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Abstract: Numerical simulation experiments are of great importance for research and education in
Physics. They can be greatly aided by proper graphical representations, especially for spatio-temporal
dynamics. In this contribution, we describe and provide a novel Javascript-based library and cloud
microservice—QMwebJS—for the visualization of the temporal evolution of three-dimensional
distributions. It is an easy to use, web-based library for creating, editing, and exporting 3D models
based on the particle sampling method. Accessible from any standard browser, it does not require
downloads or installations. Users can directly share their work with other students, teachers
or researchers by keeping their models in the cloud and allowing for interactive viewing of the
spatio-temporal solutions. This software tool was developed to support quantum mechanics teaching
at an undergraduate level by plotting the spatial probability density distribution given by the
wavefunction, but it can be useful in different contexts including the study of nonlinear waves.

Keywords: scientific visualization; Schrödinger equation; mathematical software; WebGL; physics
simulations; quantum mechanics; physics education

1. Introduction

In the last decades, the rapid development of hardware and software has opened many new
avenues and modified the workflows of scientific research. The same is true for technical education in
different disciplines, and in particular in Physics. The concept of a “virtual” or “in-silico” “laboratory”
has been developed, that is, the utilization of computers to generate interactive environments to
perform simulated experiments and analyze their results. It has been argued that combining physical
and virtual investigations can strengthen science learning and help to better engage and motivate
students in scientific experiences [1]. In particular, adequate visualizations play a critical role in
enhancing science and engineering learning [2]. Graphical displays are an important tool because
addressing a given concept from the point of view of multiple representations brings unique benefits
for students [3].

Information and communication technologies have facilitated the expansion of distance learning
and both virtual laboratories and interactive computer experiments have been fruitful in this context [4].
Being affordable and easily accessible to students, such systems can also support inquiry-based
learning [5]. Computer-assisted tools can also be more advantageous than experiments in some cases,
for instance when they allow faster manipulation than actual physical devices [6]. Such systems can
also make scientific inquiry more tangible and attractive for students. For undergraduate level quantum
mechanics, new computer graphics tools could compensate for the inherent lack of experiment-assisted
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visualizations, thereby serving to clarify conceptual difficulties and misconceptions of spatial
wavefunctions [7]. Studies have shown how modules that simulate and display the evolution of
the Schrödinger equation can be successfully integrated in introductory Quantum Physics courses [8].
In this context, a recent study [9] emphasizes the fundamental importance of understanding the time
evolution of quantum systems and discusses the serious difficulties that students often encounter.

Here, we describe an open-source, web-based software tool (implemented as a client-side
javascript library, called QMwebJS) for interactive three-dimensional (3D) visualization of the
evolution of quantum wavefunctions obtained from numerical simulations. This tool is an example
of how modern web technology can be leveraged for making complex visualizations of scientific
and engineering simulations, while being both easy to use and more engaging for students.
The wavefunction at time t is represented as a collection of points, sampled from the probability
amplitude, |Ψ(t, x)|2. Since the wavefunction is represented as a cloud of points, as opposed to more
traditional isocontour plots, all the wave-like dynamics can be seen simultaneously throughout the
entire wavefunction volume. In this way, a more accurate representation of the wavefunction and
computer simulations of the Schrödinger equation can provide students with remarkable insight
into a large spectrum of quantum systems. These graphical representations can also be valuable
for interpreting new phenomena and provide a means to more easily communicate such results to
other scientists.

Computational scientists often use computer languages or packages, designed specifically for
numerical simulations, that are equipped with graphics libraries for producing 3D plots (and videos)
of their simulation results. Indeed, many commercial mathematical software packages include 3D
display functions and have been widely used for educational purposes (see e.g., Reference [10]).
As just mentioned, often such displays of the wavefunction are provided as isocontour approximations,
which do not fully capture the intricate dynamics throughout the full 3D volume. Also, when sharing
results with other scientists, careful selection and special setup is required to portray the most relevant
subset of images. Thus, the present practice of communicating the results of numerical simulations is
fraught with two fundamental problems: (1) the common representation of isosurfaces is not entirely
adequate in all situations; and (2) sharing the results in video/image still does not allow other teachers,
researchers, students to interactively explore the full solutions. While we treat specifically the study of
the Schrödinger equation, these same issues are also applicable to other similar systems.

The QMwebJS tool, which can be used within a cloud microservice, solves these two problems.
First, it provides online editing/rendering of 3D wavefunction with Monte Carlo sampling and particle
visualization, reported originally with Blender3D [11]. With the help of WebGL primitives, the sampled
wavefunction amplitude is represented as 3D objects (ico-spheres), that we call particles. Next, when
provided as a web-based cloud service, 3D models can be created, exported, and shared with other users
in order to interactively explore the results directly within a web browser, without requiring additional
software installation. In this way, a user would access the web service, open the simulation results
(supplied as matrices in a specified format), and use the client-browser to execute the visualization
locally. Once uploaded to the browser, the 3D model is immediately instantiated, which can then be
edited by changing several visual parameters (lighting, texture, color, etc.). Results of the visualization
can be saved as images, videos, or exported as 3D models, which can be subsequently viewed in
standard 3D viewer software, or once again in the browser using QMwebJS.

The QMwebJS javascript library fulfills the following design objectives:

• Accessible: the solution is cross-platform, since it uses standard WebGL enabled browser technology
(e.g., Mozilla, Chrome, Opera), not requiring any installation.

• Easy to use: the interface is intuitive, with functionality reduced to essentials; this counters other
software tools such as Blender or ParaView, that have a wider application domain, but require
considerable knowledge to use.

• Efficient: the javascript app, QMwebJS, uses WebGL with the Javascript Framework Threejs; these
are optimized libraries that minimize graphic latency by using features of the host GPU.
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• Adaptable: QMwebJS can be used to customize 3D models to achieve the desired visualization; this
is done in the real-time editor with functions for setting the 3D objects, the scale, color, and lighting
effects.

• Transportable: Whether used as a stand-alone library, or used through the online platform, models
can be downloaded and shared online with other researchers; models of the temporal dynamics of
a simulation can be loaded and explored interactively directly in the web browser (with QMwebJS)
or in any standard 3D viewer.

Even while this software was developed with the specific intention of wavefunction visualization
in an educational context, it can also be used to represent any three-dimensional distribution function
and therefore it might find application in many different frameworks. In particular, we believe it has
potential uses for displaying research results of 3D nonlinear waves that are being actively studied in
different branches of Physics, including optics, cold atoms, or cosmology.

This paper is structured as follows. Section 2 explains the details of QMwebJS; after briefly
reviewing similar software, it presents the architecture, methods and algorithms on which the library
is based. It is the core of the contribution but it can be skipped by the reader solely interested in the
utilization of the educational tool and not in its underlying implementation details. Section 4 describes
the particularities of the visualization environment and discusses its performance in terms of rendering
time and memory needs. Section 5 discusses possible educational strategies and provides several
examples that could be pertinent for an undergraduate Quantum Mechanics course. Section 6 presents
a brief summary of results. Finally, we provide Supplementary Materials that describes the software
usage and requirements of input data formats as well as a step-by-step guide for getting started with
examples. A fully functional online version of QMwebJS is provided at http://www.parvis3d.org.es/.
This site provides live examples provided in this paper, as well as links to download both the source
code and simulation code examples. Other researchers could use our online version of QMwebJS or
install the software on their own machines to produce visualizations with their own data.

2. Background

2.1. Particle Sampling for 3D Visualization

Achieving an effective visualization display of different scientific sets of data is far from a trivial
problem, see Reference [12–14] for enlightening discussions. A useful 3D visual representation,
particularly for spatiotemporal probability distributions that solve the Schrödinger equation, utilises
a particle sampling method recently described [11], similar to some representations of fluid flows [15].
Briefly, |Ψ|2 is represented by a collection of 3D primitive objects (e.g., polygon-spheres, icospheres)
that we call particles. They are positioned at randomly sampled points drawn from the probability
density. For temporal simulations, sampling of |Ψ|2 is done for all time points. In this way, the density
is directly observed for all points in the 3D volume. Interior details of the wavefunction can be
observed at all times as it evolves over time, revealing simultaneous details not accessible with other
display representations, such as isosurfaces.

Creating a visually satisfying 3D representation consisting of a large set of points in space requires
memory efficient libraries. While this 3D editor is a highly flexible platform, it can be overpowering
for the present task since its focus is towards full-featured cinemagraphic level animations. As such,
we developed QMwebJS, a cross-platform web-based editor environment, as a more practical and
easier solution. Another advantage is that software installation is not necessary since it only requires
a modern web browser.

A useful feature of our previous approach [11] was the ability to export interactive 3D models
in order to share simulation solutions. For a single instance in time, this solution is useful, however
extending this to multiple models along the simulation timeline presented significant practical
problems. In particular: (1) the exported models can be large (>50–200 MB) making uploads and

http://www.parvis3d.org.es/
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latency a problem; and (2) evolving the simulation in time is done by switching consecutive 3D models
in and out of memory, also suffering from considerable latency.

The QMwebJS solves these problems since all models of the timeline are stored and edited in
the web browser (i.e., on the host computer, or the client-side). QMWebJS relies on two web-based
graphics libraries: WegGL (functions implementing standard OpenGL graphics, but for web) and
Threejs (extending WebGL with higher level functional event handling). However, these libraries
are served through the petition of the HTML document, and the end user does not need to install
additional libraries or modules other than use a modern web browser.

2.2. Background Literature on Web Based Visualization

Visualizations and 3D models are traditionally made using desktop software available
commercially (e.g., 3DS Max, Maya, Catia) or as open source (e.g., Blender, ParaView). Given the end
goal of these tools (i.e., cinematography or game development), they are specialized software tools
targeted for high-end desktop rendering performance, artistic creativity, and complex cinematographic
production pipelines.

For most cases, and in particular for educational purposes, an easy-to-use web/cloud based
solution is more advantageous, not requiring software installation/learning. Several scientific
visualization projects based on cloud solutions have been reported recently in the literature. These
tools allow sharing, editing, and storing of scientific visualizations through the web. Reference [16]
presents a microservice based architecture that uses cloud computing on Amazon Web Services (AWS)
for server computation that enable interactive visualizations embedded in web. Web based generated
visualization of high dimensional data with the tool SPOT was recently described [17]. This tool
provides a web repository that allows users to interact with visualizations, compare data and store
them in the cloud. It also takes advantage of the power of the GPU since it is based on OpenGL.
This allows the visualizations to be very responsive without losing quality. In both cases however,
the focus is not on 3D visualizations, but on producing 2D graphics.

For 3D graphic models with similar characteristics to the desktop tools described earlier, several
fundamental libraries are now available that are based upon the WebGL standard, thereby guaranteeing
operability with different browsers. WebGL is a library developed in Javascript that allows the
rendering of 2D and 3D models on the Web. It is fully integrated with HTML and is supported by
practically all browsers. WebGL executes OpenGL instructions that use the GPU. This feature enables
it to perform rendering tasks with the same efficiency as desktop-based tools. There are multiple 3D
modeling tools on the web that use the WebGL library. Some examples are:

• Potree: a point-cloud renderer (www.potree.org)
• PlayCanvas: a 3D Game engine (playcanvas.com)
• BabylonJS: a real-time 3D render engine (www.babylonjs.com)
• PixiJS: an engine for 2D digital content (www.pixijs.com)
• Sketchfab: a 3D model sharing platform (sketchfab.com)
• CesiumJS: a geospatial 3D map platform (cesiumjs.org)

Due to the general character of these software libraries and tools, they must be adapted to
address a particular scientific problem. Examples include software to visualize natural phenomena
such as ocean eddies [18], interactive models of air pollution [19], and geospatial visualization [20].
In an example from biology, the HTMoL [21] project provides a platform for interactive streaming and
visualization of 3D molecules.

For physics applications, the HexaLab project [22] interactively generates and displays hex-meshes.
The authors describe how such hex-mexes contain complex internal structures that can be better
explored through this effective visualization. Another online visualization/computational project
is based upon the Abubu.js library, which was developed to investigate complexity and nonlinear
dynamics such as solitons and fractals [23] by using interactive visualizations.

www.potree.org
playcanvas.com
www. babylonjs.com
www.pixijs.com
sketchfab.com
cesiumjs.org
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These web-based software tool examples utilize WebGL for rendering. In addition, many have the
possibility of storing data or models online. Our software, QMwebJS, is also based upon WebGL and
provides a way of producing interactive visualizations as well as 3D models that can be shared with
other scientists. It is different from all other existing tools since it implements our particle sampling
method for displaying wavefunctions and their temporal evolution.

3. Methods and Software Details

3.1. Data Workflow for Using QMWebJS

Figure 1 shows the principal steps of the data workflow for using QMwebJS. These steps are
described in more detail in the Supplementary Materials, but the essential points are the following:

• Simulator output file: the simulated evolution of |ψ|2 produces 3D output matrices, possibly
stored as binary files (e.g., a Matlab .mat file or a Numpy .npz), one for each time point t.

• Produce sampled data file: the particle sampling algorithm produces a datafile by using the utility
function, particleSample.py; this produces particle positions and associated |ψ|2 that are stored
in JSON format (see the Supplementary Materials for more details about input data, and the
python utility functions).

• Loading Data: the datafile is loaded to the QMwebJS enabled web page ( for example our online
site http://www.parvis3d.org.es/). After editing, models and images can be exported directly
from the from client-browser.

Simulation: 
evolution of  particle 

sampling 

.npz or .mat
binary files

Interpolation from grid

Sampled distribution

JSON file 
(input to  QMwebJS)

Load JSON 
into QMwebJS

enabled web 
browser 

this executes the graphic
editor of QMwebJS in the 
local client-host browser

1. 2. 3. 4.

Figure 1. Steps of the data workflow for using QMwebJS.

It should be stressed that all loading, processing, and graphical editing is performed in the
client-browser. In fact, the web page does not need to be connected to the Internet. In any case,
the JSON data that is uploaded is stored in memory in the client-browser. Thus, the application can
take advantage of the host’s graphical processing unit (GPU) through WebGL, which is implemented
in all modern web browsers by default.

3.1.1. Details of the Particle Sampling Algorithm

The particle sampling algorithm [11] of the amplitude |Ψ|2 generates a density of randomly sampled
points from the input matrix (Algorithm 1). To better perceive the density of particles, an artificial color
is assigned to each particle as a function of closest amplitude (defined on the mesh points). The default
color scale is defined such that lower densities are colored blue, while highly dense areas are painted red,
yellow and white at their maximum value.

http://www.parvis3d.org.es/
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Algorithm 1: The particle sampling method.
Require: Ψ matrix of amplitude data for each time step. Arranged as a 3D grid.
Ensure: Determine the total number of particles N that will be sampled.

Matrix with particle positions in time and 3D space and the |Ψ|2 value for each one.

Particle data: pn = (x, y, z, |Ψ|2).
Interpolate all the distribution.

1: kCount = 0
2: while kCount < N do

3: Random 3D point xr from U [0, 1]
4: yt = L(xr)
5: if yr < |yt| then

6: Store xr point
7: else

8: kCount← kCount + 1
9: end if

10: end while

3.1.2. Implementation Details in Web Page

Since QMwebJS is javascript, it is called by HTML calls and instantiated within a web-browser
(see the Supplementary Materials and accompanying files). Thus, a minimal implementation requires
an HTML form that consists of a file selection button (for opening the particle sampled transformation
file of the simulation output) and the POST method would call the QMwebJS javascript code that opens
the 3D canvas with menus. Data is loaded within the local client-side browser (no data is uploaded to
the server) and default graphics parameters instantiate the particles in the 3D coordinate system of
the WebGL viewing/editor canvas. Apart from the canvas, QMwebJS instantiates a lateral side-panel
menu so that different aspects of the visualization can be changed (e.g., the default size, number of
points, color scale, lighting, and other aspects). An important feature is the “scrubber bar”, that allows
the user to interactively move along the timeline, as well as typical navigational features of the 3D
canvas for enlarging or rotating the image, changing the object that represents the particles. To this
end, all modifications to the visualization are interactive and take place in real-time.

3D Models. Once a visualization with the desired characteristics is obtained, image sequences
(representing all the time points of the simulations) can be saved, or 3D models can be exported,
using standardized formats. Such models can be displayed or modified in other 3D viewers or
editors. A popular and efficient 3D models format implemented in QMwebJS is GLTF (Khronos Group,
https://www.khronos.org/gltf/), which is an open source specification for loading and transmission
of 3D models between applications.

The system has been designed as a web application to foster online use and sharing of simulation
results as interactive 3D model (see for example the simulations shown in this paper at http://www.
parvis3d.org.es/).

3.2. Software Design and Details

The class architecture of QMwebJS is shown in Figure 2. QMwebJS depends on the Three.js
javascript library (https://threejs.org), which in turn builds upon WebGL (https://www.khronos.
org/webgl/)—a standard low-level graphics library built into all modern web browsers. The Three.js
library provides asynchronous event-driven functions for building menu and graphical control
widgets (e.g., buttons, sliders, mouse-event handling, etc.) that bind to the low-level WebGL
actions. Thus, QMwebJS consists of a customized Graphical User Interface (GUI) for creating, editing,
and manipulating wavefunctions from the particle-sampling method with graphics primitives.

https://www.khronos.org/gltf/
http://www.parvis3d.org.es/
http://www.parvis3d.org.es/
https://threejs.org
https://www.khronos.org/webgl/
https://www.khronos.org/webgl/
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Import
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Figure 2. The QMwebJS system architecture and libraries.

Apart from the dependency on Threejs and WebGL, QMwebJS uses two other javascript libraries
for functionality. textitdat.GUI (github.com/dataarts/dat.gui) is a pure Javascript library that provides
functionality for building graphical user interfaces (GUI) with a full range of events and callback
utilities. Ccapture.js (https://github.com/spite/ccapture.js/): a pure Javascript library for capturing
animations at the web without losing quality.

As seen in Figure 2, QMwebJS contains two core modules written in JavaScript that control the
WebGL viewport. The first module, ParticleCreator, loads the simulation data to an internal 3D model
data structure. The other module, ParticleVisualizator, relies upon WebGL and ThreeJS to display the
model in a viewport, manipulate/edit the aspects of the visualization with custom callback functions.

Codeflow through QMwebJS library is shown in Figure 3, where only the most important functions
are shown.

Asynchronous interaction is accomplished by the main infinite loop, (the Render Loop), which
common to all similar event-driven applications. All interactive WebGL applications are designed
similarly, where not only are mouse/keyboard events monitored, but also each iteration represents
an independent display frame.

1 var RenderLoop = function( )
2 {
3 requestAnimationFrame( RenderLoop );
4 stats.update ();/*FPS and MS/Frame counter */
5 update( ); /* Updates if are changes */
6 render( ); /* Renders the visualization */
7 }

Listing 1: JavaScript loop code that allows the visualization to be continuously rendered, keeping
the visualization alive and interactive.

https://github.com/spite/ccapture.js/
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Data load

1 let arrayData = [];
2 /* Function that load the 3Ddata file*/
3 let dataLoad = function( ){
4 /*Load from a folder called data3d */
5 fetch( ’./ data3d/’.concat(dataName))
6 .then(function(resp) {
7 return resp.json( );
8 })
9 .then(function(dataFile) {

10 console.log(dataFile);
11 /*Copy the 3d data into the new array*/
12 arrayData = dataFile;
13 /*Call the main function for start render */
14 createParticles( );
15 });
16 }

Listing 2: Javascript code for .json data upload.

Figure 3. Diagram that shows the code workflow from the data load to the 3D model creation.

Placing Particles in the Viewport

The two principal functions for generating and placing the data in the 3D canvas are
PlaceParticles and PlaceParticlesLowRender. Both functions share an identical main structure,
shown in the Algorithm 2. As indicated, the first step is to read the particle locations and then
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depending upon the number of particles indicated in the QMwebJS GUI panel, these are displayed in
the viewport by instantiating basic 3D objects.

Algorithm 2: Place particles.
Require: Matrix loaded with simulation data arrayData

Set number of particles via GUI nParticles = Ni
Ensure: Display simulation particles at the 3D canvas.

1: pCount = 0
2: while pCount < nParticles do

3: tStep← GUI.timeStep
4: x, y, z, psi← arrayData[tStep][pCount](x, y, z, Ψ)
5: color ← calculateColor(psi)
6: pCount← pCount + 1
7: 1Generate high quality particles (Listing 3). ‖ 2Store data in arrays (Listing 4).
8: end while
9: 2Generate high performance particles with stored data (Listing 4).

10: CLS
11: DisplayVisualization()

1 placeParticles(), 2 placeParticlesLowRender()

Despite their similarities, these two functions employ different methods for creating the 3D model,
while possessing the same internal structure. A more detailed explanation of each is described below.

Place particles:
The placeParticles function creates icosahedrons in the 3D environment. First, a group of 3D objects

is created that are an intrinsic Three.js data type for storing object arrays as groups. Next, within the
main loop, the data array set to the spatial grid positions r = (x, y, z). As mentioned previously,
particles are assigned a false color based on the value of |Ψ|2 (from the nearest grid point) in order to
represent density for more effective visualizations; low density is towards blue, while high density is
towards red and/or white. With this color value and point position r, the object is added to a global
array list and instantiated in the 3D viewport (see Listing 3 and accompanying detailed description).

Each particle can be represented as primitive 3D objects, so that both perspective and light effects
are of very high quality. To accomplish this, the material properties are modified in order to choose
a wireframe or solid object; this is done with particlesWireframed, available in the QMwebJS GUI panel.
For solid objects, a primitive icosahedron is prefered over a primitive sphere; the IcosahedronBufferGeometry
is a Three.js geometry with less impact on performance due to fewer faces compared to a sphere.
To further improve graphics performance, the number of icosahedron faces can be set. Once the loop is
finished, the previous visualization with clear_scene is eliminated and the set of objects created in this
time step is added to the 3D canvas.

1 /* Create a new material with Psi color data*/
2 var material = new THREE.MeshLambertMaterial( {
3 color: calculate_color_by_amplitude_hex(psi ,psiMin ,psiMax),
4 wireframe: particlesWireframed} );
5 /* Create a new Icosahedron object */
6 var geometry = new THREE.IcosahedronBufferGeometry(objectSize , 0 )
7 /* Generate a particle object */
8 var particle = new THREE.Mesh( geometry , material );
9 /*Set the 3D data position */

10 particle.position.set( x, y, z );

Listing 3: Javascript code for generating and placing the particles at the 3D canvas using
Icosahedron geometries.
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Place Particles Low Render
The placeParticlesLowRender function creates particles with the best render performance, since

these are actually 2D objects, but with software methods that correctly treat perspective depending
upon camera angles. To create these objects, the following steps in the function are taken. First,
the function creates a geometry buffer. All the particles will be assigned to this buffer after they have
been created. Next, two vectors are created to store the 3D positions and the colors. The main loop for
reading data from the matrix is identical to the code in the previous section. However, in this function
the position and color data (rgb- format) are stored into the arrays. This algorithm of memory buffering
loads the data into the viewport, as shown in Listing 4. The last function of Listing 4 assigns the
position and color from within the loop. Then, a material is created that, together with the geometry
buffer, will be used to create the particles. The 2D particles are created using an original data type of
Threejs, called Points.

1 /*Add to geometry positions and colors */
2 geometry.addAttribute( ’position ’, new THREE.Float32BufferAttribute( positions , 3 ) );
3 geometry.addAttribute( ’color ’, new THREE.Float32BufferAttribute( colors , 3, true) );
4 /* Create a material */
5 var material = new THREE.PointsMaterial( {
6 size: particleSize , vertexColors: THREE.VertexColors } );
7 /* Generate a group of points with geometry and material */
8 points = new THREE.Points( geometry , material );

Listing 4: Javascript code for generating and placing the particles at the 3D canvas using
Points buffer.

In the previous Listing 3, 3D data objects were created with IcosahedronBufferGeometry. Along
the timeline, once the model formed by points (see Listing 4) is created, the previous visualization is
eliminated and the points are added to the 3D canvas.

4. The QMwebJS Visualization Environment

Figure 4 shows the QMwebJS environment. This environment is divided into two parts:
the display viewport canvas area (A) and the GUI panel (B). Objects in the viewport can be manipulated
in an expected and intuitive manner for 3D viewers by zoom, rotation, and translation. The panel is
divided into several expandable tabs for interacting and modifying the model. Other utilities such as
loading and exporting models are also available through the GUI panel.

Several “tabs” are available on the lateral side panel to adjust viewport parameters. Figure 4
shows these GUI controls. A brief description follows, while a more complete description can be found
in the Supplementary Materials.

Two important parameters in any 3D editor are the position and value of the lighting, and the
viewing angle of the camera. These parameters are controlled from the Light and Camera tab. In this
way, full control over the light position, direction, and value is adjustable. The viewing camera position
is also available from this tab.

The Particles tab (Figure 4) controls the number of particles, the particle size, and also color scaling.
In the Time Steps tab, a scrubber bar as well as text input provides fine control over visualization of
frames along the timeline. All changes to the model are reflected in real time in the display view with
low latency, which is achieved by using a memory efficient data type, called the Point Buffer Geometry.
In this way, users can interactively customize visualization parameters (colors, point sizes, etc.) using
the other options to adapt the 3D model to their objectives.
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Figure 4. Example of the Graphical User Interface (GUI). The visualization canvas of QMwebJS is
shown in (A); the side-panel of the GUI with the tab Time Steps expanded shown in (B).

The 3D Model tab allows users to change the quality of the 3D model, selecting details of the
icosahedron meshes for the basic particle geometry. Thus, to improve performance, faces of polygons
can be eliminated or wireframe icosahedrons can be used. For example, disabling the occluded polygon
faces can significantly improve memory performance which otherwise would require more processing.

In Cube and Background tabs of Figure 4 allow users to change background color as well as to
toggle a wireframe cube useful for perceiving 3D orientation. The Image render tab configures and
generates the renders to download images from the simulation. Here also, the 3D models can be
exported to be viewed in any standard 3D software editor/viewer.

4.1. Rendering Performance of 3D Objects

This section describes the practical rationale of choosing between two types of 3D objects with
respect to overall capability and performance issues. The two main objects used to represent particles
are the Points Buffer (PB) and the Mesh Icosahedron (MI-MIW). Tests were performed to determine
how much memory and processing is needed for each depending upon the total number of particles to
be rendered.

Figure 5 shows comparisons between these two data type methods utilized for each of the particles:
the point buffer (PB) geometry and the mesh icosahedron (MI-MIW) geometries. The points buffer
geometry method (Figure 5A) is a memory-optimized geometric object that are stored as 2D flat objects;
the associated methods guarantee that these objects always are shown as front-facing with respect to
the camera position. While memory efficient (e.g., 106 points do not cause the slightest latency load
on graphic performance), these objects do not reflect light as a 3D sphere would; this is especially
noticeable at close distance where points are seen as small flat squares (see the zoom 6x of Figure 5A).
For many situations with many particles, this produces quite adequate visual representations.

For full 3D depth, the Mesh Icosahedron Figure 5B and the Mesh Icosahedron wire-framed
Figure 5C are of interest. The fact that these objects are three-dimensional meshes means that textures
and reflective properties can be applied to them. Also, the number of faces of the polyhedron can be
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adjusted, starting from the minimum defined by WebGL (a 20 faced Icosahedron) in order to emulate
the volume of spheres, yet retain graphic and memory performance.

Figure 5. Object representation comparisons for the same wavefunction example. The subfigures
illustrate: (A) the point buffer primitives, (B) the mesh icosahedron geometry primitives, and (C) the
wireframe mesh icosahedron primitives. Each representation is shown with 3× and 6× zoom for clarity
(bottom row).

Figure 6, shows that with the PB it is necessary to double or even triple the number of objects used
to achieve a quality visualization similar to those of the MI or the MIW. As described, this is because
the PB consists of a set of 2D points distributed across the three-dimensional grid that have minimal
impact on memory. However, in the case of the MIs, the 3D quality is better but the impact on memory
and rendering is larger. Comparing the MI and MIW some differences can also be seen. The MIW has
smoother visualization when the model is seen from a certain distance. That is because the occluded
objects could be seen through the wireframed structure of the icosahedrons when wireframe mode in
enabled. When the camera is closer, the MI has best results as shown at Figure 5.

In practice, in order to optimize graphic latency, it is often useful to use the PB during editing
tasks, where speed is required for parameter adjustment, while for producing production level models,
the full 3D polygon and wireframe objects are used.
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Figure 6. Comparison between the Point Buffer Geometry (PB), the Mesh Icosahedron Geometry (MI)
and the Mesh Icosahedron Geometry Wireframed (MIW) representing the same data with different
number of particles.

4.2. Performance

Figure 7 shows a comparison of the memory and render response times as a function of the
number of particles used for the different object types. The impact on memory (Figure 7A) of the PB
(Points Buffer) is much smaller compared to that used by the MI (Mesh Icosahedron Geometry) or
the MIW (Mesh Icosahedron Geometry Wireframed). In the previous section (Figure 6), it was shown
that the number of the PB with respect to that of MI should be doubled or tripled in order to achieve
similar performance.

The results in terms of the rendering time demonstrate the difficulty of working with the MI or
MIW above a certain number of particles. While difficult to quantify, the sense of response latency is
noticed considerably in animations when the fps is below 24. From Figure 7B that compares frame rates
for the PB and MI, regimes for each can be established for retaining reasonable response. In particular,
the PB is the best option when low memory utilization and maximum fluidity are intended. When
using this low render method, it is possible to attain 60 frames per second during the editing, thereby
producing smooth and fluid movement. On the other hand, the MI and MIW should be used for tasks
that require the highest display quality, that for modest hardware would suffer from lower frame rates
during editing.
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Figure 7. (A) Comparison of the memory usage using the Points Buffer and the two Mesh Icosahedrons
Geometry objects. (B) Comparison of time used to render a frame and frames per second using the
Points Buffer and the two Mesh Icosahedron Geometry objects.

Another factor to consider is the size of the 3D exported models. A comparison with between the
OBJ and the GLTF is shown in Figure 8. While the OBJ model format is a more widely used standard,
this comparison shows that GLTF provides better memory performance.

Figure 8. Size comparison of 3D model file using GLTF and OBJ formats.

5. Use in a Quantum Mechanics Course

We can envisage two main strategies that could profit from the use of QMwebJS in an undergraduate
educational context. For this discussion, we provide three illustrative examples from relevant quantum
systems. While assessing the student’s overall learning efficiency with this software would have great
value, such a cohort study is beyond the scope of the present work. Nonetheless, several studies
are available that establish some foundations for how such a case study could be carried out (see
References [7,24,25] for cases that make use of questionnaires to investigate the impact of different
methodologies in the context of quantum physics education).

The first strategy is that of creating animations that can be used for demonstrations in the
classroom or to produce models to be stored in a repository accessible to students. As described, these
models could be accessed by the students and viewed interactively within QMwebJS or any other 3D
viewer to explore different cases of interest.
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In Reference [26], the authors describe the value of animations to help students build mental
representations of concepts related to quantum mechanics. In this spirit, the teacher would produce
and choose illustrative examples of wavefunction dynamics, that may be difficult to conceive using
more standard techniques. These interactive visualizations would complement written notes or books,
making these concepts come to life, by providing clear display of the probabilistic time evolution of
3D distributions.

The second strategy, for which the QMwebJS library would be especially convenient, is that
of inquiry-based learning. The value of research-based methods for the students’ understanding
of particular quantum concepts was highlighted in Reference [27]. The accessibility, adaptability,
and simplicity of the visualization tool can allow students to pursue their own projects and create their
own models without investing much effort in getting started with the software details. The possibility
of sharing the models would be useful to distribute their results to their teachers or colleagues. Notice,
by the way, that apart from the aforementioned plotting of |Ψ(t, x)|2, one can also depict the probability
distribution in Fourier space |Ψ̃(t, p)|2. Comparing the direct space and momentum space models
for the same wavefunction, a qualitative visual understanding of the uncertainty principle could
be developed.

Both strategies would greatly benefit by combining QMwebJS with a simulation module to
integrate the time-dependent 3D Schrödinger equation for a given potential and initial condition,
in order to produce the input data to be visualized. In fact, we presented a Python-based tool of this sort
in Reference [28] for the 1D and 2D cases, but it can be readily generalized to the 3D case (in fact, 3D was
not included in Reference [28] mainly because of the difficulties in automatically producing attractive
and informative 3D plots). In the Supplementary Materials (also see http://www.parvis3d.org.es/),
we provide the code and simulation results of the examples shown below, that are 3D adaptation of
the examples given in Reference [28].

Let us now present three examples that can serve to illustrate quantum concepts that are typically
taught in undergraduate courses: the decay of an excited eigenfunction, quantum tunneling and
interference of the wavefunction. In the following, we consider the time Schrödinger equation written
in adimensional form:

i
∂Ψ(t, x)

∂t
= −1

2
∇2Ψ(t, x) + V(x)Ψ(t, x). (1)

For the first example, let us consider how an excited hydrogen atom decays to a lower energy
state, a process usually studied in connection with quantum perturbation theory. Taking V = −1/r,
the eigenstates, discussed in innumerable texts on quantum mechanics, depend on three quantum
numbers n, l, m and form an orthonormal basis that can be written as:

Ψnlm = e−iEntRnl(r)Ylm(θ, ϕ), (2)

where r, θ, ϕ are spherical coordinates, En = − 1
2n2 are the quantized energies, Ylm(θ, ϕ) are spherical

harmonics and the radial part of the wavefunction Rnl(r) is the product of an exponential e−r/n and
an associated Laguerre polynomial. Consider the following expression for the temporal evolution of
the wavefunction decaying from an initial state parameterized by ni, li, mi to a final state with n f , l f , m f

Ψ(t, x) = e−
t

2τ Ψni limi
+

√
1− e−

t
τ Ψn f l f m f

, (3)

where τ is the decay time of the transition. Notice that directly including the time exponential
in the wavefunction is not exact in general but it is a good approximation to the correct behavior.
Discussing this subtle issue is not our goal here but we refer the interested reader to References [29,30].
Considering the actual dimensionful parameters, the decay time of the hydrogen atom excited states
for transitions mediated by the electric dipole moment is in the order of the nanosecond, whereas the
inverse of the frequency appearing in the complex exponential h̄/En is of the order of tens or hundreds

http://www.parvis3d.org.es/
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of attoseconds for the lowest-lying states. Thus, the adimensional τ is a huge number around 108.
For visualization convenience, a smaller value of the order of 103 was used to build this simple model.

Some images from the simulation are depicted in Figure 9. Notice that watching this animation
can help to reconcile the quantum concept of quantized excited states decay and the excess energy is released
as a photon with the classical concept accelerated charges emit electromagnetic radiation. Indeed, it can be
appreciated that the probability distribution of the electric charge shifts in time in a such a way that
it could be semi-classically identified with a microscopic circular antenna with a typical oscillation
frequency of (Eni − En f ).

For the second example, let us consider a potential with two adjacent truncated harmonic
potentials centered at positions x1, x2:

V =
1
2

min(|x− x1|2, |x− x2|2) (4)

and take as initial condition the would-be ground state of one of the harmonic wells, if it were isolated
from the other one:

Ψ(t = 0, x) = π−
3
4 exp

(
−1

2
|x− x1|2

)
. (5)

In typical quantum mechanics courses, students learn that this is not an eigenstate of the full system
and, that, therefore, the probability distribution will evolve. In particular, it will tunnel from one of the
potential minima to the other, with a tunneling rate depending on the height of the barrier between
them (in this case, depending on |x1 − x2|).

t=0 t=1 t=2 t=3

t=4 t=5 t=6 t=7

t=15 t=53 t=91 t=198

Figure 9. Illustration of the evolution of the wavefunction during a dipolar decay of an excited
eigenstate of the hydrogen atom.

Some images of the visualization of this process generated with QMwebJS are displayed in
Figure 10. The particle representation shows how there is a probability current from one minimum
to the other, providing a qualitative illustration of the continuity equation of quantum mechanics
(this particular feature is much harder to visualize with iso-surface plots). Notice that the particles
in any plot can be heuristically regarded as follows—making a measurement of position would give
the position of one of the particles chosen at random amongst the whole set (this corresponds to the
actual prediction of the quantum theory in the limit of infinite number of particles). Thus, the particle
sampling method is particularly adequate to depict probability fluxes.
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t=0 t=9 t=95

t=100 t=102 t=104

t=99

t=123

Figure 10. Illustration of the evolution of the wavefunction during a quantum tunneling process.

The third example depicts quantum interference, shown in Figure 11. The wavefunction is initially
divided into four separate gaussian wavepackets. They start expanding due to the diffraction term
and they eventually come into contact producing a characteristic interference pattern. The setup is
a sort of quantum multiple-slit numerical experiment. Again, the particle representation is useful here
for the physical understanding. Take the image after some time when the fringe pattern has been
formed. The distribution of N particles resembles the result of repeating the multiple-slit experiment
for a single electron N times and measuring the electron position always at that particular time.

t=5 t=30 t=55

t=5

t=5

t=5

Z=0º

Z=45º

Z=90º

zoom 3x zoom 3x 
t=5

HD Mode HD Wireframed

Figure 11. Illustration of the evolution of a wavefunction leading to quantum interference.

6. Conclusions and Outlook

Here, we presented a software tool to facilitate the interactive representation and the sharing
of the time evolution of three dimensional probability distributions. The visualization algorithm
employs a particle sampling method and can be used on a cloud microservice accessible from any
standard web browser, or run locally by just opening an html file in a web browser. The library is
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written in JavaScript, with some helper utilities in Python and relies on a number of standard libraries
and freeware applications. We provide the open source library and a few 3D models to server as
illustrative examples.

Throughout, we have argued that, mostly thanks to its accessibility, usage simplicity and
adaptability, QMwebJS can be a useful resource to teach quantum mechanics courses, both for graphical
demonstrations prepared by the teacher or as a useful application for student projects. In combination
with a simulation module to integrate the 3D time-dependent Schrödinger equation (e.g., by adapting
our previous contribution [28] to the 3D case), it may open many possibilities for inquiry-based
learning of particular aspects of quantum mechanics. Certainly, it would be interesting to directly test,
using physics education research methods, the influence of the utilisation of the software in improving
the student understanding and motivation. If the present proposal turns out to be successful, it could
be interesting to generalize the software to depict similar methods with vector fields (e.g., the linear
momentum density distribution), combinations of spatial wavefunctions and internal degrees of
freedom (e.g., spin) or other quantities of interest.

Finally, it is worth commenting that the application presented here might be profitable beyond
educational contexts. We envisage its possible adequacy for the diffusion of research results,
in particular in relation to the simulation of the dynamics of 3D nonlinear waves.

Supplementary Materials: The following are available at http://www.mdpi.com/2227-7390/8/3/430/s1.
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