On the Asymptotic Behavior of D-Solutions to the Displacement Problem of Linear Elastostatics in Exterior Domains

Vincenzo Coscia
Department of Mathematics and Computer Science, University of Ferrara, Via Machiavelli 30, 44121 Ferrara, Italy; vincenzo.coscia@unife.it

Received: 15 November 2019; Accepted: 30 December 2019; Published: 3 January 2020

Abstract: We study the asymptotic behavior of solutions with finite energy to the displacement problem of linear elastostatics in a three-dimensional exterior Lipschitz domain.

Keywords: non-homogeneous elasticity; exterior domains; existence and uniqueness theorems; asymptotic behavior; Stokes' paradox

MSC: Primary 74B05; 35J47; 35J57; Secondary 35J20

1. Introduction

The displacement problem of elastostatics in an exterior Lipschitz domain Ω of \mathbb{R}^3 consists of finding a solution to the equations \[(\text{div } C[\nabla u]) = \partial_j(C_{ijkl}\partial_k u_l), \text{ Lin is the space of second–order tensors (linear maps from } \mathbb{R}^3 \text{ into itself) and Sym, Skw are the spaces of the symmetric and skew elements of Lin respectively; if } E \in \text{ Lin and } v \in \mathbb{R}^3, Ev \text{ is the vector with components } E_{ij}v_j. B_R = \{ x \in \mathbb{R}^3 : r = |x| < R \}, T_R = B_{2R} \setminus B_R, \mathcal{C}_{BR} = B_R \setminus B_{R_0} \text{ and } B_{R_0} \text{ is a fixed ball containing } \partial \Omega. \]

If $f(x)$ and $\phi(r)$ are functions defined in a neighborhood of infinity, then $f(x) = o(\phi(r))$ means that $\lim_{R \to +\infty} (f/\phi) = 0. To lighten up the notation, we do not distinguish between scalar, vector, and second–order tensor space functions; c will denote a positive constant whose numerical value is not essential to our purposes.)

\[
\begin{align*}
&\text{div } C[\nabla u] = 0 \quad \text{in } \Omega, \\
&u = \hat{u} \quad \text{on } \partial \Omega, \\
&\lim_{R \to +\infty} \int_{\partial B} u(R, \sigma)d\sigma = 0, \\
\end{align*}
\]

where u is the (unknown) displacement field, \hat{u} is an (assigned) boundary displacement, B is the unit ball, $C = [C_{ijkl}]$ is the (assigned) elasticity tensor, i.e., a map from $\Omega \times \text{ Lin} \to \text{ Sym}$, linear on Sym and vanishing in $\Omega \times \text{ Skw}$. We shall assume C to be symmetric, i.e.,

\[E \cdot C[L] = L \cdot C[E] \quad \forall E, L \in \text{ Lin}, \]

and positive definite, i.e., there exists positive scalars μ_0 and μ_e (minimum and maximum elastic moduli [1]) such that

\[\mu_0 |E|^2 \leq E \cdot C[E] \leq \mu_e |E|^2, \quad \forall E \in \text{ Sym}, \quad a.e. \text{ in } \Omega. \]
Let $D^{1,q}_0(\Omega)$, $D^{1,q}_1(\Omega)$ ($q \in [1, +\infty)$) be the completion of $C^\infty_0(\overline{\Omega})$ and $C^\infty_0(\Omega)$, respectively, with respect to the norm $\|\nabla u\|_{L^q(\Omega)}$.

We consider solutions u to equations (1) with finite Dirichlet integral (or with finite energy) that we call D-solutions analogous with the terminology used in viscous fluid dynamics (see [2]). More precisely, we say that $u \in D^{1,2}_0(\Omega)$ is a D-solution to equation (1)

$$\int_{\Omega} \nabla \varphi \cdot C[\nabla u] = 0, \quad \forall \varphi \in D^{1,2}_0(\Omega).$$

A D-solution to system (1) is a D-solution to equation (1)$_1$, which satisfies the boundary condition in the sense of trace in Sobolev’s spaces and tends to zero at infinity in a mean square sense [2]

$$\lim_{R \to +\infty} \int_{\partial B} |u(R, \sigma)|^2 d\sigma = 0.$$ (5)

If u is a D-solution to (1)$_1$, then the traction field on the boundary is

$$s(u) = C[\nabla u]n$$

where a well defined field of $W^{-1/2,2}(\partial \Omega)$ exists and the following generalized work and energy relation [1] holds

$$\int_{\Omega \cap B_R} \nabla u \cdot C[\nabla u] = \int_{\partial \Omega} u \cdot s(u),$$

where abuse of notation $\int_{\partial \Omega} u \cdot s(u)$ means the value of the functional $s(u) \in W^{-1/2,2}(\partial \Omega)$ at $u \in W^{1/2,2}(\partial \Omega)$, and n is the unit outward (with respect to Ω) normal to $\partial \Omega$.

If $\hat{u} \in W^{1/2,2}(\partial \Omega)$, denoting by $u_0 \in D^{1,2}(\Omega)$ an extension of \hat{u} in Ω vanishing outside a ball, then (1)$_{1,2}$ is equivalent to finding a field $u \in D^{1,2}_0(\Omega)$ such that

$$\int_{\Omega} \nabla \varphi \cdot C[\nabla v] = -\int_{\Omega} \nabla \varphi \cdot C[\nabla u_0], \quad \forall \varphi \in D^{1,2}_0(\Omega).$$ (6)

Since the right-hand side of (6) defines a linear and continuous functional on $D^{1,2}_0(\Omega)$, and by the first Korn inequality (see [1] Section 13)

$$\int_{\Omega} |\nabla v|^2 \leq \frac{2}{\mu_0} \int_{\Omega} \nabla v \cdot C[\nabla v],$$

by the Lax–Milgram lemma, (6) has a unique solution v, and the field $u = v + u_0$ is a D-solution to (1)$_{1,2}$. It satisfies (1)$_3$ in the following sense (see Lemma 1)

$$\int_{\partial B} |u(R, \sigma)|^2 d\sigma = o(R^{-1}).$$ (7)

Moreover, u exhibits more regularity properties provided C, $\partial \Omega$ and \hat{u} are more regular. In particular, if C, \hat{u} and $\partial \Omega$ are of class C^∞, then $u \in C^\infty(\overline{\Omega})$ [3].

If C is constant, then existence and regularity hold under the weak assumption of strong ellipticity [1], i.e.,

$$\mu_0 |a|^2 |b|^2 \leq a \cdot C[a \otimes b]b, \quad \forall a, b \in \mathbb{R}^3.$$

As far as we are aware, except for the property (7), little is known about the convergence at infinity of a D-solution and, in particular, whether or under what additional conditions (7) can be improved.
The main purpose of this paper is just to determine reasonable conditions on \(C \) assuring that (7) can be improved.

We say that \(C \) is regular at infinity if there is a constant elasticity tensor \(C_0 \) such that

\[
\lim_{|x| \to +\infty} C(x) = C_0. \tag{9}
\]

Let \(C_0 \) and \(C \) denote the linear spaces of the \(D \)-solutions to the equations

\[
\text{div} \, C[\nabla \tau] = 0 \quad \text{in } \Omega, \\
\tau = \tau \quad \text{on } \partial \Omega,
\]

\[
\lim_{R \to +\infty} \int_{\partial B} |h(R, \sigma)|^2 d\sigma = 0, \tag{10}
\]

for all \(\tau \in \mathbb{R}^3 \) and

\[
\text{div} \, C[\nabla \tau] = 0 \quad \text{in } \Omega, \\
\tau = \tau + Ax \quad \text{on } \partial \Omega,
\]

\[
\lim_{R \to +\infty} \int_{\partial B} |h(R, \sigma)|^2 d\sigma = 0, \tag{11}
\]

for all \(\tau \in \mathbb{R}^3, A \in \text{Lin} \), respectively.

The following theorem holds.

Theorem 1. Let \(u \) be the \(D \)-solution to (1). There is \(q < 2 \) depending only on \(C \) such that

\[
\int_{\partial B} |u(R, \sigma)|^q d\sigma = o(R^{q-3}). \tag{12}
\]

If \(C \) is regular at infinity, then

\[
\int_{\partial B} |u(R, \sigma)|^q d\sigma = o(R^{q-3}), \quad \forall q \in (3/2, +\infty), \tag{13}
\]

and

\[
\int_{\partial B} |u(R, \sigma)|^q d\sigma = o(R^{q-3}), \quad \forall q \in (1, 2] \iff \int_{\partial \Omega} \hat{u} \cdot s(\tau) = 0, \quad \forall \tau \in C_0. \tag{14}
\]

Moreover, if

\[
\int_{\partial \Omega} C[\hat{u} \otimes n] = 0, \quad \int_{\partial \Omega} \hat{u} \cdot s(\tau) = 0, \quad \forall \tau \in C,
\]

then

\[
\int_{\partial B} |u(R, \sigma)|^2 d\sigma = o(R^{-2}). \tag{16}
\]

2. Preliminary Results

In this section, we collect the main tools we need to prove Theorem 1.

Lemma 1. If \(u \in D^{1,q}(\Omega) \), for \(q \in [1, 2] \), then

\[
\int_{\partial B} |u(R, \sigma)|^q d\sigma \leq c(q) R^{q-3} \int_{CB_R} |
abla u|^q. \tag{17}
\]
Moreover, if \(q = 2 \), then, for \(R \gg R_0 \),
\[
\int_{\mathcal{C}_B R} \frac{|u|^2}{r^2} \leq 4 \int_{\mathcal{C}_B R} |\nabla u|^2. \tag{18}
\]

Proof. Lemma 1 is well-known (see, e.g., [2,4] and [5] Chapter II). We propose a simple proof for the sake of completeness. Since \(D^{1,2}(\Omega) \) is the completion of \(C_\infty^0(\Omega) \) with respect to the norm \(\| \nabla u \|_{L^2(\Omega)} \), it is sufficient to prove (17) and (18) for a regular field \(u \) vanishing outside a ball. By basic calculus and Hölder inequality,
\[
\int_{\partial B} \left| u(R, \sigma) \right|^q d\sigma = \int_{\partial B} \left| \frac{\partial}{\partial r} u(r, \sigma) dr \right|^q d\sigma = \int_{\partial B} r^{2q/\theta - 2q} \left| \partial_r u(r, \sigma) dr \right|^q d\sigma
\]
\[
\leq \left\{ \int_{\partial B} \left| \nabla u(r, \sigma) \right|^q r^{2q/\theta} dr \right\} \left\{ \int_{\partial B} r^{-2q/\theta} dr \right\}^{q-1}.
\]
Hence, (17) follows by a simple integration.

From
\[
\int_{\mathcal{C}_B R} \frac{|u|^2}{r^2} = \int_{R} \frac{u}{r} \partial_r \left(r \int_{\partial B} |u(r, \sigma)|^2 d\sigma \right) = 2 \int_{\mathcal{C}_B R} \frac{u}{r} \partial_r u
\]
by Schwarz’s inequality, one gets
\[
\int_{\mathcal{C}_B R} \frac{|u|^2}{r^2} \leq 2 \left\{ \int_{\mathcal{C}_B R} \frac{|u|^2}{r^2} \right\} \left\{ \int_{\mathcal{C}_B R} |\nabla u|^2 \right\}^{1/2}.
\]
Hence, (18) follows at once. \(\Box \)

Let \(C_0 \) be a constant and strongly elliptic elasticity tensor. The equation
\[
\text{div} \ C_0 |\nabla u| = 0 \tag{19}
\]
admits a fundamental solution \(\mathcal{U}(x - y) \) [6] that enjoys the same qualitative properties as the well-known ones of homogeneous and isotropic elastostatics, defined by
\[
\mathcal{U}_{ij}(x - y) = \frac{1}{8\pi\mu(1 - \nu)|x - y|} \left((3 - 4\nu)\delta_{ij} + \frac{(x_i - y_i)(x_j - y_j)}{|x - y|^2} \right),
\]
where \(\mu \) is the shear modulus and \(\nu \) the Poisson ratio (see [1] Section 51). In particular, \(\mathcal{U}(x) = O(r^{-1}) \) and for \(f \) with compact support (say) the volume potential
\[
\mathcal{V}[f](x) = \int_{\mathbb{R}^3} \mathcal{U}(x - y) f(y) dy
\]
is a solution (in a sense depending on the regularity of \(f \)) to the system
\[
\text{div} \ C_0 |\nabla u| + f = 0 \quad \text{in} \ \mathbb{R}^3. \tag{20}
\]

Let \(\mathcal{H}^1 \) denote the Hardy space on \(\mathbb{R}^3 \) (see [7] Chapter III). The following result is classical (see, e.g., [7]).

Lemma 2. \(\nabla_2 \mathcal{V} \) maps boundedly \(L^q \) into itself for \(q \in (1, +\infty) \) and \(\mathcal{H}^1 \) into itself.
Lemma 3. Let \(u \) be the D-solution to (1), then, for \(R \gg R_0 \),
\[
\int_{\partial \Omega} s(u) = \int_{\partial \Omega} s(u),
\]
and
\[
\int_{\partial \Omega} h \cdot s(u) = \int_{\partial \Omega} \hat{u} \cdot s(h), \quad \forall h \in \mathcal{C},
\]
where \(\mathcal{C} \) is the space of D-solutions to system (11).

Proof. Let
\[
g(x) = \begin{cases}
0, & |x| > 2R, \\
1, & |x| < R, \\
R^{-1}(R - |x|), & R \leq |x| \leq 2R,
\end{cases}
\]
with \(R \gg R_0 \). Scalar multiplication of both sides of (1) by \(gh \), (2) and an integration by parts yield
\[
\int_{\partial \Omega} h \cdot s(u) - \int_{\partial \Omega} \hat{u} \cdot s(h) = \frac{1}{R} \int_{\mathbb{T}_R} \left(u \cdot C[\nabla h]e_r - h \cdot C[\nabla u]e_r \right),
\]
where \(e_r = x/r \). Since \(R \leq |x| \leq 2R \), by Schwarz’s inequality,
\[
\left| \frac{1}{R} \int_{\mathbb{T}_R} h \cdot C[\nabla u]e_r \right| \leq 2 \int_{\mathbb{T}_R} \left| r^{-1}h \cdot C[\nabla u]e_r \right| \leq c \|r^{-1}h\|_{L^2(\mathbb{T}_R)} \|\nabla u\|_{L^2(\mathbb{T}_R)},
\]
\[
\left| \frac{1}{R} \int_{\mathbb{T}_R} u \cdot C[\nabla h]e_r \right| \leq 2 \int_{\mathbb{T}_R} \left| r^{-1}u \cdot C[\nabla h]e_r \right| \leq c \|r^{-1}u\|_{L^2(\mathbb{T}_R)} \|\nabla h\|_{L^2(\mathbb{T}_R)}.
\]
Hence, letting \(R \to +\infty \) and taking into account Lemma 1, (23) follows. \(\square \)

Lemma 4. Let \(u \) be the D-solution to (1); then, for \(R \gg R_0 \),
\[
\int_{\partial \Omega} (x \otimes s(u) - C[\hat{u} \otimes u]) = \int_{\partial \Omega} (x \otimes s(u) - C[u \otimes e_R]),
\]
where \(\mathcal{C} \) is the space of D-solutions to system (11).

Proof. (25) is easily obtained by integrating the identity
\[
0 = x \otimes \text{div} \ C[\nabla u] = \text{div} (x \otimes C[\nabla u]) - C[\nabla u]
\]
over \(B_R \) and using the divergence theorem. \(\square \)

3. Proof of Theorem 1

Let \(\vartheta(r) \) be a regular function, vanishing in \(B_R \) and equal to 1 outside \(B_{2R} \), for \(R \gg R_0 \). The field \(v = \vartheta u \) is a D-solution to the equation
\[
\text{div} C[\nabla v] + f = 0 \quad \text{in} \ \mathbb{R}^3,
\]
with
\[
f = -C[\nabla u] \nabla \vartheta - \text{div} C[u \otimes \nabla \vartheta].
\]
Of course, \(f \in L^2(\mathbb{R}^3) \) vanishes outside \(T_R \). Let \(C_0 \) be a strongly elliptic elasticity tensor. Clearly, \(v \) is a \(D \)-solution to the system

\[
\operatorname{div} C_0 [\nabla v] + \operatorname{div} (C - C_0) [\nabla v] + f = 0 \quad \text{in} \mathbb{R}^3,
\]

which coincides with \(u \) outside \(B_{2R} \). Since

\[
\nabla_k V[f](x) = O(r^{-1-k}), \quad k \in \mathbb{N}, \quad \nabla_k = \nabla \cdots \nabla \quad \text{\(k \)-times}
\]

by Lemma 2, the map

\[
w'(x) = \nabla V[(C - C_0) [\nabla w]](x) + V[f](x)
\]

is continuous from \(D^{1,q} \) into itself, for \(q \in (3/2, +\infty) \). Choose

\[
C_{0ijkl} = \mu_e \delta_{ij} \delta_{kl}.
\]

Since

\[
\|\nabla V[(C - C_0) [\nabla w]]\|_{D^{1,q}} \leq c(q) \frac{\mu_e - \mu_0}{\mu_e} \|w\|_{D^{1,q}}
\]

and [7]

\[
\lim_{q \to 2} c(q) = 1,
\]

the map (30) is contractive in a neighborhood of 2 and its fixed point must coincide with \(v \). Hence, there is \(q \in (1, 2) \) such that \(u \in D^{1,q}(\Omega) \) and (12) is proved.

If \(C \) is regular at infinity, then by Lemma 1 and the property of \(\vartheta \),

\[
\|u' - z'\|_{D^{1,q}} \leq c(q) \|C - C_0\|_{L^\infty(\mathbb{R}^3)} \|v - z\|_{D^{1,q}}.
\]

Since the constant \(c(q) \) is uniformly bounded in every interval \([a, b]\) and \(\|C - C_0\|_{L^\infty(\mathbb{R}^3)} \) is sufficiently small, \(u \in D^{1,q} \) for \(q \in (3/2, +\infty) \).

Assume that

\[
\int_{\partial \Omega} \tilde{u} \cdot s(h) = 0, \quad \forall h \in \mathfrak{C}_0.
\]

By Lemma 3, for \(R \gg R_0 \),

\[
\int_{\partial B_R} s(u) = \int_{\partial B_R} C[\nabla u] \epsilon_R = 0.
\]

Therefore, taking into account (27),

\[
\int f = \int_{\mathbb{R}^3} f = \int_{\mathbb{R}^3} \vartheta'(r) dr \int_{\partial B_r} C[\nabla u] \epsilon_r = 0,
\]

(33)

Since

\[
V[f](x) = \int_{\mathbb{R}^3} [\mathcal{U}(x - y) - \mathcal{U}(y)] f(y) dv + \mathcal{U}(x) \int_{\mathbb{R}^3} f,
\]

by (33), Lagrange’s theorem and (29)

\[
\nabla V[f](x) = O(r^{-3}),
\]

so that

\[
\nabla V[f] \in L^q, \quad q \in (1, 2].
\]

(34)
Then, by (31), the map (30) is contractive for \(q \) in a right neighborhood of 1 so that
\[u \in D^{1,q}(\Omega), \quad q \in (1,2]. \tag{35} \]

Conversely, if (35) holds, then a simple computation yields
\[\int_{\partial\Omega} s(u) = \int_{\mathbb{R}^3} C[\nabla u] \nabla g = -\frac{1}{R} \int_{\mathbb{R}^3} C[\nabla u] e_r, \tag{36} \]
where \(g \) is the function (24). By Hölder’s inequality,
\[\frac{1}{R} \left| \int_{\mathbb{R}^3} C[\nabla u] e_r \right| \leq \frac{c}{R} \left\{ \int_{\mathbb{R}^3} |\nabla u|^{3/2} \right\}^{2/3} \left\{ \int_{\mathbb{R}^3} d\nu \right\}^{1/3} \leq \left\{ \int_{\mathbb{R}^3} |\nabla u|^{3/2} \right\}^{2/3}. \]

Therefore, letting \(R \to +\infty \) in (36) yields
\[\int_{\partial\Omega} s(u) = 0 \]
and this implies (32).

From
\[\nabla \nabla [f](x) = \int_{\mathbb{R}^3} [u_{ij}(x - y) - u(x) - y_i \partial_i u_{ij}(y)] f_j(y) d\nu_y + u_{ij}(x) \int_{\mathbb{R}^3} f_j + \partial_i u(x) \int_{\mathbb{R}^3} u_{ij}(y) f_j(y) d\nu_y \]
by (33), Lemma 4, Lagrange’s theorem and (29)
\[\nabla \nabla [f](x) = O(r^{-4}), \]
so that \(\nabla \nabla [f] \in L^1 \). Since \(f \in L^2(\mathbb{R}^3) \) has compact support and satisfies (33), it belongs to \(\mathcal{H}^1 \) (see [7] p. 92) and by Lemma 2 \(\nabla [f] \in \mathcal{H}^1 \). Hence, it follows that (30) maps \(\mathcal{H}^1 \) into itself and
\[||v' - z'||_{\mathcal{H}^1} \leq ||C - C_0||_{L^\infty(\mathcal{G}_R^\beta)} ||v - z||_{\mathcal{H}^1}. \]

Since, by assumptions, \(||C - C_0||_{L^\infty(\mathcal{G}_R^\beta)} \) is small, (30) is a contraction and by the above argument its (unique) fixed point must coincide with \(v \) so that \(\nabla u \in L^1(\Omega) \).

We aim at concluding the paper with the following remarks.

(i) It is evident that the hypothesis that \(C \) is regular at infinity can be replaced by the weaker one that \(\|C - C_0\| \) is suitably small at a large spatial distance.

(ii) The operator \(\nabla \) maps boundedly the Hardy space \(\mathcal{H}^q \) (\(q \in (0,1) \)) into itself [7]. Hence, the argument in the proof of (16) can be used to show that \(\nabla v \in \mathcal{H}^q, q > 3/4 \). We can then use the Sobolev–Poincaré (see [8] p. 255) to see that \(u \in L^q(\Omega) \) for \(q > 1 \).

(iii) Relation (16) is a kind of Stokes’ paradox in nonhomogeneous elastostatics: if \(C \) is regular at infinity, then the system
\[
\begin{align*}
\text{div} \ C[\nabla h] &= 0 \quad \text{in} \ \Omega, \\
h &= \tau \quad \text{on} \ \partial\Omega, \\
\int_{\partial\Omega} h(R,\sigma) d\sigma &= o(R^{-1}),
\end{align*}
\]
with τ nonzero constant vector, does not admit solutions.

(iv) If C is constant and strongly elliptic, then u is analytic in Ω and at large spatial distance admits the representation

$$u(x) = U(x) \int_{\partial\Omega} s(u) + \nabla U(x) \int_{\partial\Omega} \left(\xi \otimes s(u) - C[\hat{u} \otimes n] \right)(\xi) + \psi(x)$$

with $|x^3|\psi(x)| \leq c$. Therefore, in the homogeneous case, the conclusions of Theorem 1 hold pointwise:

$$|x^2|u(x)| \leq c \iff \int_{\partial\Omega} \hat{u} \cdot s(h) = 0, \forall h \in C_0,$$

$$\int_{\partial\Omega} C[\hat{u} \otimes n] = 0, \quad \int_{\partial\Omega} \hat{u} \cdot s(h) = 0, \forall h \in C \Rightarrow |x^3|u(x)| \leq c.$$