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Abstract: This paper aims to determine the Markovian pattern of the factors influencing social dep-
rivation in Mexicans with Type 2 diabetes mellitus (DM2). To this end, we develop a methodology 
to meet the theoretical and practical considerations involved in applying a Hidden Markov Model 
that uses non-panel data. After estimating the latent states and ergodic vectors for diabetic and non-
diabetic populations, we find that the long-term state-dependent probabilities for people with DM2 
show a darker perspective of impoverishment than the rest of the Mexican population. In the ab-
sence of extreme events that modify the present probability structure, the Markovian pattern con-
firms that people with DM2 will most likely become the poorest of Mexico’s poor. 

Keywords: diabetes mellitus; social deprivation; Hidden Markov model; state-dependent probabil-
ities; ergodic vectors 
 

1. Introduction 
Diabetes is a chronic non-communicable disease that occurs when the pancreas does 

not produce enough insulin (type 1), or the body cannot effectively use the insulin it pro-
duces (type 2). Insulin is a hormone that allows glucose to enter cells and regulate it in the 
bloodstream. When this process is normal, beta cells stop producing insulin once blood 
glucose drops. In people with diabetes, the process does not happen this way because the 
immune system mistakenly destroys beta cells (type 1), or these cells stop releasing the 
amount of the hormone demanded by the body (type 2). After a latency period, excessive 
glucose accumulation in diabetic patients’ blood leads to retinopathy, nephropathy, hy-
pertension, amputation of limbs, cardiovascular and neurological disorders, and, in many 
cases, premature death. The disease’s causes result from genetic and environmental fac-
tors, unhealthy lifestyles, and high-risk behaviors [1]. 

The number of diabetics in the world is alarming due to its growth rate. Between 
1980 and 2014, their number nearly quadrupled, from 108 to 422 million, and cases are 
expected to reach 552 million by 2030 if preventive measures are not taken [2,3]. Of the 
total number of patients, 85–90% suffer from Type 2 diabetes mellitus (DM2), making it 
one of the leading international causes of morbidity, mortality, and lost labor force 
productivity. The economic costs associated with the disease are stratospheric worldwide, 
with $376 billion spent in 2010, while the projected figure for 2030 is $490 billion. This 
financial burden is heavy for low and middle-income countries, where 75% of people with 
diabetes are concentrated, and the projected growth of cases for the next 25 years is 
around 150% [2,3]. 

Mexico is a paradigmatic case of the panorama just described. According to IDF data 
[2,3], the country ranks sixth globally in the prevalence of diabetes, with 11.4 million peo-
ple affected by the disease in 2012 and an estimated 17.5 million people affected by 2040. 

Citation: Ramírez, J.C.;  

Ortiz-Arango, F.; Mata, L. The  

Markovian Pattern of Social  

Deprivation for Mexicans with  

Diabetes. Mathematics 2021, 9, 780. 

https://doi.org/10.3390/math9070780 

Academic Editors: José Álvarez- 

García, Oscar V. De la Torre-Torres 

and María de la Cruz del Río-Rama 

Received: 9 March 2021 

Accepted: 31 March 2021 

Published: 3 April 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2021 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://cre-

ativecommons.org/licenses/by/4.0/). 



Mathematics 2021, 9, 780 2 of 17 
 

 

As in the rest of the world, DM2 is the most important variant in the country, as it repre-
sents the second cause of mortality and the first in years of healthy life lost. With a prev-
alence rate of 14.8%, DM2 is also the leading cause of kidney failure, acquired blindness, 
and non-traumatic limb amputations that recently occurred in Mexico [4]. The direct and 
indirect costs associated with the disease amount, on average, to USD 1.12 billion annu-
ally, without considering the expenses derived from its complications [5]. In microeco-
nomic terms, these figures are equivalent to 15% of health expenses by families or, if we 
consider regional disparities, a much higher percentage in the country’s southern zones, 
where the disease has grown faster. According to Reference [4], DM2 growth rates in those 
areas were around 138%, compared to 32.5% for its northern counterpart between 1980 
and 2000.  

This document focuses on studying the environmental causes of DM2 in Mexico and 
aims to estimate the stationary probabilities of exposure to two populations’ social depri-
vation: diabetics and non-diabetics. The idea is to differentiate the diabetics’ probabilistic 
profile from that of the rest of Mexicans to understand their risk-factors’ specific environ-
mental conditions (very often associated with the metabolic syndrome). Among these fac-
tors, the literature highlights those linked to the direct causes of diabetes, such as sex, age, 
waist circumference, body mass index, levels of glucose, cholesterol, diastolic pressure, 
hypertension, family history, sedentary lifestyle, alcoholism, smoking, main intake and 
type, and regularity of diet [6]. 

The importance of the objective is unquestionable since, without knowledge of the 
social and economic context that determines lousy eating habits or deficient access to med-
ical services, it is impossible to deepen our understanding of the direct causes of diabetes. 
For this reason, obtaining the stationary probabilities of social deprivation constitutes the 
first contribution of this document by offering a future scenario of diabetics’ social condi-
tioning. For this purpose, we adopt a Markovian approach because the Markov property 
perfectly mirrors DM2′s dynamics. Like other phenomena such as the learning process, 
the spread of epidemics, or the pricing behavior of financial assets, its evolution depends 
critically on the present state’s information. The random variables characterizing the 
DM2′s evolution behave if they had “current absolute memory,” meaning that all required 
to predict their next stages is an appropriate initial “state of the world” within a state space 
and a probability distribution as a rule of change. Past states of the world do not add 
relevant information to the present state in the prediction process. To illustrate this prop-
erty, let us think of a contagion model in which the probability of being infected tomorrow 
depends entirely on today’s transition probabilities.  

As a chronic disease, DM2 is repetitive by nature, making it also susceptible to being 
studied using Markov models. These models allow a flexible sequencing of outcomes as-
sociated with the disease’s progression or regression states through time [7]. Among those 
outcomes, the costs of therapies or the results of treatments stand out. Different variations 
of Markov models can evaluate the resulting transition probabilities to determine if such 
therapies have been successful, according to budget restrictions at some point. 

The paper’s second contribution is to meet the theoretical and practical considera-
tions involved in the correct use of a Markovian approach. Most applied studies rarely 
address this critical issue. The proper use of any member of the Markov model’s family 
requires specific justification and methodology. It is not indistinct to prefer one model 
over another to analyze the same phenomenon. Results can change dramatically. This pa-
per addresses both types of considerations when the Hidden Markov model (HMM) uses 
non-panel data, and the process parameter is a binomial distribution. The idea of the 
methodology presented here is that there is no way to substantiate an adequate HMM 
application without fulfilling certain theoretical and practical prerequisites. If the HMM’s 
results contradict the prerequisites or vice versa, both need a review. Our methodology’s 
novelty lies in showing that the HMM and its prerequisites are part of the same process. 
One needs the other for a successful HMM application. 
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Finally, the third contribution relates to the paper’s results. In some cases, Markov 
models’ application intends to provide evidence for a practical exercise and, in other cases, 
to test a theoretical hypothesis. Examples of both situations are the forecast of disease 
prevalence rates and the efficient market hypothesis, in which it is assumed that the prices 
of financial assets follow the Markov property. Our paper falls in the second category and 
seeks to prove that diabetes expresses extreme poverty in Mexico. In particular, it reveals 
that, since the general population experiences mainly deprivation in health services and 
education, there is a greater probability that the number of diabetics in the country will 
soon increase. 

The document consists of three additional sections and the conclusions. The second 
offers a brief review of the literature on the application of Markov models in the study of 
diabetes. The third focuses on the prerequisites for applying any HMM using non-panel 
data. The fourth section presents the HMM results: the optimal number of states, the er-
godic vectors, the sensitivity analysis of the state-dependent probabilities to changes in 
risky behaviors (obesity, hypertension, alcohol consumption, and smoking), and a general 
discussion on the statistical analysis results. The conclusions summarize the main findings 
of the paper. 

2. Literature Review 
Markov models have been applied to the study of diabetes in a very similar fashion 

to the general works on the subject following two paths: that is, on the one hand, to inves-
tigate the direct causes of DM2 and, on the other hand, to explain the relationship between 
the disease and the living conditions of patients (for general works, see References [6,8–
10]). Thus, we have authors who use continuous Markov models to detect states of pro-
gression and regression of diabetes in the face of lifestyle changes [1] or Markov and Blan-
ket-type decision processes to predict, respectively, the influence of health management 
and other behavioral factors on the complications of DM2 [11,12]. Additionally, some 
studies use Markov models to predict the prevalence of diabetes according to specific so-
ciodemographic characteristics [13] and multi-cohort models to evaluate the effects of 
clinical and social variables on the disease’s evolution: normal, pre-diabetic, and diabetic 
[14]. 

These studies’ main results are auspicious because the different variants of Markov 
models offer a dynamic picture of the causes of each health status patient that is hard to 
obtain by other means. With the support of clustering methods, the models can assist, for 
example, in the identification and treatment of groups of people exposed to high-risk be-
haviors (smoking or high-fat intake) in various stages of the disease, whether or not they 
have comorbidities [15]. Similarly, Markov models offer very accurate prevalence predic-
tions throughout the health-disease process trajectory [16] and describe, quite diligently, 
the costs and benefits of a specific therapy on population groups with different sociodem-
ographic characteristics [7]. 

In Mexico’s particular case, the conclusions’ scope is not so broad as in the interna-
tional context due to these models’ limited application. However, even so, the results are 
very significant because they not only identify similar patterns between the prevalence 
and incidence rates of DM2 by sex and age group [14] but also establish an inverse rela-
tionship between their state of deprivation social status, and the condition of being or not 
diabetic [17]. Specifically, in the last cited work, a relevant methodology is used for our 
purposes. Based on a list of social items, the authors construct three states of deprivation 
(lacking, moderate poor, and extreme poor). Using a hidden Markov model, they con-
clude that rural diabetics experience a greater probability of remaining moderate and ex-
treme poor than non-diabetics. Despite the value of the method and the conclusion, the 
paper has limitations that have to do with the authors’ information based on the Encuesta 
Nacional sobre Niveles de Vida de los Hogares (ENNVIH) [18]. This survey does not have 
an exhaustive battery of questions about diabetes or data from Mexican people without 
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deprivation. Therefore, the conclusion is limited to the lacking or poor population. In ad-
dition to this problem, the authors do not include the income variable in the state’s con-
struction, making the definition of moderate and extreme poor not comparable to that 
used by the government body in charge of measuring poverty [19].  

We seek to overcome these limitations using the Encuesta Nacional de Salud y Nu-
trición (ENSANUT) [20] for more recent periods (between 2000 and 2018) and a four-state 
Markov model. Figure 1 shows the general model we use to make state diagrams for Mar-
kov chains. Given that the model’s states are recurrent and the whole chain is irreducible, 
all the four categories into which we divide the population (non-deprived, lacking, mod-
erate poor, and extreme poor) interact. Non-deprived diabetics, for example, can remain 
in the same state or turn into lacking diabetics or vice versa with some transition proba-
bilities (arrows in the figure can go around the same circle or in both directions). As the 
matrices analyzed below fit this model, the diabetic and non-diabetic populations can in-
terchangeably worsen or improve their social deprivation probabilities before reaching 
the ergodic values. There are no absorbing states.  

 

Figure 1. A four-state Markov model for diabetics and non-diabetics. 

3. The Prerequisites for Applying the HMM Using Non-Panel Data 
Figure 2 establishes that the exhaustive use of the HMM presupposes at least three 

methodological stages: one before its implementation and two during and after it. The 
first stage is related to the fulfillment of the HMM assumptions. Any application must 
comply with theoretical and practical considerations, even though most applied research 
overlooks it. The former reduces to show that the phenomenon analyzed behaves as a 
homogeneous Markov chain and the latter to constructing the cohort of individuals or 
households exposed to the phenomenon throughout the study period. The robustness of 
the HMM results critically depends on both considerations.  

                                       

 

Figure 2. Methodological stages in the application of the HMM. 
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3.1. Theoretical Considerations in the Application of the HMM 
Showing that social deprival behaves as a one-step homogeneous chain requires 

weighing: (1) the deprivation modeling proposal, (2) the state-dependent probability dis-
tribution, and (3) the method of calculating the hidden states and matrices associated with 
a specific probability distribution. These three aspects constitute theoretical prerequisites 
for applying the HMM to the diabetic and non-diabetic populations.  

The first point to highlight in (1) is the family of random variables and the justifica-
tion of its dynamics as a Markov chain. Specifically, we define the random variable X as 
the “exposure to social deprivation” that maps the elements of the sample space 𝛺 =ሼ𝐸଴, . . . , 𝐸଺ሽ on a sequence of natural numbers 1, ..., N. The sample space is made up of the 
events that record exposure to no deprivation ሼ𝐸଴ሽ or one of the following six deprivals ሼ𝐸ଵ, . . . , 𝐸଺ሽ contained in Reference [20]: (1) educational lag, (2) null rights to medical ser-
vices, (3) inadequate access to social security, (4) housing with little space and of low qual-
ity, (5) housing without public services, and (6) food insecurity. Since this paper is inter-
ested in the number of deprivals not using a weighting scheme to build a poverty index, 
each event has the same weight. 

The sum of these events corresponds to the set of individuals, denoted by N, that 
make up the sample universe at the beginning of the survey dates (2000, 2006, 2012, 2016, 
and 2018). To allow changes in the structure of events over time, we assume that X has an 
inverse image for each subset of Borel 𝐵 ∈ 𝛽 in a given sigma-field ℑ. The sigma-field 
contains all possible combinations of the elements of Ω such that 𝑋ିଵ(𝐵) ∈ ℑ, where B is 
any numerical arrangement between the events. 

We propose to model the dynamics of the variable X’s family as a Markov chain be-
cause Equations (1) and (2) fit the needs of the objective of the document entirely. In other 
words, the two equations that define a one-step homogeneous Markov chain ሼ𝐶௡ሽ allow 
us to obtain the probabilities of exposure to social deprivation from a list of deprivals of a 
fixed period of 2000–2018 (Equation (1)), given that the economic conditions are such that 
they do not change the probability’s structure (Equation (2)). The list of deprivals serves 
as the basis for constructing a transition matrix among states belonging to a discrete state 
space E. 𝑃൛𝑋௡ାଵ = 𝑠௝|𝑋଴ = 𝑠௜బ, 𝑋ଵ = 𝑠௜భ, . . . , 𝑋௡ = 𝑠௜೙ൟ = 𝑃൛𝑋௡ାଵ = 𝑠௝|𝑋௡ = 𝑠௜೙ൟ (1)∀𝑠௜బ, . . . , 𝑠௜೙ ∈ 𝐸 𝑃൛𝑋ଵ = 𝑠௝|𝑋଴ = 𝑠௜ൟ = 𝑃൛𝑋௡ାଵ = 𝑠௝|𝑋௡ = 𝑠௜ൟ (2)

The statistical analysis performed in Section 3.2 supports this modeling proposal in 
studying social deprivation in Mexico. The results of that section confirm that the transi-
tion matrices based on observable data behave like an ergodic ሼ𝐶௡ሽ. Both tables and fig-
ures back one of the assumptions required to apply the HMM: that of considering that an 
unobserved ሼ𝐶௡ሽ describes the phenomenon under study with an ergodic vector as its 
initial distribution. The property of ergodicity is inherent in such matrices because their 
states form a final class within a closed set 𝐶 such that ∑ 𝑃൫𝑠௜, 𝑠௝൯௦ೕ∈஼ = 1 ∀𝑠௜ ∈ 𝐶. These 
are regular matrices, whose vectors of stationary probabilities are estimated using Equa-
tion (3) or exponentiating the original matrix (also called the Chapman-Kolmogorov 
Equation (4), which calculates the number of stages to reach the ergodic values).  𝛿(𝑗) = 𝑙𝑖𝑚௡→ஶ𝑃൛𝑋௡ = 𝑠௝|𝑋଴ = 𝑠௜ൟ (3)𝑃൛𝑋௡ = 𝑠௝|𝑋଴ = 𝑠௜ൟ = 𝑃௡൫𝑠௜, 𝑠௝൯ (4)

When it comes to aspect (2), it is essential to make explicit the procedure to obtain 
the state-dependent probabilities 𝜋௡ ௦೔. The whole process begins by proposing a set of 
probabilities distribution to generate a discrete random sequence ሼ𝑆௡ሽ  [21]. The im-
portance of correctly choosing this set is that ሼ𝑆௡ሽ takes specific value s with 𝜋௡ ௦೔ given 
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that 𝐶௡ = 𝑖, depending on the distribution of the sequence considered. Hence, for the 
state-dependent probabilities to have a proper meaning in any study, a justification about 
the adopted conditional distribution must be offered. In our case, the binomial distribu-
tion choice is almost direct because the decision process is binary. It consists of determin-
ing the probability of success 𝑝௜ (suffering a certain number of deprivals) or failure 1 −𝑝௜ (not suffering a certain number of deprivals). In this way, the 𝜋௡ ௦೔ are calculated ac-
cording to Equation (5). 𝑃(𝑆௡ = 𝑠|𝐶௡ = 𝑖) = 𝜋௡ ௦೔ = ቀ𝑛𝑠ቁ 𝑝௜ ௦(1 − 𝑝௜)௡ି௦ (5)

The state-dependent probabilities distribution (5) is ideal for binary variables, such 
as deprivals. Deprivals take the value of one when there is a certain number of them and 
zero in the opposite case. This way, equation (5) can assign defined values of 𝜋௡ ௦೔ to each 
of the four states unambiguously. Another possibility of generating the state-dependent 
probabilities is by using an activation function of a neural network. However, the ad-
vantages of that function over a binomial are not clear. In any case, it must be clear that 
the generating function of 𝜋௡ ௦೔ has to consider normal-binary and not rare events. For 
that reason, values of 𝜋௡ ௦೔ cannot admit, for instance, a Poisson distribution.  

Finally, aspect (3) refers to estimating the state-dependent probability matrix 𝛱, the 
hidden ergodic vector, and the binomial distribution parameters. On this point, it worth 
noting that there are several computational methods. However, we opted for the Expec-
tation-Maximization (EM) algorithm for the economy of its computation. This algorithm 
maximizes the conditional likelihood pseudo-function (6) in two stages. In the first stage 
(stage E), the algorithm estimates the parameters of the function 𝜃∗ = 𝜃௜ and, in the sec-
ond (stage M), it finds the maximum values of 𝜃෠ for certain 𝜃∗ and selects the hidden 
states 𝑁෡∗, 𝛱, and the stationary vectors using information criteria. In this document, we 
set 𝜃௜ = 0.5 and run the total program in the R library for Markov chains (https://cran.r-
project.org/web/packages/depmixS4/index.html, accessed on 18 November 2020). 𝑄(𝜃, 𝜃଴) = 𝐸ఏబሾ∑ 𝑙𝑛(𝑃ሾ𝑋௧, 𝑆௧, 𝜃|𝜃଴, 𝑋ଵ:௧ିଵ])௧்ୀଵ ], (6)

where 𝑄(𝜃, 𝜃଴) is the conditional expected value, 𝜃଴ is the set of initial parameters (spe-
cifically, we consider ଵ௡ as the initial value of the probabilities, in which n is the number 
of assumed states), 𝑋௧  is the vector of selected conditional probabilities, and 𝑆௧ , 𝑡 ∈ሾ1,2, . . . , 𝑛] is the discrete sequence [22]. 

3.2. Practical Considerations in the Application of HMM: Data and Treatment Method 
Among the practical prerequisites, the cohort of individuals exposed to the same phe-

nomenon in equidistant periods stands out. Without panel data or cross-section infor-
mation divided by equal time intervals, the HMM would be of little utility because the 
estimation of any phenomenon’s dynamics would present strong biases. This paper uses 
Reference [20], which, unlike longitudinal surveys (such as the ENNVIH), it is not a panel 
type that allows monitoring of the same households of diabetics over time. Instead, it is a 
cross-sectional survey in which demographic, nutritional, and health information in-
volves different households in each wave (2000, 2006, 2012, 2016, and 2018).  

ENSANUT [20] collects information from two questionnaires (one for health and one 
for nutrition), on-site measurements (anthropometry, blood pressure, hemoglobin, and 
capillary lead), and biological samples to explore undetected diseases. The sample units 
are households whose respondents are divided into children (at most ten-years-old), ad-
olescents (11–19 years old), and adults (at least 20 years old). This paper’s information 
mainly comes from the health questionnaire applied to the last group (see Table 1). Adults 
belong to the survey’s universal sample for the health questionnaire consisting of 45,726 
(in 2000), 48,304 (in 2006), 50,528 (in 2012), 9474 (in 2016), and 50,562 (in 2018) households 
spread across Mexico’s 32 entities. 
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Table 1. The universe of individuals aged 20 years and over in different rounds. 

 Sample  
Diabetes No Diabetes 

2000 2956 41,151 
2006 2965 42,175 
2012 4490 41,787 
2016 972 7643 
2018 5893 37,177 

Source: Own elaboration based on ENSANUT 2000–2018. 

Table A1 of Appendix A displays all the information included in this study. The table 
contains the definitions relevant to deprivals and variables considered in the health ques-
tionnaires for adults and in general. Particularly, we use the information from the section 
on preventive programs and medical diagnosis of chronic diseases (diabetes, hyperten-
sion, and obesity) of the adult health questionnaire and the general questionnaire’s socio-
demographic data. 

With all this information, we build a pseudo-panel in three steps. First, following 
Reference [17,19], we group figures from Table 1 to the four states shown in Figure 1. 
These states are defined as follows: state 0 (non-deprived), state 1 (lacking or individuals 
with at least one deprival, but with income above the minimum welfare line), state 2 (mod-
erate poor or individuals with one or two deprivals and income below the minimum wel-
fare line) and state 3 (extreme poor or individuals with three or more deprivals and in-
come below the minimum welfare line). Data on incomes referred to as the minimum 
welfare line come from Reference [19]. According to Reference [17], the optimal size to 
model the population’s deprivation that suffers at least one social deprival in Mexico is 
three states. Therefore, if we add the non-deprived population, then the selected number 
is justifiable.  

The second step consists of matching the observations using the nearest neighbor 
method proposed by Reference [23]. The variables chosen for matching are the sociodem-
ographic ones listed in Table A1. The cohort resulting from this match comprises 8519 
adults (876 diabetics and 7643 non-diabetics), who are precisely those who retain the char-
acteristics most closely related throughout the period. Table 2 summarizes the basic sta-
tistics of the sample. Since most of the deprivals, variables, and risk-factors in the table are 
binary, their interpretation is easy. If we focus on the deprivals and risk-factor categories, 
we see that people with diabetes are more deprived and have more comorbidities than 
the rest of the population. For example, diabetics experience more educational lag (31% 
of them) and obesity (53% of them) than non-diabetics (29% and 45%, respectively) on 
average. Likewise, people with diabetes are less educated (4.43 years) than the rest (4.96 
years) and register larger bounded coefficients of variation (BCV) in most of the catego-
ries. If we choose hypertension, we observe that diabetics’ BCV are almost twice that of 
non-diabetics (0.85 vs. 0.46), which means that this comorbidity distribution is more dis-
persed for the first group. A small proportion of diabetic people suffer more hypertension 
than the rest, including both diabetics and non-diabetics. 
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Table 2. Basic statistics of the sample (2000–2018). 

 ENSANUT 2000-2018 
  Full Sample Diabetes No Diabetes 

Deprivations Mean 
Standard  
Deviation BCV Mean 

Standard 
Deviation BCV Mean 

Standard 
Deviation BCV 

Educational lag 0.31 0.40 0.42 0.34 0.42 0.44 0.29 0.38 0.41 
Access to health services 0.22 0.28 0.29 0.23 0.28 0.30 0.21 0.27 0.28 
Access to social security 0.24 0.34 0.35 0.26 0.36 0.37 0.22 0.32 0.36 

Quality and spaces in the home 0.14 0.32 0.36 0.15 0.34 0.38 0.14 0.31 0.34 
Access to basic services in the home 0.39 0.19 0.20 0.40 0.19 0.21 0.37 0.18 0.18 

Access to food 0.40 0.42 0.48 0.41 0.45 0.51 0.39 0.40 0.47 
                    

Diabetes and some risk-factors Mean 
Standard  
Deviation BCV Mean 

Standard  
Deviation BCV Mean 

Standard  
Deviation BCV 

Diabetes 0.11 0.29 0.63 -- -- -- -- -- -- 
Obesity and overweight 0.48 0.40 0.64 0.53 0.48 0.82 0.45 0.36 0.57 

Hypertension 0.21 0.42 0.49 0.23 0.50 0.85 0.18 0.39 0.46 
Alcohol 0.53 0.47 0.63 0.47 0.50 0.78 0.52 0.34 0.53 
Tobbaco 0.16 0.28 0.62 0.15 0.26 0.56 0.17 0.37 0.62 

                    

Sociodemographic variables Mean 
Standard  
Deviation BCV Mean 

Standard  
Deviation BCV Mean 

Standard  
Deviation BCV 

Sex 0.49 0.41 0.86 -- -- -- -- -- -- 
Age 46.32 16.66 0.33 48.34 16.15 0.28 45.65 17.33 0.38 

Years of education 4.50 4.97 0.86 4.43 5.00 0.82 4.96 4.85 0.92 
Single 0.25 0.37 0.69 0.25 0.37 0.69 0.24 0.37 0.66 

Married 0.57 0.46 0.69 0.66 0.47 0.73 0.58 0.44 0.67 
Urban zone 0.66 0.48 0.73 0.76 0.48 0.65 0.75 0.56 0.74 

                    
Source: Own elaboration based on ENSANUT [20] 2000–2018. 

In the third step, we use the paired data and sample expansion factors from each 
wave of Reference [20] to interpolate individuals’ sub-cohorts by the deprivation status 
throughout the period. The interpolation includes the construction of a cubic spline poly-
nomial 𝑆𝑃(𝑥) for each sub-cohort in the intervals ൣ𝑥௝, 𝑥௝ାଵ൧, 𝑗 = 0,1, . . . , 𝑛 − 1 subject to 
the following terms: 
(1) 𝑆𝑃௝൫𝑥௝൯ = 𝑓൫𝑥௝൯ and 𝑆𝑃௝൫𝑥௝ାଵ൯ = 𝑓൫𝑥௝ାଵ൯∀𝑗 = 0,1, . . . , 𝑛 − 1 
(2) 𝑆𝑃௝ାଵᇱ ൫𝑥௝ାଵ൯ = 𝑆𝑃௝ᇱ൫𝑥௝ାଵ൯ ∀𝑗 = 0,1, . . . , 𝑛 − 1 
(3) 𝑆𝑃௝ାଵᇳ ൫𝑥௝ାଵ൯ = 𝑆𝑃௝ᇱᇱ൫𝑥௝ାଵ൯ ∀𝑗 = 0,1, . . . , 𝑛 − 1 
(4) 𝑆𝑃ᇳ(𝑥଴) = 𝑆𝑃ᇳ(𝑥௡) = 0 

The intervals ൣ𝑥௝, 𝑥௝ାଵ൧ are partitions of the domain of x over the closed set 2000 =𝑎 ≤ 𝑥଴ < 𝑥ଵ <. . . < 𝑥ே ≤ 𝑏 = 2018, whose range is composed of the 𝑁 + 1 coordinates (𝑥଴, 𝑦଴), . . . , (𝑥ே, 𝑦ே) of the curve 𝑦௞ = 𝑓(𝑥௞); 𝑘 = 0,1, . . . , 𝑁. The curve yields the deprivals 
by states for each sub-cohort of adults. 

Once the interpolated values have been obtained, finally, we take the equidistant 
points 2006, 2012, and 2018 to distribute the adult cohort in equal time intervals. In this 
way, we could convert independent cross-sectional data into an equidistant pseudo-panel 
in time, which is necessary to use the HMM adequately. Tables 3 and 4 present the exer-
cise’s final results. These tables are the basis for building the HMM as they record the 
observed transitions experienced by diabetics and non-diabetics among the four states 
during the sample period. 
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Table 3. Number of individuals by states of deprivation in 2006, 2012, and 2018. 

Year State Individuals 
  Diabetics Non-Diabetics 

2006 0 189 1677 
 1 234 2072 
 2 184 1602 
 3 269 2292 

2012 0 172 1549 
 1 227 2034 
 2 179 1567 
 3 298 2493 

2018 0 166 1504 
 1 225 2020 
 2 181 1585 
 3 304 2534 

Source: Own elaboration based on ENSANUT [20] 2000–2018. 

Table 4. A. Number of Mexican people with DM2 according to the transition matrix (2006–2018). 
B. Number of Mexican people without DM2 according to the transition matrix (2006–2018). 

A 
States 0 1 2 3 

0 79 65 18 27 
1 39 59 60 76 
2 21 43 45 75 
3 27 58 58 126 

B 
States 0 1 2 3 

0 832 465 235 145 
1 279 649 396 748 
2 177 413 406 606 
3 216 493 548 1035 

Source: Own elaboration based on ENSANUT [20] 2000–2018. 

An interesting point about Table 4A is that they can empirically validate our model-
ing proposal. The matrix form of each table makes it easier to check that observable de-
privals behave like ሼ𝐶௡ሽ. The procedure compares the observed matrices with those esti-
mated between 2006 and 2018 for diabetics and non-diabetics. Table 5 shows the figures 
resulting from the comparison after using the maximum likelihood method for 90% con-
fidence intervals (see References [24,25]). While the left part of each table contains the ob-
served matrices between 2006 and 2012, the right part displays the estimated matrices for 
2006–2018, which results from iterating the observed matrices one period forward. The 
meaning of estimated matrices is unique here, as it only represents a heuristic resource to 
test the hypothetical evolution of ሼ𝐶௡ሽ. Multiplying the observed matrix in 2006–2012 by 
itself to obtain an estimate of the observed matrix for the sample period of 2006–2018 is 
an indirect method to verify the probabilities’ structures of both matrices. If those struc-
tures are statistically different, then the two matrices do not belong to the same ሼ𝐶௡ሽ. 
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Table 5. A. Transition probabilities for Mexican people with Type 2 diabetes mellitus (DM2) (2006–2018). B. Transition 
probabilities for Mexican people without DM2 (2006–2018). 

A 
States πi0 πi1 πi2 πi3 States πi0 πi1 πi2 πi3 

0 0.3949 0.3265 0.1043 0.1742 0 0.4303 0.3197 0.1286 0.1214 
(0.3717, 0.4901) (0.2712, 0.3671) (0.1031, 0.1569) (0.0956, 0.1826) (0.4119, 0.4444) (0.3045, 0.3338) (0.1156, 0.147) (0.1062, 0.1398) 

1 
0.1588 0.2417 0.2507 0.3488 

1 
0.1949 0.2711 0.1548 0.3792 

(0.1268, 0.2346) (0.2294, 0.3137) (0.1237, 0.2881) (0.3277, 0.4374) (0.1775, 0.2089) (0.257, 0.2852) (0.1364, 0.1689) (0.3608, 0.3965) 

2 
0.1030 0.2345 0.2650 0.3976 2 0.1122 0.2555 0.2888 0.3435 

(0.0844, 0.1425) (0.2163, 0.2965) (0.2434, 0.3355) (0.2965, 0.4245)  (0.096, 0.1285) (0.2371, 0.2685) (0.2747, 0.305) (0.3283, 0.3586) 

3 
0.0975 0.2111 0.2276 0.4638 

3 
0.1063 0.2300 0.2480 0.4157 

(0.0831, 0.1362) (0.1934, 0.2709) (0.2115, 0.2883) (0.3576, 0.4775) (0.0911, 0.1193) (0.2116, 0.2473) (0.2296, 0.2611) (0.4016, 0.4298) 
Observed Transition Matrix 2006–2012 Estimated Transition Matrix 2006–2018 

Stationary vector    Stationary vector    

π 0.2121 0.2685 0.2001 0.3193 π 0.1936 0.2635 0.2088 0.3340 
Statistic χ2 = 23.184 p-value = 0.1089 

B 
States πi0 πi1 πi2 πi3 States πi0 πi1 πi2 πi3 

0 0.4652 0.2532 0.1523 0.1292 0 0.4173 0.3270 0.1315 0.1241 
(0.3896, 0.4843) (0.2024, 0.3359) (0.1102, 0.1959) (0.1062, 0.1765) (0.3907, 0.421) (0.3035, 0.3359) (0.1124, 0.147) (0.1051, 0.1398) 

1 0.1279 0.2909 0.2043 0.3768 1 0.1982 0.2587 0.1574 0.3857 
(0.1097, 0.2122) (0.2060, 0.3273) (0.1864, 0.2678) (0.3019, 0.3933) (0.1819, 0.2111) (0.2414, 0.2673) (0.1386, 0.171) (0.3652, 0.3944) 

2 
0.1030 0.2345 0.2767 0.3859 

2 
0.1090 0.2481 0.2928 0.3502 

(0.0971, 0.1306) (0.2014, 0.2707) (0.2163, 0.3177) (0.3477, 0.3936) (0.0992, 0.1285) (0.2414, 0.2707) (0.2874, 0.3145) (0.3466, 0.378) 

3 
0.0898 0.2011 0.2543 0.4549 

3 
0.1010 0.2186 0.2357 0.4448 

(0.0533, 0.1236) (0.1827, 0.2462) (0.1796, 0.2664) (0.4051, 0.5132) (0.0933, 0.1225) (0.2149, 0.2473) (0.2317, 0.2631) (0.4507, 0.4843) 
Observed Transition Matrix 2006–2012 Estimated Transition Matrix 2006–2018 

Stationary vector    Stationary vector    

π 0.2060 0.2616 0.1998 0.3326 π 0.1864 0.2552 0.2082 0.3502 
Statistic χ2 = 22.706 p-value = 0.1218 

Note: Number in round brackets are 95% simultaneous confidence intervals. Source: Own elaboration. 

Goodness-of-fit tests reject the null hypothesis that the observed and estimated prob-
ability distributions are independent. That is, the tests show that deprivals behave as an 
ergodic homogeneous Markov chain ሼ𝐶௡ሽ of four states between 2006 and 2018 (see p-
values and ergodic values calculated with (3) at the bottom of the two tables). What is 
valuable about this result is that since the X’s family behaves like ሼ𝐶௡ሽ, states’ information 
is sufficient to explain the dynamics of exposure to social deprivation. To predict X’s nat-
ural evolution, we only need states’ transition probabilities.  

It is important to note that our modeling proposal and, in general, the prerequisites 
for applying the HMM are valid under the assumption that ሼ𝐶௡ሽ has four states. The 
HMM finds a different optimal size for transition matrices, prerequisites should be re-
checked to verify whether the HMM results are meaningful or not. A well-applied HMM 
is not possible without well-founded prerequisites. The HMM is a suitable tool to predict 
hidden regimes’ behavior from observed data if and only if prerequisites are met [26]. One 
needs the other in a double-check process. 

Since the HMM considers the data’s underlying structure, there is no way to expect 
the same Table 5 information. Unlike direct (observed) Markov models, such as those be-
hind the mentioned tables, where the states and transition probabilities are predetermined 
with the same coefficient of variation and no serial correlation, the HMM generates non-
predetermined quantities (number of states, transition probabilities, and parameters val-
ues) with different means, variances, and correlation degrees. The HMM’s variety of re-
sults is highly dependent on the probability distribution assumed. Hence, the greater re-
alism of hidden models lies precisely in the sound foundation of the prerequisites. 

4. Results 
After meeting the theoretical and practical considerations, stage 2 of Figure 2 estab-

lishes that the first aspect to consider is the optimal number of states. Table 6 show that, 
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following the Akaike (AIC) and Bayesian (BIC) information criteria, the optimal size gen-
erated by the EM algorithm is four states for the two populations (see the lower values of 
AIC and BIC). This result is relevant as it confirms that the division of states previously 
assumed in Table 5 is well-founded. In other words, the hidden data matches the number 
of observable states when using a binomial distribution. Therefore, we can safely assume 
that the hidden states reflect the size and meaning of observable data categories. 

Table 6. A. The optimal number of states for the population without DM2. B. The optimal number 
of states for the population with DM2. 

A 
Probability Distribution Number of States Log Likelihood AIC BIC 

Binomial 

2 −5902.84 1546.39 1555.71 
3 −7698.52 1452.48 1547.46 
4 −7705.17 1099.44 1255.94 
5 −7321.83 1490.76 1641.78 

B 
Probability Distribution Number of States Log Likelihood AIC BIC 

Binomial 

2 −6686.40 1424.62 1608.45 
3 −7580.08 1487.91 1435.14 
4 −8234.53 1232.34 1255.94 
5 −6356.93 1514.81 1667.44 

Source: Own elaboration. 

Table 7A present the 𝛱 matrices associated with these states, which result from ap-
plying Equations (5) and (6) to observable data. They show that the probabilities of staying 
in the same state are higher in 𝑠଴ and 𝑠ଷ than in 𝑠ଵ and 𝑠ଶ, which is indicative of the in-
itial disparity in the social conditions of the country. However, when considering the re-
maining values of 𝜋௡ ௦೔, a general impoverishment profile emerges due to the potential 
migration of diabetics and non-diabetics to more deprived states. In particular, individu-
als who already experience some deprivations are more likely to become extreme poor 
than moderate. Likewise, those who do not suffer from DM2 and do not have any depri-
vation have significant probabilities of being lacking (0.3197), moderate poor (0.1286), and 
extreme (0.1214). The figures for people with DM2 are slightly higher. 
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Table 7. A. State-dependent probability matrices for the population without DM2. B. State-de-
pendent probability matrices for the population with DM2. 

A 
States πi0 πi1 πi2 πi3 Mean Variance 

0 0.4303 0.3197 0.1286 0.1214 NA NA 
1 0.1949 0.2711 0.1548 0.3792 1.462 1.021 
2 0.1122 0.2555 0.2888 0.3435 3.783 2.287 
3 0.1063 0.23 0.248 0.4157 5.187 2.103 

Stationary vector    

π 0.1936 0.2635 0.2088 0.3340   

B 
States πi0 πi1 πi2 πi3 Mean Variance 

0 0.4173 0.3270 0.1315 0.1241 NA NA 
1 0.1982 0.2587 0.1574 0.3857 1.443 1.223 
2 0.1090 0.2481 0.2928 0.3502 3.525 2.653 
3 0.1010 0.2186 0.2357 0.4448 5.021 2.437 

Stationary vector    

π 0.1864 0.2552 0.2082 0.3502   

Source: Own elaboration. 

In the absence of any event that alters the current probabilities’ structure, the previ-
ous scenario likely becomes real in a period of six stages (or 24 years), which are the num-
ber of times the hidden matrices need to be exponentiated to reach the stationary values, 
according to Equation (4). Specifically, people with diabetes present a more impoverished 
probabilistic profile than those who are not ill due to their lower probability of being de-
prived (0.1864 vs. 0.1936) and their greater probability of becoming extreme poor (0.3502 
vs. 0.3340). The upper values of the mean of the events in state 3 confirm this probabilistic 
scenario.  

A remarkably similar pattern is observed when comparing these results with those 
of Table 5. The values of the ergodic vectors of the observed matrices for the two popula-
tions and the number of stages needed to reach them coincide, in general, with the quan-
tities calculated by the HMM. Hence, the HMM conclusions find support in the data from 
the observed Markov matrices.  

4.1. Statistical Differences between Diabetics and Non-Diabetics 
An outstanding aspect of any Markov model is its flexibility to combine techniques 

that support results beyond its original scope. Following stage 3 of Figure 2, we present a 
couple of techniques to highlight diabetics’ differences from the rest of the population. 
Table 8 reports the first technique’s results, which involve a multivariate analysis of vari-
ance (MANOVA), for the two populations by the state of the chain and type of social dep-
rivation (state zero is excluded).  

The data in columns two to four represent the mean differences (𝜇ଵ − 𝜇ଶ) associated 
with each social deprival. A positive value of (𝜇ଵ − 𝜇ଶ) indicates a greater exposure of 
people with diabetes to such deprival. The figures show that people with diabetes experi-
ence a more significant educational lag and less access to quality services in health and 
social security than those who do not suffer from the disease in states 1 and 2 (in the latter, 
it only applies to the educational lag). Table 9 shows that these differences are especially 
significant in access to quality health services in state 1 since, in this case, people with 
diabetes experience greater exposure than non-diabetics in a percentage that ranges be-
tween 0.061% and 0.562%. It is followed in importance by the educational lag and poor 
access to social security services. There are no statistically significant differences between 
the two populations in the rest of the social deprivals, as shown by the p-values in Table 
8 or the Bonferroni simultaneous intervals in Table 9. 
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Table 8. Multivariate analysis of variance for diabetic and non-diabetic populations by states and 
social deprivation (percentages). 

Deprivation State 1 State 2 State 3 
 μ1−μ2 p-Value μ1−μ2 p-Value μ1−μ2 p-Value 

Educational lag  0.215 0.000 0.136 0.013 −0.129 0.274 
Access to health services 0.271 0.001 0.114 0.345 −0.293 0.102 
Access to social security 0.285 0.000 0.290 0.435 0.439 0.761 

Quality and spaces in the home  −0.148 0.137 0.026 0.871 −0.096 0.585 
Access to basic services in the home 0.051 0.600 0.031 0.858 0.028 0.864 

Access to food −0.002 0.372 0.015 0.245 0.067 0.049 
Source: Own elaboration. 

Table 9. Bonferroni simultaneous intervals for diabetic and non-diabetic populations by states and 
social deprivation (percentages) at a 95% confidence. 

Deprivation State 1 State 2 State 3 
Educational lag (0.035, 0.396) (0.045, 0.316) (−0.31, 0.051) 

Access to health services (0.061, 0.562) (−0.177, 0.405) (−0.583, 0.002) 
Access to social security (0.197, 0.372) (−0.202, 0.378) (−0.351, 0.527) 

Quality and spaces in the home  (−0.238, 0.059) (−0.064, 0.116) (−0.186, 0.007) 
Access to basic services in the home (−0.039, 0.064) (−0.019, 0.044) (−0.04, 0.015) 

Access to food (−0.037, 0.034) (−0.021, 0.051) (−0.031, 0.103) 
Source: Own elaboration. 

To what extent do these deprivals and the adoption of certain risky behaviors affect 
the probability of being diabetic? To answer this question, we use the second technique, a 
multinomial logit model in which the independent variables are some of the direct causes 
of the disease (tobacco and alcohol consumption and overweight or obesity), and the de-
pendent variable Y is defined as: 𝑌 = ൜ 𝑗 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑠𝑜𝑛 𝑖𝑠 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐 𝑎𝑛𝑑 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑑𝑒𝑝𝑟𝑖𝑣𝑎𝑙 𝑗𝑚 + 𝑗 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑠𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐 𝑎𝑛𝑑 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑑𝑒𝑝𝑟𝑖𝑣𝑎𝑙 𝑗, 
where 𝑚 are social deprivations, 𝑗 = 1,2, … , 𝑚. Formally, the conditional probability is 
estimated using:  𝑃ሾ𝑌 = 𝑖 | 𝑋] = 𝐹(𝑌ᇱ௜) , 
where F is the logistic cumulative probability distribution, X is a vector of independent 
variables 𝑋ଵ, 𝑋ଶ, … , 𝑋௣, and 𝑌′௜ is a latent variable that determines the realization of the 
variable Y at a specific value 𝑖 = 1,2, … ,2𝑚. Usually, the level of the variable 𝑌′௜ is esti-
mated according to a linear specification of the form. 𝑌′௜ = 𝑋𝛽௜ + 𝜀௜ , 

in which 𝛽௜ are the coefficients calculated for the ith category of variables X and 𝜀௜ is the 
random disturbance, 𝑖 = 1,2, … ,2𝑚. The marginal effect of the variable 𝑋௞, 𝑘 = 1,2, … , 𝑝, 
on 𝑌′௜ is expressed as:  𝜕𝑃𝜕𝑋௞ = 𝜕𝐹(𝑌′௜)𝜕𝑋௞  . 

Table 10 shows the marginal effects of DM2′s risk-factors on the probability of being 
diabetic or not being diabetic by social deprivation and the corresponding p-values and 
confidence interval at the 95% level. The data indicates that when the individual presents 
an educational lag, poor access to health services, and food insecurity, the marginal effects 
of direct causes are statistically significant, but not in the other cases. Thus, for example, 
if the individual experiences educational lag, then the direct causes increase the probabil-
ity of acquiring diabetes by 0.38% (obesity or overweight), 0.326% (hypertension), 0.34% 
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(alcohol consumption), 0.22% (tobacco consumption), and a similar occurrence happens 
with the other two deprivals.  

When interpreting the results in Table 10, one must be very cautious. They do not 
mean, for example, that educational lag conditions behavior in consumption of alcohol or 
tobacco. Rather, the results mean that adults with an educational lag have a greater prob-
ability of developing DM2 when they are obese, hypertensive, smoke, and drink alcohol. 
The specific contribution of these risky behaviors varies by type of deprivals.  

Table 10. Marginal effects on the probability of being diabetic (multinomial logit model) by type 
of clinical risk and social deprivation. 

Risk-Factors Coefficient p-Value Confidence Interval (95%) 
 Lack due to educational lag  

Obesity and overweight 0.380 0.000 (0.171, 0.851) 
Hypertension 0.326 0.043 (0.195, 0.485) 

Alcohol 0.340 0.000 (0.127, 0.775) 
Tobacco 0.220 0.000 (0.084, 0.501) 

 Lack of access to health services 
Obesity and overweight 0.395 0.000 (0.191, 0.879) 

Hypertension 0.298 0.004 (0.205, 0.379) 
Alcohol 0.365 0.000 (0.133, 0.835) 
Tobacco 0.249 0.000 (0.115, 0.556) 

 Lack of access to social security 
Obesity and overweight −0.165 0.635 (−0.066, 0.267) 

Hypertension 0.054 0.987 (−0.981, 0.789) 
Alcohol −0.541 0.426 (−0.168, 0.595) 
Tobacco −0.327 0.525 (−0.157, 0.565) 

 Lack of quality and spaces in the home  
Obesity and overweight 0.287 0.280 (−0.263, 0.837) 

Hypertension 0.184 0.296 (−0.418, 0.745) 
Alcohol 0.157 0.242 (−0.317, 0.631) 
Tobacco 0.208 0.271 (−0.323, 0.739) 

 Lack of access to basic services in the home 
Obesity and overweight 0.287 0.392 (−0.481, 1.055) 

Hypertension 0.132 0.456 (−0.181, 0.255) 
Alcohol 0.157 0.342 (−0.514, 0.828) 
Tobacco 0.208 0.355 (−0.488, 0.904) 

 Lack of access to food 
Obesity and overweight 0.215 0.000 (0.106, 0.207) 

Hypertension 0.279 0.008 (0.163, 0.371) 
Alcohol 0.316 0.000 (0.133, 0.261) 
Tobacco 0.278 0.000 (0.087, 0.171) 

Source: Own elaboration. 

4.2. Discussion 
The previous results present similarities and differences concerning those reported 

by the literature, especially by Reference [17]. We agree with those authors that stationary 
probabilities of becoming extreme poor are higher in diabetics than in non-diabetics. 
These probabilities are associated with an educational lag and problems of access to med-
ical services and social security. Nevertheless, we differ from them when they argue that 
differences between the two populations are significantly distinct in all the states and that 
there is no strong statistical correlation between social deprivals and the direct causes of 
DM2. As we make clear in Tables 8–10, people with DM2 experience more exposure to the 
three deprivals mentioned practically only in state 1, and that two of these deprivals, to-
gether with food insecurity, increase the probability of acquiring the disease when the 
individual consumes tobacco or alcohol and is obese and hypertensive.  
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Other studies addressing health or lifestyle intervention treatment predictors in peo-
ple with diabetes also share these latter results. Using a machine learning approach, Selig-
man [27] found that social factors, such as education, are good predictors of DM2′s direct 
causes. Derevitskii [15] states that smoking significantly affects DM2′s complications in 
patients’ trajectories analyzed as Markov chains. Sanchez [28] conclude that intervention 
in human behavior helps diabetic older adults improve their quality of life. Factors iden-
tifying human behavior (posture, nutritional habits, daily activity, duration, and location) 
are extracted from a hidden Markov model. Finally, Radcliff [29] uses Markov transition 
matrices to assert that nutrition education with behavioral coaching programs is effective 
and efficient in preventing or delaying DM2-associated consequences of obesity.  

Unfortunately, these papers concentrate on studying the intermediate steps of a Mar-
kov chain and do not perform analyses on the ergodic values. This omission prevents us 
from comparing our results with other experiences. In this sense, the methodology used 
for constructing the stationary matrices in Tables 5 and 7 constitutes a novelty in the liter-
ature on diabetes. This methodology allows us to obtain the same stationary social depri-
vation pattern employing either direct (Table 5) or hidden matrices (Table 7). The differ-
ences between both types of ergodic matrices are insignificant, even though their transi-
tion probabilities’ calculation uses different methods (maximum likelihood in the direct 
and the EM algorithm in the hidden model). Thus, we can safely conclude that ceteris 
paribus, Mexican people with diabetes will become extreme poor around 2050 because 
the prerequisites for applying the HMM coincide with the model’s results. 

5. Conclusions and Future Work 
The paper develops a methodology to study social deprivation in diabetic and non-

diabetic populations using HMM. The idea is to differentiate the probabilistic profile of 
the exposure to deprivation in both populations to understand the disease’s economic and 
social context. For this, the paper proposes some theoretical and practical considerations, 
leading to implementing the model correctly. Compliance with these considerations is 
unavoidable for any HMM user.  

The main conclusion from the statistical analyses is that, in the absence of events that 
alter the 2006–2018 period’s probability structure, it is highly likely that people with DM2 
have a greater probability of becoming extreme poor than the rest of the population. This 
probabilistic scenario combined with some risky behaviors, such as tobacco and alcohol 
consumption, hypertension, or obesity, increases the probability of acquiring DM2. The 
lack of medical supervision services or education to know how to exercise or eat properly 
makes low-income families a natural target for chronic diseases. Thus, creating a proba-
bilistic scenario is essential for understanding the context that forces individuals to adopt 
risky behaviors for their health.  

A future research agenda on the subject should include two critical aspects: the in-
clusion of new variables and the link between the direct causes of diabetes and social dep-
rivation. The new variables to consider are sex, age, residence, and income deciles, due to 
their importance in explaining the new disease trends in Mexico. Adolescent and adult 
DM2 require different treatments because patients experience them differently by sex, ur-
ban and rural areas, and economic strata. For example, uneducated, extreme poor women 
have greater DM2 prevalence rates than extreme poor men in urban zones but not in some 
rural zones [17]. Additionally, it is necessary to perform an in-depth study of household 
members’ cultural and genetic backgrounds to learn about their social propensity to dis-
eases. Knowing the family’s cultural environment or the parents’ diabetic history is essen-
tial for understanding the intimate links between DM2 and social deprivation. 
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Appendix A 

Table A1. Variables and definitions used in this study (2000–2018). 

Variables Definition 

Educational lag * 
An adult who does not have compulsory basic education (complete 

elementary and secondary education). 
Access to health 

services * 
An individual who does not have an affiliation to receive medical services 

from a public or private institution. 

Access to social 
security * 

The person who does not have employment benefits, AFORE (AFORE is the 
Retirement Savings Fund Administration System), or another retirement 

service. 

Quality and spaces 
in the home * 

A person who lives in a house whose floors, roofs, and walls are made up of 
waste material, cardboard sheet, mud or bark, reed, bamboo, palm, metallic or 

asbestos sheet, and the ratio of people per room is greater than 2.5. 

Access to basic 
services in the 

home * 

A person who gets the water from a well, river, lake, stream, pipe, or piped 
water is obtained by hauling it from another home, public tap, or hydrant. 

People who do not have a drainage service or the drainage is connected to a 
pipe that leads to a river, lake, sea, ravine, or crevasse also fall in this category. 
They usually do not have electricity, and the fuel they use to cook or heat food 

is firewood or charcoal. 

Access to food * 
People who present one or more food insecurity characteristics in the last three 

months. 
Diabetes * People with a diagnosis of DM2. 

Obesity and 
overweight * 

People with a body mass index above the healthy thresholds recommended by 
the World Health Organization and the Ministry of Health in Mexico. 

Hypertension * People with a diagnosis of high blood pressure or hypertension. 
Alcohol * People who consume alcohol above the median of the population. 
Tobacco * People who smoke cigarettes above the median of the population. 

Sex * Male or female (male takes number 1 and female 0). 
Age Age of the person. 

Years of education The number of years of education. 
Marital status * The person is single, married, divorced, widowed, or separated. 

Rural zone * An area with less than 2500 inhabitants. 
Urban zone * An area with more than 2500 inhabitants. 
Federal entity State of residence in Mexico. 
Municipality Municipality of residence in Mexico. 

Location Localities of residence in Mexico. 
Source: Own elaboration based on ENSANUT [20] (2018) and CONEVAL [30] (2016). Note. The 
asterisk* indicates that the variable is a dummy, taking the value 1 if the condition is met or 0 oth-
erwise. 
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