u)^{\varrho-1}}{\Gamma(q)} [f(u,x(u))]du \right) dA(s).
\]

It should be

\[
\left[\sum_{i=1}^{n-2} |a_i| \int_a^{\eta_i} \frac{(\eta_i-s)^{\varrho-1}}{\Gamma(q)} |f(s,x(s))| ds + \int_a^b \left(\int_a^s \frac{(s-u)^{\varrho-1}}{\Gamma(q)} [f(u,x(u))]du \right) dA(s) \right].
\]

5. In the proofs of Theorems 6 and 7, the coefficient of \(|g_3(t)|\) is

\[
\int_a^b \left(\int_a^s \frac{(s-u)^{\varrho-1}}{\Gamma(q)} [f(u,x(u)) - f(u,y(u))]du \right) dA(s).
\]

It should be

\[
\left[\sum_{i=1}^{n-2} |a_i| \int_a^{\eta_i} \frac{(\eta_i-s)^{\varrho-1}}{\Gamma(q)} \left| f(s,x(s)) - f(s,y(s)) \right| ds + \int_a^b \left(\int_a^s \frac{(s-u)^{\varrho-1}}{\Gamma(q)} \left| f(u,x(u)) - f(u,y(u)) \right|du \right) dA(s) \right].
\]

6. In Example 2, \(\Lambda \approx 0.243646, \xi \Lambda \approx 0.097458 < 1\) in the original paper. These values should be \(\Lambda \approx 0.261226, \xi \Lambda \approx 0.104490 < 1\).

7. In Example 3 of the original paper, \(\Lambda \approx 0.272140, \Lambda - \frac{(b-a)^{\vartheta}}{\Gamma(q+1)} \approx 0.204166\) and \(\delta < 14.693960\).

The corrected values of these parameters are \(\Lambda \approx 0.326742, \Lambda - \frac{(b-a)^{\vartheta}}{\Gamma(q+1)} \approx 0.258768\) and \(\delta < 11.5\).

8. In Example 4, \(\delta < 11.023738\) in the original paper. It should be \(\delta < 9.1\).

9. In Example 5, \(L\Lambda \approx 0.102053\). It should be \(L\Lambda \approx 0.097959\).

10. In the Conclusions, the coefficient of \(g_3\) is \(\frac{(b-a)^{\vartheta+1}}{\Gamma(q+2)}\). It should be

\[
\sum_{i=1}^{n-2} |a_i| \frac{\eta_i-a}{\Gamma(q+1)} + \frac{(b-a)^{\vartheta+1}}{\Gamma(q+2)}.
\]

The authors would like to apologize for any inconvenience caused to the readers by these changes.

References