
mathematics

Article

Fractional Diffusion–Wave Equation with
Application in Electrodynamics

Arsen Pskhu * and Sergo Rekhviashvili

Institute of Applied Mathematics and Automation, Kabardino-Balkarian Scientific Center of Russian Academy
of Sciences, 89-A Shortanov Street, 360000 Nalchik, Russia; rsergo@mail.ru
* Correspondence: pskhu@list.ru

Received: 18 October 2020; Accepted: 19 November 2020; Published: 22 November 2020 ����������
�������

Abstract: We consider a diffusion–wave equation with fractional derivative with respect to the time
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1. Introduction

Consider the equation (
∂α

∂tα
− ∆x

)
u(x, t) = f (x, t), (1)

where ∂α

∂tα denotes a fractional derivative with respect to t of order α ∈ (0, 2), and

∆x =
n

∑
j=1

∂2

∂x2
j

,

is the Laplace operator with respect to x = (x1, x2, ..., xn) ∈ S ⊂ Rn.
If α = 1, then Equation (1) coincides with the diffusion equation, and when α tends to 2,

this equation turns to the wave equation. Therefore, in the case under consideration (0 < α < 2),
this equation is usually called the diffusion–wave equation.

In recent decades, fractional diffusion–wave equations are studied very intensively. The first
works in this direction include [1–4]. Any close-to-complete analysis of the multitude of works devoted
to the diffusion-wave equation would require a separate special study. To give an idea of the variety
of problems considered for this type of equations, as well as the multiplicity of approaches to their
solution, we mention [5–30]. A brief overview is provided in [29]. A more detailed survey can be
found in the article [31] and monographs [32–34].

Interest in the study of this equation is caused by numerous applications fractional calculus in
modeling and various fields of natural science. In this regard, we recall the works [35–40].

The overwhelming majority of works devoted to fractional differential equations consider
fractional derivatives that are defined on finite intervals. Starting points of these derivatives, at
which initial conditions are specified, are finite. Equations with fractional derivatives on infinite
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intervals, with starting points at plus or minus infinity (usually associated with the names of Liouville,
Weyl, or Gerasimov), have been studied much less. A feature of such equations is that problems for
them do not require initial conditions. Instead, conditions can be imposed on the asymptotics of the
sought solutions at infinity. For parabolic equations, the study of problems without initial conditions
began after the publication of [41], and to this day, there is a large list of works in this direction.
As for fractional order equations, among works devoted to equations close to (1), we emphasize [42],
in which a fundamental solution of an evolution equation with the Liouville fractional derivative was
constructed, and a boundary value problem in the right half-plane was solved.

In this work, we consider Equation (1) with the Caputo-type fractional derivative with the starting
point at minus infinity. We solve an asympotic boundary value problem for this equation, construct
a representation of its solution, find out sufficient conditions providing solvability and solution
uniqueness, and give some applications in fractional electrodynamics.

2. Fractional Differentiation

The fractional derivatives of order ζ (0 < ζ ≤ p, p ∈ N) with respect to t, having a starting point
at t = s (−∞ ≤ s ≤ ∞), in the Riemann–Liouville and Caputo senses, are defined by ([35] (p. 11),
[33] (§2.1))

Dζ
stg(t) = signp(t− s)

∂p

∂tp Dζ−p
st g(t) and ∂

ζ
stg(t) = signp(t− s)Dζ−p

st
∂p

∂tp g(t),

respectively. Here, for ζ ≤ 0, Dζ
st denotes the Riemann–Liouville fractional integral:

Dζ
stg(t) = sign(t− s)

∫ t

s
g(η)
|t− η|−ζ−1

Γ(−ζ)
dη (ζ < 0), and D0

stg(t) = g(t). (2)

In (1), the fractional differentiation is given by the Caputo-type fractional derivative defined on
infinite interval with the starting point at minus infinity, i.e.

∂α

∂tα
u(x, t) = ∂α

−∞tu(x, t) =
∫ t

−∞

(t− s)m−α−1

Γ(m− α)

∂m

∂sm u(x, s) ds (m− 1 < α ≤ m, m ∈ {1, 2}). (3)

As was noted in [31], partial differential equations with fractional derivatives of the form (3), apparently
for the first time, were studied by A.N. Gerasimov in [43]. Nowadays, they are increasingly called
Gerasimov–Caputo derivatives.

3. Domain, Regular Solutions, and Problem

We consider the equation
(∂α
−∞t − ∆x) u(x, t) = f (x, t), (4)

in the domain
ΩT = Rn × (−∞, T) = {(x, t) : x ∈ Rn, t ∈ (−∞, T)}.

In what follows, m denotes an integer number equal to 1 or 2, chosen so that m− 1 < α ≤ m.

Definition 1. We call a function u(x, t) a regular solution of the Equation (4) if: u(x, t) has continuous
derivatives with respect to t ∈ (−∞, T) up to m-th order for any x ∈ Rn; (R− t)m−α−1(∂m/∂tm)u(x, t), as a
function of t, is integrable on (−∞, R) for any x ∈ Rn and R < T; in ΩT , u(x, t) has continuous first- and
second-order derivatives with respect to xj (j = 1, n), and satisfies the Equation (4).

The problem we are going to solve is
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Problem 1. Find a regular solution u(x, t) of the Equation (4) in the domain ΩT satisfying

lim
t→−∞

tk ∂k

∂tk u(x, t) = 0 (x ∈ Rn, k = 0, m− 1). (5)

4. Preliminaries

Consider the function [16]

Γα,n(x, s) = Cnsβ(2−n)−1 fβ

(
|x|s−β; n− 1, β(2− n)

)
(x ∈ Rn, s > 0). (6)

From now on
β =

α

2
, Cn = 2−nπ

1−n
2 ,

and

fβ(z; µ, δ) =


2

Γ
( µ

2
) ∫ ∞

1
φ (−β, δ;−zξ) (ξ2 − 1)

µ
2−1dξ, µ > 0,

φ (−β, δ;−z) , µ = 0,

where

φ (a, b; z) =
∞

∑
k=0

zk

k!Γ(ak + b)
(a > −1)

is the Wright function [44,45].
It was proven in [16] that the Function (6) satisfies the inequalities∣∣∣Dζ

0sΓα,n(x, s)
∣∣∣ ≤ Csβ(2−n)−ζ−1gp

(
|x|s−β

)
E
(
|x|s−β, ρ

)
, (7)

∣∣∣∣∣ ∂

∂xj
Dζ

0sΓα,n(x, s)

∣∣∣∣∣ ≤ C|xj|s−βn−ζ−1gp+2

(
|x|s−β

)
E
(
|x|s−β, ρ

)
, (8)

and ∣∣∣∣∣ ∂2

∂x2
j

Dζ
0sΓα,n(x, s)

∣∣∣∣∣ ≤ Cs−βn−ζ−1gq

(
|x|s−β

)
E
(
|x|s−β, ρ

)
, (9)

where

p =

{
n, for ζ ∈ N∪ {0},
n + 2, for ζ 6∈ N∪ {0}, q =

{
n + 2, for ζ ∈ N∪ {0} or n = 1,
n + 4 for ζ 6∈ N∪ {0} and n ≥ 2,

and

E(z, ρ) = exp
(
−ρz

1
1−β

)
, gn(z) =


1 for n ≤ 3,
| ln z|+ 1 for n = 4,
z4−n for n ≥ 5,

C = C(n, α, ρ), ρ < (1− β)β
β

1−β , and (by choosing C) ρ can be taken arbitrarily close to (1− β)β
β

1−β .
Here and subsequently, the letter C stands for positive constants, different in different cases and,

if necessary, the parameters on which they depend are indicated in brackets: C = C(a, b, ...).
Moreover, assuming s < t, |x− y| > 0, and ζ ∈ R, we can assert (see [16] (§5)) that Γα,n(x− y, t−

s), as a function of x and t, is a solution of the equation

(Dα
st − ∆x) Dζ

stΓα,n(x− y, t− s) = 0; (10)
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and a solution of the equation (
Dα

ts − ∆y
)

Dζ
tsΓα,n(x− y, t− s) = 0,

as a function of y and s. In addition, it is known that

∫
Rn

Dζ
stΓα,n(x− y, t− s) dy =

(t− s)α−ζ−1

Γ(α− ζ)
. (11)

5. Solution Representation

For a function g(x, t), defined on ΩT , we set

(
Tρg

)
(t) = sup

x∈Rn

{
|g(x, t)| · exp

(
ρ
|x|

2
2−α

(T − t)
α

2−α

)}
.

Definition 2. We say that a function g(x, t), defined on ΩT , belongs to the class Tα if(
Tρg

)
(t) < ∞

for some ρ < (1− β)β
β

1−β , the same for all t < T. (Here, as elsewhere, β = α
2 .)

Theorem 1. Let α ∈ (0, 2), m ∈ {1, 2}, α ∈ (m− 1, m], f (x, t) be locally integrable on ΩT ,

f (x, t) ∈ Tα,
(
Tρ f

)
(t) ∈ L(−∞, T − ε) for any ε > 0,

and
∂k

∂tk u(x, t) ∈ Tα and lim
t→−∞

tk

(
Tρ

∂k

∂tk u

)
(t) = 0 (k = 0, m− 1, t < T) (12)

If u(x, t) is a regular solution of the problem (4) and (5), then

u(x, t) =
∫ t

−∞

∫
Rn

f (ξ, η) Γα,n(x− ξ, t− η) dξdη, (x, t) ∈ ΩT . (13)

Proof. Consider the function

v(x, t; ξ, η) ≡ Γα,n(x− ξ, t− η)hε(|x− ξ|)hr(|x− ξ|) (ε > 0, r > 1),

where

hε(z) =

{
30ε−5

∫ z
0 s2(ε− s)2ds if z ∈ [0, ε],

1 else,

and

hr(z) =


1 if z < r− 1,

30
∫ r

z (s− r + 1)2(r− s)2ds if t ∈ [r− 1, r],
0 else.

It is easy to check that
hε(z), hr(z) ∈ C2[0, ∞); 0 ≤ hε(z), hr(z) ≤ 1; (14)

h′ε(z) = h′′ε (z) = 0 for z ≥ ε; and hr ′(z) = hr ′′(z) = 0 if z 6∈ (r− 1, r). (15)

In what follows, we use the notations

Lξ,η =
(

∂α
−∞η − ∆ξ

)
, LR

ξ,η =
(

∂α
Rη − ∆ξ

)
, and L∗ξ,η =

(
Dα

tη − ∆ξ

)
; (16)
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and Br
x denotes an open ball in Rn with center at point x and radius r,

Br
x = {ξ ∈ Rn : |x− ξ| < r}.

By the notation (16), we can write

Lξ,ηu(ξ, η) =
[
LR

ξ,η + JR
]

u(ξ, η), (17)

where

JRu(ξ, η) =
1

Γ(m− α)

∫ R

−∞
(η − s)m−α−1 ∂m

∂sm u(ξ, s) ds (η > R).

For r > 0 and R < 0, both sufficiently large in absolute value, the formula of fractional integration
by parts (see, for example, [33] (p. 76)), (7), and (17) give

∫ t

R

∫
Br

x

v(x, t, ξ, η)
[

f (ξ, η)− JRu(ξ, η)
]

dξdη =
∫ t

R

∫
Br

x

v(x, t, ξ, η)LR
ξ,ηu(ξ, η) dξdη =

=
∫ t

R

∫
Br

x

u(ξ, η)L∗ξ,ηv(x, t, ξ, η)dξdη −
m−1

∑
k=0

∫
Br

x

[
∂k

∂ηk u(ξ, η) · Dα−k−1
tη v(x, t, ξ, η)

]
η=R

dξ. (18)

By (14) and (15), we obtain ∫ t

R

∫
Br

x

u(ξ, η)L∗ξ,ηv(x, t, ξ, η)dξdη =

=
∫ t

R

∫
r−1<|x−ξ|<r

u(ξ, η)B(x− ξ, t− η) dξdη −
∫ t

R

∫
|x−ξ|<ε

u(ξ, η)A(x− ξ, t− η) dξdη =

=
∫ t−R

0

∫
|ξ|<ε

[u(x, t)− u(x + ξ, t− η)]A(ξ, η) dξdη − u(x, t)
∫ t−R

0

∫
|ξ|<ε

A(ξ, η) dξdη+

+
∫ t

R

∫
r−1<|x−ξ|<r

u(ξ, η)B(x− ξ, t− η) dξdη, (19)

where

A(ξ, η) =
n

∑
j=1

(
2

∂

∂ξ j
Γα,n(ξ, η)

∂

∂ξ j
hε(|ξ|) + Γα,n(ξ, η)

∂2

∂ξ2
j

hε(|ξ|)
)

, (20)

B(ξ, η) = −
n

∑
j=1

(
2

∂

∂ξ j
Γα,n(ξ, η)

∂

∂ξ j
hr(|ξ|) + Γα,n(ξ, η)

∂2

∂ξ2
j

hr(|ξ|)
)

.

The estimates (7) and (8), and the condition (12) yields

lim
r→∞

∫ t

R

∫
r−1<|x−ξ|<r

u(ξ, η)B(x− ξ, t− η) dξdη = 0, (21)

lim
ε→0

∫ t−R

δ

∫
|ξ|<ε

[u(x + ξ, t− η)− u(x, t)]A(ξ, η) dξdη = 0,

and ∫ δ

0

∫
|ξ|<ε
|A(ξ, η)| dξdη < ∞,

where δ is a sufficiently small positive number. Therefore∣∣∣∣∫ t−R

0

∫
|ξ|<ε

[u(x + ξ, t− η)− u(x, t)]A(ξ, η) dξdη

∣∣∣∣ ≤
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≤ C sup
|ξ|<ε, η∈(0,δ)

|u(x + ξ, t− η)− u(x, t)|+ O(ε).

The continuity u(x, t) in a neighborhood of (x, t) and an arbitrary choice of δ imply that

lim
ε→0

∫ t−R

0

∫
|ξ|<ε

[u(x + ξ, t− η)− u(x, t)]A(ξ, η) dξdη = 0. (22)

Thus, (19), (21), and (22) give

lim
ε→0

lim
r→∞

∫ t

R

∫
Br

x

u(ξ, η)L∗ξ,ηv(x, t, ξ, η)dξdη = −u(x, t) lim
ε→0

J(ε) (x ∈ Rn, R < t < T), (23)

where

J(ε) =
∫ t−R

0

∫
|ξ|<ε

A(ξ, η) dξdη.

Let us compute limε→0 J(ε). For short, we take the notation

gn(|ξ|) =
∫ t−R

0
Γα,n(ξ, η) dη.

(Note that Γα,n(ξ, η) is a function of |ξ| and η.) The formulas

∂

∂ξ j
hε(|ξ|) =

ξ j

|ξ|h
′
ε(|ξ|), ∆ξ hε(|ξ|) = h′′ε (|ξ|) +

n− 1
|ξ| h′ε(|ξ|),

and (see [16] (§5))
∂

∂ξ j
Γα,n(ξ, η) = −2πξ jΓα,n+2(ξ, η)

allow us rewrite J(ε) as

J(ε) =
∫
|ξ|<ε

{[
h′′ε (|ξ|) +

n− 1
|ξ| h′ε(|ξ|)

]
gn(|ξ|)− 4π|ξ| h′ε(|ξ|) gn+2(|ξ|)

}
dξ.

It is easy to see that

h′ε(ε|ω|) = ε−1h′1(|ω|) and h′′ε (ε|ω|) = ε−2h′′1 (|ω|).

After a change of variable ξ = εω, we get

J(ε) = εn
∫
|ω|<1

{
1
ε2

[
h′′1 (|ω|) +

n− 1
|ω| h′1(|ω|)

]
gn (ε|ω|)− 4π|ω| h′1(|ω|) gn+2 (ε|ω|)

}
dω.

The formula ∫
|ω|<1

f (|ω|) dω =
2π

n
2

Γ
( n

2
) ∫ 1

0
σn−1 f (σ) dσ

yields

J(ε) =
2εnπ

n
2

Γ
( n

2
) ∫ 1

0
σn−1

{
1
ε2

[
h′′1 (σ) +

n− 1
σ

h′1(σ)
]

gn (εσ)− 4πσ h′1(σ)gn+2 (εσ)

}
dσ =

=
2εnπ

n
2

Γ
( n

2
) ∫ 1

0

{
1
ε2

[
σn−1h′1(σ)

]′
gn (εσ)− 4πσn h′1(σ)gn+2 (εσ)

}
dσ.
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Integrating by parts gives

∫ 1

0

[
σn−1h′1(σ)

]′
gn (εσ) dσ =

[
σn−1h′1(σ)gn (εσ)

]1

0
− ε

∫ 1

0
σn−1h′1(σ)g′n (εσ) dσ.

Combining this with equality
g′n(εσ) = −2πε2σ gn+2(εσ),

we get

J(ε) = −4εnπ1+ n
2

Γ
( n

2
) ∫ 1

0
σn h′1(σ)gn+2 (εσ) dσ.

By

lim
z→0

zngn+2(z) =
2 Cn+2Γ(n)

Γ
(

n+1
2

) ,

we obtain

lim
ε→0

J(ε) = − 21−nΓ(n)
√

π

Γ
(

n
2 + 1

2

)
Γ
( n

2
) = −1.

Combining this with (18) and (23) leads to

u(x, t) = lim
ε→0

lim
r→∞

∫ t

R

∫
Br

x

v(x, t, ξ, η)
[

f (ξ, η)− JRu(ξ, η)
]

dξdη+

+ lim
ε→0

lim
r→∞

m−1

∑
k=0

∫
Br

x

[
∂k

∂ηk u(ξ, η) · Dα−k−1
tη v(x, t, ξ, η)

]
η=R

dξ (x ∈ Rn, R < t < T).

We can rewrite JRu(ξ, η) in the form

JRu(ξ, η) =
(η − R)m−α−1

Γ(m− α)

[
∂m−1

∂sm−1 u(ξ, s)
]

s=R
+
∫ R

−∞

(η − s)m−α−2

Γ(m− α− 1)
∂m−1

∂sm−1 u(ξ, s) ds.

By (12), we have

∣∣∣∣ ∂m−1

∂sm−1 u(ξ, s)
∣∣∣∣ ≤ C exp

(
ρ
|ξ|

2
2−α

(T − R)
α

2−α

)
· sup

s<R

(
Tρ

∂m−1

∂sm−1 u
)
(s) (s < R)

and consequently

∣∣∣JRu(ξ, η)
∣∣∣ ≤ C(η − R)m−α−1 exp

(
ρ
|ξ|

2
2−α

(T − R)
α

2−α

)
· sup

s<R

(
Tρ

∂m−1

∂sm−1 u
)
(s). (24)

This implies that

u(x, t) =
∫ t

R

∫
Rn

Γα,n(x− ξ, t− η)
[

f (ξ, η)− JRu(ξ, η)
]

dξdη+

+
m−1

∑
k=0

∫
Rn

[
∂k

∂ηk u(ξ, η) · Dα−k−1
tη Γα,n(x− ξ, t− η)

]
η=R

dξ (x ∈ Rn, R < t < T).

The proof is completed by showing that

lim
R→−∞

∫ t

R

∫
Rn

Γα,n(x− ξ, t− η) · JRu(ξ, η) dξdη = 0 (25)
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and

lim
R→−∞

∫
Rn

[
∂k

∂ηk u(ξ, η) · Dα−k−1
tη Γα,n(x− ξ, t− η)

]
η=R

dξ = 0 (k = 0, m− 1). (26)

By (7) and (24) we get

∫ t

R

∫
Rn

∣∣∣Γα,n(x− ξ, t− η) · JRu(ξ, η)
∣∣∣ dξdη ≤ C(t− R)m−1 sup

s<R

(
Tρ

∂m−1

∂sm−1 u
)
(s)

and

∫
Rn

∣∣∣∣∣ ∂k

∂ηk u(ξ, η) · Dα−k−1
tη Γα,n(x− ξ, t− η)

∣∣∣∣∣
η=R

dξ ≤ C(t− R)k

(
Tρ

∂k

∂tk u

)
(R) (k = 0, m− 1).

These two inequalities and (12) prove (25) and (26).

Remark 1. It should be noted that the conditions (12) combine (5) and the condition that restricts the growth
of a sought solution as |x| → ∞, which is analogous of Tychonoff’s condition [41]. Thus, a function u(x, t)
satisfying (12) certainly satisfies (5), but the converse is not true.

6. Solution Uniqueness

Theorem 1 allows us to prove the uniqueness of the solution to the problem under consideration.

Theorem 2. Let α ∈ (0, 2). There is at most one regular solution of the problem (4) and (5) in the class of
functions that satisfy (12).

Proof. Let u1(x, t) and u2(x, t) be two solutions of the Equation (4) corresponding to the same f (x, t),
and satisfy (12) (as well as (5) consequently). Then, one can conclude that the function v(x, t) =

u1(x, t)− u2(x, t) satisfies (12) and the homogeneous equation

(∂α
−∞t − ∆x) v(x, t) = 0.

By Theorem 1, this means that v(x, t) ≡ 0, i.e. u1(x, t) ≡ u2(x, t).

7. Existence Theorem

It is worth noting that Theorem 1 does not state that any function of the form (13) is an a priori
solution to Problem 1. Here, we find out conditions for the right-hand side f (x, t), ensuring that (13) is
a solution to (4) and (5), and thereby proves the existence of the solution.

Theorem 3. Let α ∈ (0, 2), m ∈ {1, 2}, α ∈ (m− 1, m], f (x, t) be presentable in the form

f (x, t) = D−δ
−∞tg(x, t) (δ > m− α), (27)

where
g(x, t) ∈ Tα ∩ C(ΩT),

(
Tρg

)
(t) ≤ C(T − t)−ν (ν > δ + α), (28)

and f (x, t) be a locally Hölder continuous in x ∈ Rn for any fixed t < T, namely, f (x, t) satisfy

| f (x, t)− f (ξ, t)| ≤ C(T − t)δ−ν|x− ξ|µ (µ > 0). (29)

Then a function u(x, t) defined by (13) is a regular solution to the problem (4) and (5).
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Proof. The formula of fractional integration by parts (see, e.g., [33] (p. 76)), (13) and (27) give

u(x, t) =
∫ t

−∞

∫
Rn

g(ξ, η) D−δ
tη Γα,n(x− ξ, t− η) dξdη.

By (7) and (28), we have∫
Rn

∣∣∣g(ξ, η) (∂k/∂tk)D−δ
tη Γα,n(x− ξ, t− η)

∣∣∣ dξ ≤ C(T − η)−ν(t− η)α+δ−k−1 (k = 0, m).

Hence
∂k

∂tk u(x, t) =
∫ t

−∞

∫
Rn

g(ξ, η) Dk−δ
tη Γα,n(x− ξ, t− η) dξ dη, (30)

(∂k/∂tk)u(x, t) ∈ C(ΩT) and
∣∣∣(∂k/∂tk)u(x, t)

∣∣∣ ≤ C(T − t)α+δ−ν−k (k = 0, m).

In particular, this proves that u(x, t) satisfies (5), and (R− t)m−α−1(∂m/∂tm)u(x, t) is integrable on
(−∞, R) as a function of t, R < T.

Thus, it remains to be proven that u(x, t), given by (13), satisfies (4). Using (11) and (30), we
can write

∂α
−∞tu(x, t) = Dα−m

−∞t
∂m

∂tm u(x, t) =
∫ t

−∞

∫
Rn

g(ξ, η) Dα−δ
tη Γα,n(x− ξ, t− η) dξ dη =

=
∫ t

−∞

∫
Rn

[g(ξ, η)− g(x, η)] Dα−δ
tη Γα,n(x− ξ, t− η) dξ dη +

∫ t

−∞
g(x, η)

(t− η)δ−1

Γ(δ)
dη.

Combining this with (2), (7), (27), and (29), we obtain

∂α
−∞tu(x, t) =

∫ t

−∞

∫
Rn

[ f (ξ, η)− f (x, η)] Dα
tηΓα,n(x− ξ, t− η) dξ dη + f (x, t). (31)

Now, let us consider the function

uε(x, t) =
∫ t−ε

−∞

∫
Rn

f (ξ, η) Γα,n(x− ξ, t− η) dξ dη (ε > 0).

By (9) and (29), we have

∆xuε(x, t) =
∫ t−ε

−∞

∫
Rn

f (ξ, η)∆xΓα,n(x− ξ, t− η) dξ dη =

=
∫ t−ε

−∞

∫
Rn

[ f (ξ, η)− f (x, η)]∆xΓα,n(x− ξ, t− η) dξ dη +
∫ t−ε

−∞
f (x, η)

∫
Rn

∆xΓα,n(x− ξ, t− η) dξ dη.

It follows from (10) and (11) that∫
Rn

∆xΓα,n(x− ξ, t− η) dξ =
∫
Rn

Dα
ηtΓα,n(x− ξ, t− η) dξ = 0.

Inequlities (8) and (29) also yield∫
Rn

∣∣∣[ f (ξ, η)− f (x, η)] (∂2/∂x2
j )Γα,n(x− ξ, t− η)

∣∣∣ dξ ≤ C(T − η)δ−ν(t− η)βµ−1.

This allows us to conclude that

∆xu(x, t) = lim
ε→0

∆xuε(x, t) =
∫ t

−∞

∫
Rn

[ f (ξ, η)− f (x, η)]∆xΓα,n(x− ξ, t− η) dξ dη.
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This and (31) prove that (13) satisfies (4).

Remark 2. It is easy to see that if f (x, t) ≡ 0 for t < a (a < T), then u(x, t), defined by (13), is also equal to 0
for t < a. In this case, u(x, t) is a solution of the equation

(∂α
at − ∆x) u(x, t) = f (x, t)

in the layer Rn × (a, T), and satisfies the zero initial conditions (∂k/∂tk)u(x, a) = 0 (k = 0, m− 1).

8. Application in Electrodynamics

It is known that solutions of wave equations encountered in classical electrodynamics are usually
expressed in terms of retarded potentials (see, e.g., [46]). For diffusion-wave equation with fractional
derivative defined on a finite interval, an analogue of retarded potential was constructed in [47]. Here,
we give an approach based on an equation of the form (1).

Consider the Equation (
∂α
−∞t − v2∆r

)
u(r, t) = f (r, t), (32)

where r is the position vector, r ∈ R3, t denotes the dimensionless time, and v is a constant with
the dimension of length. By u(r, t), we mean a scalar or vector potential, and f (r, t) is given by the
volumetric charge or current density.

The Formula (13) and an easy computation give the solution of (32), which has the form

u(r, t) =
1
v2

∫ t

−∞

∫
R3

f (r′, t′) Γα,3

(
r− r′

v
, t− t′

)
dr′dt′.

One can check that
Γα,3 (r, t) =

1
4π|r| t φ

(
−α

2
, 0;−|r|t−

α
2

)
.

This gives

u(r, t) =
1

4πv2

∫
R3

Fα(r, r′, t)
dr′

|r− r′| , (33)

where

Fα(r, r′, t) =
∫ t

−∞

f (r′, t′)
t− t′

φ

(
−α

2
, 0;−1

v
|r− r′|(t− t′)−

α
2

)
dt′ =

=
∫ ∞

0
f (r′, t− s)

1
s

φ

(
−α

2
, 0;−1

v
|r− r′|s−

α
2

)
ds

gives the distributed (non-local, blurred in time) delay.
The relation (33) is an analogue of the Kirchhoff formula for retarded potentials. It follows from

the properties of the Wright function (see [16] (Lemma 27)) that

lim
α→2

Fα(r, r′, t) = f
(

r′, t− |r− r′|
v

)
,

and, consequently,

lim
α→2

u(r, t) =
1

4πv2

∫
R3

f
(

r′, t− |r− r′|
v

)
dr′

|r− r′| . (34)

This means that the potential (33) takes the form of the classical retarded potential (see, e.g., [46] (§. 62)).
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The Formula (33) gives a general form for retarded potentials in fractional electrodynamics based
on the Equation (32). It should be noted that in the stationary case (when charge or current density
does not depend on time), the potentials (33) and (34) coincide up to the factor

∫ ∞

0

1
s

φ

(
−α

2
, 0;−1

v
|r− r′|s−

α
2

)
ds =

1
Γ(α/2)

.

According to Remark 2, the Formula (33) is completely consistent with the results of [47]. Thus,
we can conclude that the use of fractional time derivatives is equivalent to a special time averaging
of the charge density or current, which allows us to take into account the influence of the external
environment.

9. Conclusions

In this paper, we construct a representation of solutions to an asympotic boundary value problem
for a diffusion-wave equation with fractional derivative with respect to the time variable. For fractional
differentiation, we use the Gerasimov–Caputo type fractional derivative, which is defined on an infinite
interval and has the starting point at minus infinity. The problems do not require initial conditions.
Instead, conditions are imposed on the asymptotics of the sought solutions at minus infinity. We prove
the uniqueness theorem and find out sufficient conditions ensuring the existence of solutions, including
smoothness properties and asymptotic behavior of the right-hand side function. It is shown that for the
uniqueness of the solution, additional conditions are required for the growth of the desired solution at
infinity. As applications, we discuss some questions of fractional electrodynamics.
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published version of the manuscript.
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