Article

Inequalities in Triangular Norm-Based ∗-Fuzzy $(L^+)^p$ Spaces

Abbas Ghaffari 1, Reza Saadati 2,∗ and Radko Mesiar 3,4,∗

1 Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran 147789365, Iran; a.g139571@gmail.com
2 School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 131416846, Iran
3 Department of Algebra and Geometry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
4 Department of Mathematics Radlinského 11, Faculty of Civil Engineering, 810 05 Bratislava, Slovakia
* Correspondence: rsaadati@eml.cc or rsaadati@iust.ac.ir (R.S.); mesiar@math.sk (R.M.)

Received: 19 October 2020; Accepted: 3 November 2020; Published: 6 November 2020

Abstract: In this article, we introduce the ∗-fuzzy $(L^+)^p$ spaces for $1 \leq p < \infty$ on triangular norm-based ∗-fuzzy measure spaces and show that they are complete ∗-fuzzy normed space and investigate some properties in these space. Next, we prove Chebyshev’s inequality and Hölder’s inequality in ∗-fuzzy $(L^+)^p$ spaces.

Keywords: fuzzy measure space; fuzzy integration; t-norm; Chebyshev’s inequality; Hölder’s inequality

MSC: Primary 54C40, 14E20; Secondary 46E25, 20C20

Function spaces, especially L^p spaces, play an important role in many parts in analysis. The impact of L^p spaces follows from the fact that they offer a partial but useful generalization of the fundamental L^1 space of integrable functions. The standard analysis, based on sigma-additive measures and Lebesgue–Stieltjess integral, including also several integral inequalities, has been generalized in the past decades into set-valued analysis, including set-valued measures, integrals, and related inequalities. Some subsequent generalizations are based on fuzzy sets [1,2] and include fuzzy measures, fuzzy integrals and several fuzzy integral inequalities. Our aim is the further development of fuzzy set analysis, expanding our original proposal given in [3]. In fact, we use a new model of the fuzzy measure theory (∗-fuzzy measure) which is a dynamic generalization of the classical measure theory. Our model of the fuzzy measure theory created by replacing the non-negative real range and the additivity of classical measures with fuzzy sets and triangular norms. Moreover, the ∗-fuzzy measure theory has been motivated by defining new additivity property using triangular norms. Our approach is related to the idea of fuzzy metric spaces [4–7] and can be apply for decision making problems [8,9].

In this paper, we shall work on a fixed triangular norm-based ∗-fuzzy measure space $(X, C, \mu, ∗)$ introduced in [3] which was derived from the idea of fuzzy and probabilistic metric spaces [5–7,10,11]. Using the concept of fuzzy measurable functions and fuzzy integrable functions we define a special class of function spaces named by ∗-fuzzy $(L^+)^p$. After some overview given in Sections 2–4 and devoted to the basic information concerning ∗-fuzzy measures and related integration, in Section 5 we define a norm on ∗-fuzzy $(L^+)^p$ spaces and show these spaces are complete ∗-fuzzy normed space in the sense of Cheng-Mordeson and others [12–15]. This definition of ∗-fuzzy norm helps us to prove Chebyshev’s Inequality and Hölder’s Inequality.
1. *-Fuzzy Measure

First, we recall some basic concepts and notations that will be used throughout the paper. Let \(X \) be a non-empty set, \(C \) be a \(\sigma \)-algebra of subsets of \(X \). Unless stated otherwise, all subsets of \(X \) are supposed to belong to \(C \). Here, we let \(I = [0,1] \).

Definition 1. ([10,11]) A continuous triangular norm (shortly, a ct-norm) is a continuous binary operation \(* \) from \(I^2 = [0,1]^2 \) to \(I \) such that

(a) \(\varsigma * \tau = \tau * \varsigma \) and \(\varsigma * (\tau * \upsilon) = (\varsigma * \tau) * \upsilon \) for all \(\varsigma, \tau, \upsilon \in [0,1] \);

(b) \(\varsigma * 1 = \varsigma \) for all \(\varsigma \in I \);

(c) \(\varsigma * \tau \leq \upsilon * \iota \) whenever \(\varsigma \leq \upsilon \) and \(\tau \leq \iota \) for all \(\varsigma, \tau, \upsilon, \iota \in I \).

Some examples of the ct-norms are as follows.

1. \(\varsigma * \rho \tau = \varsigma \tau \) (: the product t-norm);
2. \(\varsigma * M \tau = \min\{\varsigma, \tau\} \) (: the minimum t-norm);
3. \(\varsigma * L \tau = \max\{\varsigma + \tau - 1, 0\} \) (: the Lukasiewicz t-norm);
4. \(\varsigma * H \tau = \begin{cases} 0, & \text{if } \varsigma = \tau = 0, \\ \frac{1}{\varsigma + \frac{1}{\tau} - 1}, & \text{otherwise,} \end{cases} \) (: the Hamacher product t-norm).

We define

\[*^k_{i=1} \varsigma_i = \varsigma_1 * \varsigma_2 * \cdots * \varsigma_k, \]

for \(k \in \{2,3,\cdots\} \), which is well defined due to the associativity of the operation \(* \). Moreover,

\[*^\infty_{i=1} \varsigma_i = \lim_{k \to \infty} *^k_{i=1} \varsigma_i, \]

which is well defined due to the monotonicity and boundedness of the operation \(* \).

Now, we introduce the concept of \(* \)-fuzzy measure.

Definition 2 ([3]). Let \(X \) be a set and \(C \) be a \(\sigma \)-algebra consisting of subsets of \(X \). A fuzzy measure on \(C \times (0,\infty) \) is a fuzzy set \(\mu : C \times (0,\infty) \to I \) such that

(i) \(\mu(\emptyset, \tau) = 1 \), \(\forall \tau \in (0,\infty) \);

(ii) if \(A_i \in C, i = 1,2,\cdots, \) are pairwise disjoint, then

\[\mu(\cup_{i=1}^{\infty} A_i, \tau) = *_{i=1}^{\infty} \mu(A_i, \tau), \forall \tau \in (0,\infty). \]

Saying the \(A_i \) are pairwise disjoint means that \(A_i \cap A_j = \emptyset, \) if \(i \neq j \).

Definition 2 is known as countable \(* \)-additivity. We say a fuzzy measure \(\mu \) is finitely \(* \)-additive if, for any \(n \in \mathbb{N} \)

\[\mu(\cup_{i=1}^{n} A_i, \tau) = *_{i=1}^{n} \mu(A_i, \tau), \forall \tau \in (0,\infty), \]

whenever \(A_1, \cdots, A_n \) are in \(C \) and are pairwise disjoint. The quadruple \((X,C,\mu,*) \) is called a \(* \)-fuzzy measure space (in short, \(* \)-FMS).
Example 1. Let \((X, C, m)\) be a measurable space. Let \(* = *_H\) and define
\[
\mu_0(A, \tau) = \frac{\tau}{\tau + m(A)}, \quad \forall \tau \in (0, \infty),
\]
then \((X, C, \mu_0, *)\) is a \(*\)-FMS.

Example 2. Let \((X, C, m)\) be a measurable space. Let \(* = *_p\). Define
\[
\mu_0(A, \tau) = e^{-\frac{m(A)}{\tau}}, \quad \forall \tau \in (0, \infty).
\]

Then, \(\mu_0\) is a \(*\)-FMS on \(C \times (0, \infty)\).

2. \(*\)-Fuzzy Measurable Functions

Now, we review the concept of \(*\)-fuzzy normed spaces, for more details, we refer to the works in [12–15].

Definition 3. Let \(X\) be a vector space, \(*\) be a ct-norm and the fuzzy set \(N\) on \(X \times (0, \infty)\) satisfies the following conditions for all \(x, y \in X\) and \(\tau, \sigma \in (0, \infty)\),

(i) \(N(x, \tau) > 0\).
(ii) \(N(x, \tau) = 1 \iff x = 0\).
(iii) \(N(\alpha x, \tau) = N\left(x, \frac{\tau}{|\alpha|}\right)\) for every \(\alpha \neq 0\).
(iv) \(N(x, \tau) \cdot N(y, \sigma) \leq N(x + y, \tau + \sigma)\).
(v) \(N(x, \tau) : (0, \infty) \to (0, 1]\) is continuous.
(vi) \(\lim_{\tau \to 0} N(x, \tau) = 1\) and \(\lim_{\tau \to 0} N(x, \tau) = 0\).

Then, \(N\) is called a \(*\)-fuzzy norm on \(X\) and \((X, N, *)\) is called \(*\)-fuzzy normed space.

Assume that \((\mathbb{R}, |.|)\) is a standard normed space, we define: \(N(x, \tau) = \frac{\tau}{|x| + |\tau|}\) with \(* = *_p\), it is obvious \((\mathbb{R}, N, *_p)\) is a \(*\)-fuzzy normed space.

Let \((X, N, *)\) be a \(*\)-fuzzy normed space. We define the open ball \(B(x, r, \tau)\) and the closed ball \(B[x, r, \tau]\) with center \(x \in X\) and radius \(0 < r < 1\), \(\tau > 0\) as follows,

\[
B(x, r, \tau) = \{y \in X : N(x - y, \tau) > 1 - r\},
\]
\[
B[x, r, \tau] = \{y \in X : N(x - y, \tau) \geq 1 - r\}.
\]

Let \((X, N, *)\) be a \(*\)-fuzzy normed space. A set \(E \subset X\) is said to be open if for each \(x \in E\), there is \(0 < r_x < 1\) and \(\tau_x > 0\) such that \(B(x, r_x, \tau_x) \subset E\). A set \(F \subset X\) is said to be closed in \(X\) in case its complement \(\complement X = X - F\) is open in \(X\).

Let \((X, N, *)\) be a \(*\)-fuzzy normed space. A subset \(E \subset X\) is said to be fuzzy bounded if there exist \(\tau > 0\) and \(r \in (0, 1)\) such that \(N(x - y, \tau) > 1 - r\) for all \(x, y \in E\).

Let \((X, N, *)\) be a \(*\)-fuzzy normed space. A sequence \(\{x_n\} \subset X\) is fuzzy convergent to an \(x \in X\) in \(*\)-fuzzy normed space \((X, N, *)\) if for any \(\tau > 0\) and \(\epsilon > 0\) there exists a positive integer \(N_\epsilon > 0\) such that \(N(x_n - x, \tau) > 1 - \epsilon\) whenever \(n \geq N_\epsilon\).

Now, we define \(*\)-fuzzy measurable functions.

Definition 4. Let \((X, C)\) and \((Y, D)\) be \(*\)-fuzzy measurable spaces. A mapping \(f : X \to Y\) is called \(*\)-fuzzy \((C, D)\)-measurable if \(f^{-1}(E) \subset C\) for all \(E \in D\). If \(X\) is any \(*\)-fuzzy normed space, the \(\sigma\)-algebra generated by
the family of open sets in X (or, equivalently, by the family of closed sets in X) is called the Borel σ-algebra on X and is denoted by B_X.

3. $*$-Fuzzy Integration

In this section, we recall the concept of $*$-fuzzy integration by using fuzzy simple functions on the $*$-FMS $(X, C, *, \mu)$ and add some new results.

Definition 5. Let $(X, C, *, \mu)$ be $*$-FMS, we define

$$L_+ = \{ f : X \to [0, \infty) \mid f \text{ is fuzzy (C, } B_X) \text{-measurable function} \}.$$

If ϕ is a simple fuzzy ((C, B_X)-measurable) function in L_+ with standard representation $\phi = \sum_{i=1}^{n} a_i \chi_{E_i}$, where $a_i > 0$ and $E_i \in C$ for $i = 1, ..., n$, and $E_i \cap E_j = \emptyset$ for $i \neq j$, we define the fuzzy integral of ϕ as

$$\int_X \phi(x) d\mu(x, \tau) = \int_X \sum_{i=1}^{n} a_i \chi_{E_i} d\mu(x, \tau) = \sum_{i=1}^{n} a_i \mu(E_i, \frac{\tau}{a_i}).$$

In [3], the authors have shown that, with respect to $\mu(A, \tau)$, μ satisfies the following statement:

(i) $\mu : (A, \tau) : (0, \infty) \to [0, 1]$ is increasing and continuous.

(ii) $\mu \left(A, \frac{T}{a + b} \right) \geq \mu \left(\left(A, \frac{T}{a} \right) \ast \mu \left(\left(A, \frac{T}{b} \right) \right) \right)$ for every $a, b > 0, \tau \in (0, \infty)$.

(iii) $\lim_{\tau_n \to \tau_0} \mu(E, \tau_n) = \mu(E, \tau_0)$ for every $E \in C$ and $\tau \in (0, \infty)$.

(iv) $\lim_{\tau_n \to \tau_0} \mu(E, \tau_n) = \mu(E, \tau_0)$.

(v) $\lim_{\tau_n \to \tau_0} \lim_{m \to \infty} \mu \left(E, \frac{\tau_n}{a^m} \right) = \lim_{m \to \infty} \lim_{\tau_n \to \tau_0} \mu \left(E, \frac{\tau}{a^m} \right)$.

If $A \in C$, then $\phi \chi_A$ is also fuzzy simple function $\left(\phi \chi_A = \sum_{i=1}^{n} a_i \chi_{A \cap E_i} \right)$, and we define

$$\int \phi(x) d\mu(x, \tau) = \int \phi \chi_A d\mu(x, \tau).$$

Theorem 1 ([3]). Let ϕ and ψ be simple functions in L_+. Then, we have

(i) $\int_X \phi d\mu(x, \tau) = 1$.

(ii) If $c \in (0, 1)$ then $\int_X (c \phi)(x) d\mu(x, \tau) \geq c \int_X \phi(x) d\mu(x, \tau)$, and for $c \in [1, \infty)$ we have $\int_X (c \phi)(x) d\mu(x, \tau) \leq c \int_X \phi(x) d\mu(x, \tau)$, $\forall \tau \in (0, \infty)$.

(iii) If $\phi \leq \psi$, then $\int_X \phi(x) d\mu(x, \tau) \geq \int_X \psi(x) d\mu(x, \tau)$.

(iv) The map $A \to \int_A \phi(x) d\mu(x, \tau)$ is a fuzzy measure on C, $\forall \tau \in (0, \infty)$.

In the next theorem, we prove an important fuzzy integral inequality for fuzzy simple functions.

Theorem 2. Let ϕ and ψ be fuzzy simple functions in L_+, then

$$\int \phi(x) d\mu(x, \tau) \geq \left(\int \phi(x) d\mu(x, \tau) \right) \ast \left(\int \psi(x) d\mu(x, \tau) \right).$$
Proof. Let ϕ and ψ be fuzzy simple functions in L_+, then we have

\[
\int_X (\phi + \psi)(x)d\mu(x, \tau),
\]

\[
= \int_X \left(\left(\sum_{i=1}^n a_i \chi_{E_i}(x) \right) \chi_F(x) \right) d\mu(x, \tau),
\]

\[
= \int_X \left(\sum_{i,j} (a_i + b_j) \chi_{E_i \cap F_j}(x) \right) d\mu(x, \tau),
\]

\[
= \sum_{i=1}^n \sum_{j=1}^m \mu \left((E_i \cap F_j), \frac{\tau}{a_i + b_j} \right).
\]

On the other hand,

\[
\left(\int_X \phi(x)d\mu(x, \tau) \right) * \left(\int_X \psi(x)d\mu(x, \tau) \right)
\]

\[
= \left(\sum_{i=1}^n \sum_{j=1}^m \mu \left((E_i \cap F_j), \frac{\tau}{a_i} \right) \right) * \left(\sum_{j=1}^m \sum_{i=1}^n \mu \left((E_i \cap F_j), \frac{\tau}{b_j} \right) \right),
\]

\[
= \sum_{i=1}^n \sum_{j=1}^m \mu \left((E_i \cap F_j), \frac{\tau}{a_i} \right) * \mu \left((E_i \cap F_j), \frac{\tau}{b_j} \right),
\]

\[
= \sum_{i=1}^n \sum_{j=1}^m \mu \left((E_i \cap F_j), \frac{\tau}{(a_i + b_j)} \right).
\]

From (3) and (4), we get

\[
\int_X (\phi + \psi)(x)d\mu(x, \tau) \geq \left(\int_X \phi(x)d\mu(x, \tau) \right) * \left(\int_X \psi(x)d\mu(x, \tau) \right).
\]

\[
\square
\]

Now, we extend the concept of fuzzy integral to all functions in L_+.

Definition 6. Let f be a fuzzy measurable function in L_+, we define fuzzy integral by

\[
\int_X f(x)d\mu(x, \tau)
\]

\[
= \inf \left\{ \int_X \phi(x)d\mu(x, \tau) \mid 0 \leq \phi \leq f, \ \phi \text{ is fuzzy simple function} \right\}.
\]

By Theorem 1 (iii), the two definitions of $\int f$ agree when f is fuzzy simple function, as the family of fuzzy simple functions over which the infimum is taken includes f itself. Moreover, it is obvious from the definition that $\int f \geq \int g$ whenever $f \leq g$, and $\int cf \geq c \int f$ for all $c \in (0, 1]$ and $\int cf \leq c \int f$ for all $c \in [1, \infty)$ and $\int (f + g) \geq (\int f) * (\int g)$.

Definition 7. If $f \in L_+$, we say that f is fuzzy integrable if $\int f d\mu(x, \tau) > 0$ for each $\tau > 0$. Let $(X, C, \mu, *)$ be a $*-FMS$. We define

\[
L^+ := \left\{ f : X \to [0, \infty), f \text{ is measurable function and } \int f(x)d\mu(x, \tau) > 0 \right\}.
\]
Theorem 3 ([3]). (The fundamental convergence theorem) Let \((X, \mathcal{C}, \mu, \ast)\) be a \(\ast\)-FMS. Let \(f_n\) be a sequence in \(L^+\) such that \(f_n \to f\) almost everywhere, then \(f \in L^+\) and \(\int f = \lim_{n \to \infty} \int f_n\).

\(\ast\)-Fuzzy \(L^+\) Spaces

Here, we are ready to show that every \(L^+\) is a \(\ast\)-fuzzy normed space. It is clear if we define \(L := \{f : X \to \mathbb{R}, f \text{ is fuzzy measurable function}\}\), then \((L, +, \cdot, \mathbb{R})\) is a vector space. Moreover, in [3] the authors proved that if \(f, g \in L^+\), then \(|f - g| \in L^+\).

Using definition \(L\) and \(L^+\) we can show \(L^+ \subseteq L\). In \(L^+\) we define \(f \leq g\) if and only if \(f(x) \leq g(x)\) and so \((L^+, \leq)\) is a cone.

Note. Recall that, due to the continuity of t-norm \(\ast\), for any systems \(\{a_n\}_{n \in \mathbb{N}}\) and \(\{b_n\}_{n \in \mathbb{N}}\) of elements form \(I\) we have \(\inf\{a_n \ast b_n\} = \inf\{a_n\} \ast \inf\{b_n\}\).

In the next theorem we define a fuzzy norm on \(L^+\) and prove that \((L^+, N, \ast)\) is a \(\ast\)-fuzzy normed space.

Theorem 4. Let \(N : L^+ \times (0, \infty) \to (0, 1]\) be a fuzzy set, such that \(N(f, \tau) = \int f d\mu(x, \tau)\), then \((L^+, N, \ast)\) is a \(\ast\)-fuzzy normed space.

Proof.

(FN1) \(N(f, \tau) = \int f d\mu(x, \tau) > 0\).

(FN2) By theorem 4.5 of [3] we have

\[N(f, \tau) = 1 \iff \int f d\mu(x, \tau) = 1 \iff f = 0 \]

almost everywhere.

(FN3) Let \(f = \phi = \sum_{i=1}^{n} a_i \chi_{E_i}\) and \(c > 0\) so,

\[N(c\phi, \tau) = \int c\phi d\mu(x, \tau), \]

\[= \int \sum_{i=1}^{n} a_i \chi_{E_i} d\mu(x, \tau), \]

\[= \ast \sum_{i=1}^{n} \mu\left(E_i, \frac{\tau}{ca_i}\right). \]

On the other hand,

\[N\left(\phi, \frac{\tau}{c}\right) = \int \phi d\mu\left(x, \frac{\tau}{c}\right), \]

\[= \int \sum_{i=1}^{n} a_i \chi_{E_i} d\mu\left(x, \frac{\tau}{c}\right), \]

\[= \ast \sum_{i=1}^{n} \mu\left(E_i, \frac{\tau}{ca_i}\right). \]

From (5) and (6) we conclude that

\[N(c\phi, \tau) = N\left(\phi, \frac{\tau}{c}\right). \]
Now, if \(f \in L^+ \) we have \(\{ \phi_n \} \subseteq L^+ \) such that \(\phi_n \uparrow f \), then \(c\phi_n \uparrow cf \) so
\[
\int c\phi_n d\mu(x, \tau) \downarrow \int cf d\mu(x, \tau).
\]

By (7), we have \(\int c\phi_n d\mu(x, \tau) = \int \phi_n d\mu(x, \tau) \), and so
\[
\int \phi_n d\mu(x, \tau) \downarrow \int cf d\mu(x, \tau),
\]

(8)

On the other hand,
\[
\int \phi_n d\mu(x, \tau) \downarrow \int f d\mu(x, \tau),
\]

(9)

by (8) and (9) we have,
\[
\int \phi_n d\mu(x, \tau) \downarrow \int f d\mu(x, \tau),
\]

(10)

On the other hand
\[
N(cf, \tau) = N(f, \tau).
\]

(FN4) Let \(f = \sum_{i=1}^{m} a_i \chi_{E_i}, g = \sum_{j=1}^{n} b_j \chi_{F_j} \) then,
\[
N(\phi + \psi, s + \tau) = \int (\phi + \psi) d\mu(x, \tau + s),
\]
\[
= \int \sum_{i,j} (a_i + b_j) \chi_{E_i \cap F_j} d\mu(x, \tau + s),
\]
\[
= \ast_{i,j}(E_i \cap F_j, \frac{s + \tau}{a_i + b_j}).
\]

On the other hand
\[
N(\phi, s) \ast N(\psi, \tau) = \left(\int \phi d\mu(x, s) \right) \ast \left(\int \psi d\mu(x, \tau) \right),
\]
\[
= \left(\int \sum_{i,j} a_i \chi_{E_i \cap F_j} d\mu(x, s) \right) \ast \left(\int \sum_{i,j} b_j \chi_{E_i \cap F_j} d\mu(x, \tau) \right),
\]
\[
= \ast_{i,j}(E_i \cap F_j, \frac{s}{a_i}) \ast \left(\ast_{i,j}(E_i \cap F_j, \frac{\tau}{b_j}) \right),
\]
\[
= \ast_{i,j} \left(\mu(E_i \cap F_j, \frac{s}{a_i}) \ast \mu(E_i \cap F_j, \frac{\tau}{b_j}) \right),
\]
\[
\leq \ast_{i,j} \left(\min \left\{ \mu(E_i \cap F_j, \frac{s}{a_i}), \mu(E_i \cap F_j, \frac{\tau}{b_j}) \right\} \right).
\]

Now, we assume \(\frac{s}{a_i} < \frac{\tau}{b_j} \). From (10), we conclude
\[
N(\phi, s) \ast N(\psi, \tau) \leq \ast_{i,j}(E_i \cap F_j, \frac{s}{a_i}).
\]

(11)
Again, from \(\frac{s}{a_i} < \frac{\tau}{b_j} \), we get \(\frac{s}{a_i} < \frac{\tau+s}{a_i+b_j} \) because
\[bjs < a_i \tau, \]
then
\[a_is + bjs < a_is + a_i \tau, \]
and
\[(a_i + b_j)s < a_i(\tau + s), \]
and so
\[\frac{s}{a_i} < \frac{\tau+s}{a_i+b_j}. \]

Therefore, from (11) we have
\[N(\phi, s) \ast N(\psi, \tau) \leq \ast_{i,j} \mu \left(E_i \cap F_j, \frac{s}{a_i+b_j} \right), \] (12)
and
\[\ast_{i,j} \mu \left(E_i \cap F_j, \frac{s}{a_i} \right) \leq \ast_{i,j} \mu \left(E_i \cap F_j, \frac{\tau+s}{a_i+b_j} \right). \] (13)

From (12) and (13) we have
\[N(\phi, s) \ast N(\psi, \tau) \leq \ast_{i,j} \mu \left(E_i \cap F_j, \frac{\tau+s}{a_i+b_j} \right), \]
\[= N(\phi + \psi, s + \tau + s). \]

Now let \(f, g \in L^+ \), then there exist \(\{\phi_n\} \subseteq L^+ \) such that \(\phi_n \uparrow f \). Similarly, there exist \(\{\psi_n\} \subseteq L^+ \) such that \(\psi_n \uparrow g \), and \(\phi_n + \psi_n \uparrow f + g \), then
\[\inf \left\{ \int (\phi_n + \psi_n) d\mu(x, \tau + s) \right\} = \int (f + g) d\mu(x, \tau + s). \]

Also according to (12), we get
\[\int (\phi_n + \psi_n) d\mu(x, \tau + s) \geq \int \phi_n d\mu(x, s) \ast \int \psi_n d\mu(x, \tau), \]
and
\[\int (f + g) d\mu(x, \tau + s) = \inf \left\{ \int (\phi_n + \psi_n) d\mu(x, \tau + s) \right\} \]
\[\geq \inf \left\{ \int \phi_n d\mu(x, s) \ast \int \psi_n d\mu(x, \tau) \right\}, \]
\[\geq \inf \left\{ \int \phi_n d\mu(x, s) \right\} \ast \inf \int \psi_n d\mu(x, \tau) \]
\[= \int f d\mu(x, s) \ast \int g d\mu(x, \tau), \]
then
\[\int \left(f + g \right) d\mu(x, \tau + s) \geq \int f d\mu(x, s) \ast \int g d\mu(x, \tau). \]

(FN5) Let \(f = \sum_{i=1}^{k} a_i \chi_{E_i} \), then
\[N(f, \tau_n) = \int \sum_{i=1}^{k} a_i \chi_{E_i} d\mu(x, \tau_n), \]
\[= \ast_{i=1}^{k} \mu \left(E_i, \frac{\tau_n}{a_i} \right), \]
and
\[\lim_{\tau_n \to \tau_0} N(f, \tau_n) = \lim_{\tau_n \to \tau_0} \ast_{i=1}^{k} \mu \left(E_i, \frac{\tau_n}{a_i} \right). \]

According to Definition 5 (iii), we get
\[\lim_{\tau_n \to \tau_0} N(f, \tau_n) = \lim_{\tau_n \to \tau_0} \ast_{i=1}^{k} \mu \left(E_i, \frac{\tau_n}{a_i} \right), \]
and by Definition 5 (i),
\[\lim_{\tau_n \to \tau_0} N(f, \tau_n) = \ast_{i=1}^{k} \lim_{\tau_n \to \tau_0} \mu \left(E_i, \frac{\tau_n}{a_i} \right), \]
\[= \int f d\mu(x, \tau_0), \]
\[= N(f, \tau_0). \]

Now, let \(f \in L^+ \), then
\[N(f, \tau_n) = \int f d\mu(x, \tau_n), \]
\[= \inf \left\{ \int \phi_m d\mu(x, \tau_n) \mid \phi_m \uparrow f \right\}, \]
\[= \lim_{m \to \infty} \int \phi_m d\mu(x, \tau_n). \]

and
\[\lim_{\tau_n \to \tau_0} N(f, \tau_n) = \lim_{\tau_n \to \tau_0} \lim_{m \to \infty} \int \phi_m d\mu(x, \tau_n), \]
\[= \lim_{\tau_n \to \tau_0} \lim_{m \to \infty} \int \sum_{i=1}^{k} \phi_i \chi_{E_i}^\mu d\mu(x, \tau_n), \]
\[= \lim_{\tau_n \to \tau_0} \lim_{m \to \infty} \ast_{i=1}^{k} \mu \left(E_i, \frac{\tau_n}{a_i} \right). \]
According to Definition 5 (v), we get
\[
\lim_{\tau_n \to \tau_0} N(f, \tau_n) = \lim_{\tau_n \to \tau_0} \lim_{m \to \infty} \sum_{i=1}^{k} \mu \left(E_i, \frac{\tau_n}{a_i^m} \right),
\]
\[
= \lim_{m \to \infty} \lim_{\tau_n \to \tau_0} \sum_{i=1}^{k} \mu \left(E_i, \frac{\tau_n}{a_i^m} \right),
\]
and by Definition 5 (iii), we get
\[
\lim_{\tau_n \to \tau_0} N(f, \tau_n) = \lim_{m \to \infty} \lim_{\tau_n \to \tau_0} \sum_{i=1}^{k} \mu \left(E_i, \frac{\tau_n}{a_i^m} \right),
\]
\[
= \lim_{m \to \infty} \sum_{i=1}^{k} \mu \left(E_i, \frac{\tau_0}{a_i^m} \right),
\]
\[
= \int f d\mu(x, \tau_0),
\]
\[
= N(f, \tau_0).
\]

(FN6) Let \(f = \sum_{i=1}^{k} a_i \chi_{E_i} \), then
\[
N(f, \tau) = \int f d\mu(x, \tau),
\]
\[
= \int \sum_{i=1}^{n} a_i \chi_{E_i} d\mu(x, \tau),
\]
\[
= \sum_{i=1}^{k} \mu \left(E_i, \frac{\tau}{a_i} \right).
\]

and
\[
\lim_{\tau \to \tau_0} N(f, \tau) = \lim_{\tau \to \tau_0} \sum_{i=1}^{k} \mu \left(E_i, \frac{\tau}{a_i} \right).
\]

According to Definition 5 (iii), we have
\[
\lim_{\tau \to \tau_0} N(f, \tau) = \lim_{\tau \to \tau_0} \sum_{i=1}^{k} \mu \left(E_i, \frac{\tau}{a_i} \right),
\]
\[
= \sum_{i=1}^{k} \mu \left(E_i, \frac{\tau}{a_i} \right),
\]
\[
= N(f, \tau_0).
\]
and by Definition 5 (iv),
\[
\lim_{\tau \to 0} \, N(f, \tau) = \lim_{\tau \to 0} \, \lim_{m \to \infty} \mu \left(E_i, \frac{\tau}{a_i^m} \right),
\]
\[
= \lim_{\tau \to 0} \mu \left(E_i, \frac{\tau}{a_i^m} \right),
\]
\[
= 0.
\]

Now let \(f \in L^+ \), so
\[
N(f, \tau) = \int f d\mu(x, \tau) = \inf \left\{ \int \phi_m d\mu(x, \tau) \right\},
\]
\[
= \lim_{m \to \infty} \left\{ \int \phi_m d\mu(x, \tau) \right\},
\]
\[
= \lim_{m \to \infty} \{ N(\phi_m, \tau) \}.
\]

Then,
\[
\lim_{\tau \to 0} \, N(f, \tau) = \lim_{m \to \infty} \lim_{\tau \to 0} \{ N(\phi_m, \tau) \},
\]
\[
= \lim_{m \to \infty} \lim_{\tau \to 0} \mu \left(E_i, \frac{\tau}{a_i^m} \right),
\]
\[
= 0.
\]

According to Definition 5 (v), we get
\[
\lim_{\tau \to 0} \, N(f, \tau) = \lim_{m \to \infty} \lim_{\tau \to 0} \mu \left(E_i, \frac{\tau}{a_i^m} \right),
\]
\[
= \lim_{m \to \infty} \lim_{\tau \to 0} \mu \left(E_i, \frac{\tau}{a_i^m} \right),
\]
and from Definition 5 (iii), we get
\[
\lim_{\tau \to 0} \, N(f, \tau) = \lim_{m \to \infty} \lim_{\tau \to 0} \mu \left(E_i, \frac{\tau}{a_i^m} \right),
\]
\[
= \lim_{m \to \infty} \lim_{\tau \to 0} \mu \left(E_i, \frac{\tau}{a_i^m} \right).
\]

From Definition 5 (iv), we get
\[
\lim_{\tau \to 0} \, N(f, \tau) = \lim_{m \to \infty} \lim_{\tau \to 0} \mu \left(E_i, \frac{\tau}{a_i^m} \right),
\]
\[
= \lim_{m \to \infty} \lim_{\tau \to 0} \mu \left(E_i, \frac{\tau}{a_i^m} \right),
\]
\[
= 0.
\]

Similarly,
\[
\lim_{\tau \to \infty} \, N(f, \tau) = 1.
\]

\(\Box \)

We have proved \((L^+, N, *)\) is a \(*\)-fuzzy normed space. Define \(M : L^+ \times L^+ \times (0, \infty) \to (0, 1] \) by
Theorem 7. Define $N(F)$.

Let N.

By theorem 4.5 of [3] we have, N.

Theorem 6.

Theorem 5.

$max\ f$.

Proof. f.

Furthermore, if f.

Definition 8.

4. $*$-Fuzzy (L^+)p Spaces

In this section, by the concept of fuzzy measurable functions and fuzzy integrable functions we define a class of function spaces.

Definition 8. Let $(X, C, *)$ be a $*$-fuzzy measure space. We define

$$(L^+)^p = \left\{ f : X \rightarrow \mathbb{R}^+ \text{ in which } f \text{ is fuzzy measurable function and } \int f^p d\mu(x, \tau) > 0, \ p \geq 1 \right\}.$$

There is an order on $((L^+)^p, \leq)$ such that $f, g \in (L^+)^p$ we have $f \leq g$ if and only if $f(x) \leq g(x)$. Furthermore, if $f, g \in (L^+)^p$ then $|f - g| \in (L^+)^p$, and $|f - g|^p \leq f^p$ or g^p hence $\int |f - g|^p d\mu(x, \tau) \geq \max[\int f^p d\mu(x, \tau), \int g^p d\mu(x, \tau)]$.

In the next theorem we prove $*$-fuzzy $(L^+)^p$ is a *-fuzzy normed space.

Theorem 7. Define $N_p : (L^+)^p \times (0, \infty) \rightarrow (0, 1]$ by $N_p(f, \tau) = \int f^p d\mu(x, \tau)$ then $((L^+)^p, N_p, *)$ is a $*$-fuzzy normed space.

Proof.

(FN1) $N_p(f, \tau) = \int f^p d\mu(x, \tau) > 0$.

(FN2) By theorem 4.5 of [3] we have, $N_p(f, \tau) = 1 \iff \int f^p d\mu(x, \tau) = 1 \iff f^p = 0 \iff f = 0$, almost everywhere.

(FN3) Let $f = \phi = \sum_{i=1}^{n} a_i \chi_{E_i}$, then

$$N_p(c\phi, \tau) = \int (c\phi)^p d\mu,$$

$$= \int \left(\sum_{i=1}^{n} c a_i \chi_{E_i} \right)^p d\mu,$$

$$= \sum_{i=1}^{n} H \left(E_i, \frac{\tau}{c^p a_i^p} \right).$$
On the other hand,
\[
N_p(\phi, \frac{\tau}{c^p}) = \int \phi^p d\mu(x, \frac{\tau}{c^p}),
\]
\[
= \int \left(\sum_{i=1}^{n} a_i \chi_{E_i} \right)^p d\mu(x, \frac{\tau}{c^p}),
\]
\[
= \int \sum_{i=1}^{n} a_i^p \chi_{E_i} d\mu(x, \frac{\tau}{c^p}),
\]
\[
= \ast \sum_{i=1}^{n} \mu \left(E_i, \frac{\tau}{c^p} \right).
\]

From (14) and (15) we conclude that
\[
N_p(cf, \tau) = N_p(f, \frac{\tau}{c}).
\]

Now let \(f \in (L^+)^p \), then we have
\[
N_p(cf, \tau) = \int (cf)^p d\mu(x, \tau) = \inf \left\{ \int (c\phi_n)^p d\mu(x, \tau) : (c\phi_n)^p \uparrow (cf)^p \right\}.
\]

On the other hand,
\[
N_p(f, \frac{\tau}{c}) = \int f^p d\mu(x, \frac{\tau}{c})
\]
\[
= \inf \left\{ \int \phi_n^p d\mu(x, \frac{\tau}{c}) : \phi_n^p \uparrow f^p \right\}.
\]

From (14) and (15) we get
\[
\int (c\phi_n)^p d\mu(x, \tau) = N_p(c\phi_n, \tau) = N_p(\phi_n, \frac{\tau}{c}) = \int \phi_n^p d\mu(x, \frac{\tau}{c}).
\]

Using (16) and (17) we get
\[
N_p(cf, \tau) = N_p(f, \frac{\tau}{c}).
\]

(FN4) Let \(f = \phi \) and \(g = \psi \) be simple functions. Then,
\[
N_p \left(\phi + \psi, s + \tau \right) = N_p \left(\sum_{i=1}^{n} a_i \chi_{E_i} + \sum_{j=1}^{m} b_j \chi_{F_j}, s + \tau \right),
\]
\[
= N_p \left(\sum_{i,j} (a_i + b_j) \chi_{E_i \cap F_j}, s + \tau \right),
\]
\[
= \int \left(\sum_{i,j} (a_i + b_j) \chi_{E_i \cap F_j} \right)^p d\mu(x, s + \tau),
\]
\[
= \int \sum_{i,j} (a_i + b_j)^p \chi_{E_i \cap F_j} d\mu(x, s + \tau),
\]
\[
= \ast \sum_{i,j} \mu \left(E_i \cap F_j, \frac{s + \tau}{(a_i + b_j)^p} \right).
\]
On the other hand,

\[N_p(\phi, s) * N_p(\psi, \tau) = \left(\int \phi^p d\mu(x, s) \right) * \left(\int \psi^p d\mu(x, \tau) \right), \]

\[= \left(\int \left(\sum_{i=1}^{n} a_i \chi_{E_i \cap F} \right)^p d\mu(x, s) \right) * \left(\int \left(\sum_{j=1}^{m} b_j \chi_{E_j \cap F} \right)^p d\mu(x, \tau) \right), \]

\[= \left(\int \sum_{i=1}^{n} a_i^p \chi_{E_i \cap F} d\mu(x, s) \right) * \left(\int \sum_{j=1}^{m} b_j^p \chi_{E_j \cap F} d\mu(x, \tau) \right), \]

\[= \left(\ast_{i,j} \mu \left(E_i \cap F_j, \frac{s}{a_i^p} \right) \right) * \left(\ast_{i,j} \mu \left(E_i \cap F_j, \frac{\tau}{b_j^p} \right) \right), \]

\[= \ast_{i,j} \mu \left(E_i \cap F_j, \frac{s + \tau}{(a_i + b_j)^p} \right), \]

\[\leq \ast_{i,j} \mu \left(E_i \cap F_j, \min \left\{ \frac{s}{a_i^p}, \frac{\tau}{b_j^p} \right\} \right). \]

(FN5) Let \(f = \sum_{i=1}^{k} a_i \chi_{E_i} \), then

\[N_p(f, \tau_n) = \int \left(\sum_{i=1}^{k} a_i \chi_{E_i} \right)^p d\mu(x, \tau_n), \]

\[= \ast_{i=1}^{k} \mu \left(E_i, \frac{\tau_n}{(a_i)^p} \right), \]

and so

\[\lim_{\tau_n \to \tau_0} N_p(f, \tau_n) = \lim_{\tau_n \to \tau_0} \ast_{i=1}^{k} \mu \left(E_i, \frac{\tau_n}{(a_i)^p} \right). \]

Using Definition 5 (iii), we get

\[\lim_{\tau_n \to \tau_0} N_p(f, \tau_n) = \lim_{\tau_n \to \tau_0} \ast_{i=1}^{k} \mu \left(E_i, \frac{\tau_n}{(a_i)^p} \right), \]

\[= \ast_{i=1}^{k} \lim_{\tau_n \to \tau_0} \mu \left(E_i, \frac{\tau_n}{(a_i)^p} \right), \]

and according to Definition 5 (i),

\[\lim_{\tau_n \to \tau_0} N_p(f, \tau_n) = \ast_{i=1}^{k} \lim_{\tau_n \to \tau_0} \mu \left(E_i, \frac{\tau_n}{(a_i)^p} \right), \]

\[= \ast_{i=1}^{k} \mu \left(E_i, \frac{\tau_0}{(a_i)^p} \right), \]

\[= \int f^p d\mu(x, \tau_0), \]

\[= N_p(f, \tau_0). \]
Now let $f \in (L^*)^p$, we have

\[
N_p(f, \tau_0) = \int f^p d\mu(x, \tau_0)
= \inf \left\{ \int (\phi_m)^p d\mu(x, \tau_0) | \phi_m \uparrow f \right\}
= \lim_{m \to \infty} \int (\phi_m)^p d\mu(x, \tau_0).
\]

Then,

\[
\lim_{\tau_0 \to t_0} N_p(f, \tau_0) = \lim_{\tau_0 \to t_0} \lim_{m \to \infty} \int (\phi_m)^p d\mu(x, \tau_0),
= \lim_{\tau_0 \to t_0} \lim_{m \to \infty} \int \left(\sum_{i=1}^k \left(a_{i,m}^m X_{E_{i,m}} \right)^p d\mu(x, \tau_0) \right)
= \lim_{\tau_0 \to t_0} \lim_{m \to \infty} \sum_{i=1}^k \mu \left(E_{i,m}^m \frac{\tau_0}{(a_{i,m}^m)^p} \right).
\]

Using Definition 5 (v), we get

\[
\lim_{\tau_0 \to t_0} N_p(f, \tau_0) = \lim_{\tau_0 \to t_0} \lim_{m \to \infty} \sum_{i=1}^k \mu \left(E_{i,m}^m \frac{\tau_0}{(a_{i,m}^m)^p} \right),
= \lim_{m \to \infty} \lim_{\tau_0 \to t_0} \sum_{i=1}^k \mu \left(E_{i,m}^m \frac{\tau_0}{(a_{i,m}^m)^p} \right).
\]

and according to Definition 5 (iii)

\[
\lim_{\tau_0 \to t_0} N_p(f, \tau_0) = \lim_{m \to \infty} \lim_{\tau_0 \to t_0} \sum_{i=1}^k \mu \left(E_{i,m}^m \frac{\tau_0}{(a_{i,m}^m)^p} \right),
= \lim_{m \to \infty} \sum_{i=1}^k \lim_{\tau_0 \to t_0} \mu \left(E_{i,m}^m \frac{\tau_0}{(a_{i,m}^m)^p} \right).
\]

By Definition 5 (i), we have

\[
\lim_{\tau_0 \to t_0} N_p(f, \tau_0) = \lim_{m \to \infty} \sum_{i=1}^k \lim_{\tau_0 \to t_0} \mu \left(E_{i,m}^m \frac{\tau_0}{(a_{i,m}^m)^p} \right),
= \lim_{m \to \infty} \sum_{i=1}^k \mu \left(E_{i,m}^m \frac{\tau_0}{(a_{i,m}^m)^p} \right),
= \lim_{m \to \infty} \int (\phi_m)^p d\mu(x, \tau_0),
= \inf \left\{ \int (\phi_m)^p d\mu(x, \tau_0) \right\},
= \int f^p d\mu(x, \tau_0),
= N_p(f, \tau_0).
\]
Let \(f = \sum_{i=1}^{k} a_i \chi_{E_i} \), then

\[
N_p(f, \tau) = \int f^p \, d\mu(x, \tau),
\]

\[
= \int \left(\sum_{i=1}^{k} a_i \chi_{E_i} \right)^p \, d\mu(x, \tau),
\]

\[
= \sum_{i=1}^{k} \mu \left(E_i, \frac{\tau}{(a_i)^p} \right),
\]

and so

\[
\lim_{\tau \to 0} N_p(f, \tau) = \lim_{\tau \to 0} \sum_{i=1}^{k} \mu \left(E_i, \frac{\tau}{(a_i)^p} \right).
\]

Using Definition 5 (iii),

\[
\lim_{\tau \to 0} N_p(f, \tau) = \lim_{\tau \to 0} \sum_{i=1}^{k} \mu \left(E_i, \frac{\tau}{(a_i)^p} \right),
\]

\[
= \sum_{i=1}^{k} \mu \left(E_i, \frac{\tau}{(a_i)^p} \right)
\]

and by Definition 5 (iv), we have

\[
\lim_{\tau \to 0} N_p(f, \tau) = \sum_{i=1}^{k} \mu \left(E_i, \frac{\tau}{(a_i)^p} \right),
\]

\[
= \sum_{i=1}^{k} 0,
\]

\[
= 0.
\]

Now, let \(f \in (L^+)^p \), then

\[
N_p(f, \tau) = \int f^p \, d\mu(x, \tau) = \inf \left\{ \int (\phi_m)^p \, d\mu(x, \tau) : \phi_m \uparrow f \right\},
\]

\[
= \lim_{m \to \infty} \left\{ \int (\phi_m)^p \, d\mu(x, \tau) \right\},
\]

and so

\[
\lim_{\tau \to 0} N_p(f, \tau) = \lim_{\tau \to 0} \lim_{m \to \infty} \left\{ N_p(\phi_m, \tau) \right\},
\]

\[
= \lim_{\tau \to 0} \lim_{m \to \infty} \sum_{i=1}^{k} \mu \left(E_i^m, \frac{\tau}{(a_i^m)^p} \right).
\]

Using Definition 5 (v), we get

\[
\lim_{\tau \to 0} N_p(f, \tau) = \lim_{\tau \to 0} \lim_{m \to \infty} \sum_{i=1}^{k} \mu \left(E_i^m, \frac{\tau}{(a_i^m)^p} \right),
\]

\[
= \lim_{m \to \infty} \lim_{\tau \to 0} \sum_{i=1}^{k} \mu \left(E_i^m, \frac{\tau}{(a_i^m)^p} \right).
\]
Theorem 8. For

and by Definition 5 (iii), we have

\[\lim_{\tau \to 0} N_p(f, \tau) = \lim_{m \to \infty} \lim_{\tau \to 0} \sum_{i=1}^{k} \mu \left(E_i^n, \frac{\tau}{(a_i^n)^p} \right), \]

\[= \lim_{m \to \infty} \sum_{i=1}^{k} \lim_{\tau \to 0} \mu \left(E_i^n, \frac{\tau}{(a_i^n)^p} \right). \]

from Definition 5 (iv), we get

\[\lim_{\tau \to 0} N_p(f, \tau) = \lim_{\tau \to 0} \sum_{i=1}^{k} 0, \]

\[= 0. \]

\[\square \]

We proved \(((L^+)^p, N_p, \ast)\) is a *-fuzzy normed space. Now, define the fuzzy set \(M: (L^+)^p \times (L^+)^p \times (0, \infty) \to (0, 1] \) by

\[M(f, g, \tau) = N_p \left(|f - g|, \tau \right) = \int |f - g|^p d\mu(x, \tau). \]

Then, \(M \) is a fuzzy metric on *-fuzzy \((L^+)^p\) and \(((L^+)^p, M, \ast)\) is called the *-fuzzy metric space induced by the *-fuzzy normed space \(((L^+)^p, N_p, \ast)\). Now, we study further properties of *-fuzzy \((L^+)^p\).

Theorem 8. For \(1 \leq p < \infty \), the set of simple functions \(g = \sum_{i=1}^{n} a_i \chi_{E_i} \) where \(\mu(E_i, \tau) > 0 \) for all \(i \in \{1, 2, \ldots, n\} \) and for all \(\tau > 0 \), is dense in *-fuzzy \((L^+)^p\).

Proof. Clearly simple functions \(g = \sum_{i=1}^{n} a_i \chi_{E_i} \) are in *-fuzzy \((L^+)^p\). Let \(f \in (L^+)^p \), by theorem 3.20 in [3] we can choose a sequence \(\{f_n\} \) of simple functions such that \(f_n \uparrow f \) almost everywhere, and so \((f - f_n)^p \downarrow 0 \).

We assert \((f - f_n)^p \in L^+\) because

\[(f - f_n)^p \leq f^p, \]

and so

\[\int (f - f_n)^p d\mu(x, \tau) \geq \int f^p d\mu(x, \tau) > 0, \]

then \((f - f_n)^p \in L^+\) and \((f - f_n)^p \to 0\). Using the fundamental convergence Theorem 3, we get

\[\lim_{n \to \infty} \int (f - f_n)^p d\mu(x, \tau) = \int 0 d\mu(x, \tau) = 1. \]

Then, \(\lim_{n \to \infty} N_p(f - f_n, \tau) = 1 \) i.e., \(f_n \xrightarrow{N_p} f. \) \[\square \]

In the next theorem we prove that *-fuzzy \((L^+)^p\) spaces are complete.

Theorem 9. For \(1 \leq p < \infty \), *-fuzzy \((L^+)^p\) is a *-fuzzy Banach space.

Proof. Let \(\{f_n\} \subseteq (L^+)^p \) be a Cauchy sequence, then for every \(x \in X \), \(\{f_n(x)\} \subseteq \mathbb{R} \) is a Cauchy sequence in \(\mathbb{R} \) and since \(\mathbb{R} \) is complete, there exist \(y \in \mathbb{R} \) such that \(f_n(x) \to y \), we define \(f: X \to \mathbb{R} \) by \(f(x) = y \). Since \(f_n \to f \) almost everywhere, so \((f_n)^p \to (f)^p \) almost everywhere, and \((f_n)^p \in L^+\).
by the fundamental converge Theorem 3 we have \((f)^p \in L^+\) and \(\lim \int (f_n)^p d\mu(x, \tau) = \int (f)^p d\mu(x, \tau)\), hence \(f \in (L^+)^p\). □

5. Inequalities on \(*\)-Fuzzy \((L^+)^p\)

In this section, we are ready to prove some important inequalities on \(*\)-fuzzy \((L^+)^p\).

Lemma 1 ([16]). If \(a \geq 0, b \geq 0, \) and \(0 < \lambda < 1\), then

\[a^\lambda b^{1-\lambda} \leq \lambda a + (1 - \lambda)b,\]

we have equality if and only if \(a = b\).

Theorem 10 (Hölder’s Inequality). Suppose \(1 < p < \infty\) and \(\frac{1}{p} + \frac{1}{q} = 1\). If \(f\) and \(g\) are fuzzy measurable functions on \(X\) then,

\[N(fg, \tau) \geq N_p\left(f, (p)^\frac{1}{q} \tau\right) * N_q\left(g, (q)^\frac{1}{q} \tau\right).\]

Proof. We apply Lemma 1 with \((f(x))^p = a, b = (g(x))^q,\) and \(\lambda = \frac{1}{p}\) to obtain

\[\left((f(x))^p\right)^\frac{1}{p} \cdot \left((g(x))^q\right)^{1-p} \leq \frac{1}{p}(f(x))^p + (1 - \frac{1}{p})(g(x))^q,\]

then

\[f(x)g(x) \leq \left((\frac{1}{p})^\frac{1}{p} f(x)\right)^p + \left((\frac{1}{q})^\frac{1}{q} g(x)\right)^q.\]

Takeing integral of both sides, we get

\[\int f(x)g(x)d\mu(x, \tau) \geq \int \left[\left((\frac{1}{p})^\frac{1}{p} f(x)\right)^p + \left((\frac{1}{q})^\frac{1}{q} g(x)\right)^q \right]d\mu(x, \tau),\]

\[\geq \left(\int \left((\frac{1}{p})^\frac{1}{p} f(x)\right)^p d\mu(x, \tau)\right) * \left(\int \left((\frac{1}{q})^\frac{1}{q} g(x)\right)^q d\mu(x, \tau)\right),\]

\[= N_p\left((\frac{1}{p})^\frac{1}{p} f, \tau\right) * N_q\left((\frac{1}{q})^\frac{1}{q} g, \tau\right),\]

\[= N_p\left(f, (p)^\frac{1}{q} \tau\right) * N_q\left(g, (q)^\frac{1}{q} \tau\right).\]

Then,

\[N_1(fg, \tau) \geq N_p\left(f, (p)^\frac{1}{q} \tau\right) * N_q\left(g, (q)^\frac{1}{q} \tau\right).\]

□

In the next theorem we compare two \(*\)-fuzzy \((L^+)^p\) spaces.

Theorem 11. If \(0 < p < q < r < \infty\), then \((L^+)^q \subseteq (L^+)^p + (L^+)^r\), that is, each \(f \in (L^+)^q\) is the sum of a function in \(*\)-fuzzy \((L^+)^p\) and a function in \(*\)-fuzzy \((L^+)^r\).
Proof. If $f \in (L^+)^q$, let $E = \{x : f(x) > 1\}$ and set $g = f^E$ and $h = f^{E'}$, then

$$f = f . 1,$$
$$= f^E + f^{E'},$$
$$= g + h.$$

However,

$$g^p = (f^E)^p = f^p \leq f^q,$$
then,

$$\int g^p d\mu \geq \int f^q d\mu > 0,$$
then,

$$g \in (L^+)^p.$$

On the other hand,

$$h^r = (f^{E'})^r = f^r \leq f^q,$$
then,

$$\int h^r d\mu \geq \int f^q d\mu > 0,$$
and so

$$h \in (L^+)^r.$$

Now, we apply Hölder’s inequality Theorem 10 to prove next theorem.

Theorem 12. If $0 < p < q < r < \infty$, then $L^p \cap L^r \subseteq L^q$ and

$$N_q(f, \tau) \geq N_p\left(f, \left(\frac{p}{\lambda q}\right)^\frac{1}{r}\right) \ast N_r\left(f, \left(\frac{r}{(1-\lambda)q}\right)^\frac{1}{r}\right),$$

where $\lambda \in (0, 1)$ is defined by $\lambda = \frac{1}{p} - \frac{1}{r}.$
Proof. From \(\int f^q d\mu(x, \tau) = \int f^{\lambda q} f^{(1-\lambda)q} d\mu(x, \tau) \) and Hölder’s inequality Theorem 10, we have

\[
\int f^q d\mu(x, \tau) = \int f^{\lambda q} f^{(1-\lambda)q} d\mu(x, \tau),
\]

\[
\geq \left(\int \left(\frac{\lambda q}{p} \right)^\frac{1}{q} f^{\lambda q} \right)^\frac{1}{\frac{1}{q}} d\mu(x, \tau) \cdot \left(\int \left(\frac{1-\lambda}{r} \right)^\frac{1}{r} f^{(1-\lambda)q} \right)^\frac{1}{\frac{1}{r}} d\mu(x, \tau),
\]

\[
\geq \left(\int \frac{\lambda q}{p} f^p d\mu(x, \tau) \right) \cdot \left(\int \frac{1-\lambda}{r} f^r d\mu(x, \tau) \right),
\]

\[
= \left(\int \left(\frac{\lambda q}{p} \right)^\frac{1}{p} f^p \right) d\mu(x, \tau) \cdot \left(\int \left(\frac{1-\lambda}{r} \right)^\frac{1}{r} f^r \right) d\mu(x, \tau),
\]

\[
= N_p \left(\left(\frac{\lambda q}{p} \right)^\frac{1}{p} f, \tau \right) \cdot N_r \left(\left(\frac{1-\lambda}{r} \right)^\frac{1}{r} f, \tau \right),
\]

then,

\[
N_q(f, \tau) \geq N_p \left(f, \left(\frac{\lambda q}{p} \right)^\frac{1}{p} \right) \cdot N_r \left(f, \left(\frac{1-\lambda}{r} \right)^\frac{1}{r} \right).
\]

Another application of Hölder’s inequality Theorem 10 helps us to prove next theorem.

Theorem 13. If \(\mu(X, \tau) > 0 \) and \(0 < p < q < \infty \), then \(L^p(\mu) \supset L^q(\mu) \) and,

\[
N_p(f, \tau) \geq N_q \left(f, \left(\frac{q}{p} \right)^\frac{1}{p} \right) \cdot \mu \left(X, \left(\frac{q}{q-p} \right)^\frac{1}{q} \right).
\]

Proof. By Theorem 7 and Hölder’s inequality Theorem 10, we get

\[
N_p(f, \tau) = \int f^p \cdot 1 d\mu(x, \tau),
\]

\[
\geq N_q \left(f^p, \left(\frac{q}{p} \right)^\frac{1}{p} \right) \cdot N_q \left(1, \left(\frac{q}{q-p} \right)^\frac{1}{q} \right),
\]

\[
= \left(\int f^p \right)^\frac{q}{p} d\mu \left(x, \left(\frac{q}{p} \right)^\frac{1}{p} \right) \cdot \left(\int 1 d\mu \left(x, \left(\frac{q}{q-p} \right)^\frac{1}{q} \right) \right),
\]

\[
= \int f^q d\mu \left(x, \left(\frac{q}{p} \right)^\frac{1}{p} \right) \cdot \mu \left(X, \left(\frac{q}{q-p} \right)^\frac{1}{q} \right),
\]

\[
= N_q \left(f, \left(\frac{q}{p} \right)^\frac{1}{p} \right) \cdot \mu \left(X, \left(\frac{q}{q-p} \right)^\frac{1}{q} \right).
\]

Finally, we prove the Chebyshev’s Inequality in \(* \)-fuzzy \((L^+)^p \) spaces.

Theorem 14 (Chebyshev’s Inequality). If \(f \in (L^+)^p(0 < p < \infty) \) then for any \(a > 0 \), \(N_p(f, \tau) \leq N_p(\chi_{E_\alpha}, \frac{a}{p}) \) with respect to \(E_\alpha = \{ x : f(x) > a \} \).
Proof. We have,
\[f^p > (f\chi_{E_a})^p = f^p\chi_{E_a}, \]
then
\[\int f^p d\mu(x, \tau) \leq \int f^p d\mu(x, \tau)\chi_{E_a} = \int_{E_a} f^p d\mu(x, \tau), \tag{20} \]
and on \(E_a \) we have
\[\int_{E_a} f^p d\mu(x, \tau) \leq \int_{E_a} a^p d\mu(x, \tau) = \int a^p\chi_{E_a} d\mu(x, \tau). \tag{21} \]
By (20) and (21) we get
\[\int f^p d\mu(x, \tau) \leq \int a^p\chi_{E_a} d\mu(x, \tau), \]
\[\quad = \int \left(a\chi_{E_a}\right)^p d\mu(x, \tau). \]
Then,
\[N_p(f, \tau) \leq N_p(a\chi_{E_a}, \tau), \]
\[\quad = N_p(\chi_{E_a}, \frac{\tau}{a}). \]

\[\square \]

6. Conclusions

We have considered an uncertainty measure \(\mu \) based on the concept of fuzzy sets and continuous triangular norms named by \(*\)-fuzzy measure. In fact, we worked on a new model of the fuzzy measure theory (\(*\)-fuzzy measure) which is a dynamic generalization of the classical measure theory. \(*\)-fuzzy measure theory has gotten by replacing the non-negative real range and the additivity of classical measures with fuzzy sets and triangular norms. Moreover, the \(*\)-fuzzy measure theory has been motivated by defining new additivity property using triangular norms. Our approach can be apply for decision making problems [8,9].

We have restricted fuzzy measurable functions and fuzzy integrable functions and defined important classes of function spaces named by \(*\)-fuzzy \((L^+)^p\). Moreover, we have got a norm on \(*\)-fuzzy \((L^+)^p\) spaces and proved that \(*\)-fuzzy \((L^+)^p\) spaces are \(*\)-fuzzy Banach spaces. Finally, we have proved Chebyshev’s Inequality and Hölder’s Inequality.

Author Contributions: Formal analysis, A.G. and R.M.; Methodology, A.G. and R.S.; Project administration, R.M.; Resources, A.G.; Supervision, R.S.; Writing—review & editing, R.M. All authors have read and agreed to the published version of the manuscript.

Funding: The work of the third author on this paper was supported by grants APVV-18-0052 and by the project of Grant Agency of the Czech Republic (GACR) No. 18-06915S.

Acknowledgments: The authors are thankful to the anonymous referees for giving valuable comments and suggestions which helped to improve the final version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.
References

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).