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Abstract- This paper presents a practical algorithm for obtaining transient response of 
chopper-controlled active and passive loads. Core algorithm given for simulating 
transient response of chopper-controlled R-L load is extended to chopper-controlled DC 
drive, covering both the continuous and discontinuous current modes of operation. 
Although chopper-controlled loads are taken as case studies, with a little effort the core 
algorithm can be readily extended to handle the transient response of the other system 
which manifests periodic discontinuous forcing functions of different types. Transient 
current and speed responses of chopper-controlled DC drive, which are obtained from 
application of the proposed algorithm are compared with their counterparts obtained 
from detailed numerical solution of the state-space model of the drive using fourth- 
order Runge-Kutta method, and the advantages of proposed algorithm are discussed. 

Keywords- Transient response, chopper-controlled loads, Runge-Kutta method. 

1. INTRODUCTION 

 Chopper-controlled loads such as inductive loads (R-L) and DC drive loads are 
commonly used in industry. Often it is desirable to analyze their transient performance. 
With widespread availability of personal computers and numerical software [1-4], it is 
fairly easy to accomplish the task. However, practicing engineers often hesitate to be 
involved in using sophisticated numerical techniques. Instead they are more inclined to 
use simple and direct algorithms, which they can easily program in any high-level 
programming language. Occasionally instead of providing practical algorithms that are 
very easy to implement, the matter is further complicated unnecessarily by the like of 
the method proposed in [5]. Although the method given in [5] is applied to a simple R-L 
circuit, it involves a very complicated and time-consuming process, which is absolutely 
unnecessary. 

 In this paper a very simple and practical algorithm is proposed, which produces 
same results as obtained in [5].  The algorithm is further extended for computing the 
performance of a DC drive. It would be extremely complicated if any attempt is made to 
extend the technique given in [5] for accomplishing the same task. Algorithm proposed 
in this paper is also capable of predicting the transient, as well as the steady-state 
performance of chopper-controlled R-L and DC drive loads in a very simple and yet a 
very accurate way, which is believed to be very useful for a practicing engineer. 
Reliability and accuracy of the algorithm will be illustrated with examples. 



 
 

M. Akbaba and O. Özhan 
 

 

 

 

 

230 

2. PROPOSED ALGORITHM AND ITS APPLICATIONS 

 The proposed algorithm first will be presented for R-L load and then it will be 
extend to DC drives. 

2.1.  R-L Load Case 

 Schematic diagram of a chopper-controlled R-L load is given in Figure 1. 
Reference [5] is misleading as no reference is made to the freewheeling diode path 
throughout the paper. 

 

Figure 1: Chopper-controlled R-L load 

When chopper is on, the equation governing the operation of an R-L load is 
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where ‘ tb’ is defined as the elapsed time during off period of a cycle only and it is reset 

to zero at the end of each off period of the chopper, i.e., when tb = (1-D)T. The voltage 
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drop across the free-wheeling diode is neglected. Solution of Equation (1) is 

    s a a
1 a

V
( )    1  exp( )   I  exp( )          (for 0 t DT)

R τ τ

t t
i t

 = − − + − ≤ ≤  
 (3) 

And solution of Equation (2) is 

     b
2 b( )   I  exp( )                              (for 0 t (1 D)T)

τ

t
i t = − ≤ ≤ −  (4) 

where I1 and I2 are minimum and maximum values of the current during each cycle as 
shown in Figures 2 and 3, and L/Rτ =  is the time constant of the circuit. In steady state 
operation formulation of I1 and I2 are well known and can be obtained in power 
electronics books [6, 7]. But in transient operation they are not known and they need to 
be calculated at each cycle separately. It will be shown below that in the proposed 
algorithm calculation of I1 and I2 is a simple matter, as they are the currents at the 
beginning and end of the on and off periods of the chopper, as shown in Figures 2 and 3. 
Calculation starts with I1=0 and I2=0. Then I2 is obtained as the current computed at the 

end of chopper on period when tc = ta = DT, i.e., I2 = i(ta = DT). As can be seen from 

Equation (4), only I2 is required for calculation of the current during tc = DT + tb, which 

has the same meaning as 0 ≤  tb ≤ (1-D)T.  Then I1 is obtained as the current computed 

at the end of chopper off period when tc = T, i.e., when tb = (1-D)T (given that tc=ta+tb 

and tb = (1-D)T). It can be seen from Equation (3) that only I1 is required for calculation 

of the current during 0 ≤ ta ≤ DT and the current at the end of this period will give I2 
again. Therefore I1 and I2 are updated at the end of each on and off periods of the 
chopper, without loss of accuracy. 

 In the proposed algorithm the sum of ta and tb is defined as tc (tc=ta+tb ) which 
is the elapsed time during each complete cycle of the chopper and it is initialized to zero 

at the end of each cycle, i.e., when t c = T. The proposed algorithm is given below:  

 

 

 

 

 

 

 

 

% Start 

I1 = 0; I2 = 0; t = 0; ta=0; tb=0; h = <an appropriate increment>; 

while t <= tfinal do 

 t = t + h ; tc = tc + h;  

 if ta <= D*T 

   ta= ta+ h ; 

   V(t)=Vs ; 

   i(t) = <Equation (3)>; 

  elseif ta == D*T 

   I2 = i(ta=D*T); 

 else 

   tb = tc – D*T; 

   Vload(t)=0 ;     

   i(t) = <Equation (4)>; 

  elseif tc == T   % (tb=(1-D)T)  

    I1 = i(tb=(1-D)*T) ; 

   tc=0; tb=0; ta=0 ;     

 end % (if) 

end % (while) 
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 The key elements in calculating the transient current are I1 and I2 and it is clearly 
seen that given algorithm calculates their values in a very simple way. To test the 
proposed algorithm and compare the results with the results of reference [5], the circuit 

parameters given in [5] have been used. (R = 4 Ω, L = 0.06 H, T = 0.005 sec, Vs =200 
V, D=0.5).  The proposed algorithm and the method given in [5] are programmed in 
MATLAB. Computed transient and steady state responses are illustrated in Figures 2 
and 3 respectively. Also the direct numerical solution of the main state space equations 
(1) and (2), using fourth-order Runge-Kutta method [8] is included in Figures 2 and 3. It 
is evident from these figures that the results obtained from the proposed algorithm in 
this paper matches perfectly with the detailed numerical solution of the state differential 
equation of the circuit  using Runge-Kutta fourth-order method [8]. Results obtained 
using the proposed algorithm exactly match those obtained from the application of the 
method given in [5], i.e., the results are completely superimposed and they can not be 
identified from each other in these figures. But the proposed algorithm is much superior 
to the method given in [5], as it is much simpler to understand and implement, with 
much less effort and much less computing time. The computing time of the proposed 
algorithm is shorter by a factor of 3.6.  
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Figure 2: Transient response of given R-L circuit. (a) Load current obtained 
using proposed algorithm (b) Load current obtained using Runge-Kutta 
method.  
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Figure 3: Steady-state response of given R-L circuit. (a) Load current 
obtained using proposed algorithm. (b) Load current obtained using 
Runge-Kutta method. 

 The steady state performance of the circuit is given in Figure 3. This figure is 
obtained as the zoomed part of the extended time transient solution where solution is 
completely converged to its steady state regime, as shown in Figure 2. It is evident from 
this figure that there is excellent match between the results obtained from the proposed 
algorithm and the detailed solution obtained from Runge-Kutta fourth-order method. 

 Figure 3 also clarifies the meanings of various notations symbols used in the 
proposed algorithm. 

2.2. Chopper-Controlled DC Drive Case 

 Algorithm given above can be easily extended to handle response of any circuit 
subject to a periodic forcing function. Here the algorithm given above will be extended 
to obtain transient response of a chopper-controlled DC motor driving a fan type load, 
such as a water pump. Schematic diagram of a chopper-controlled separately excited 
DC motor driving a fan type load is given in Figure 4. 

     The torque-speed characteristic of a fan type load is given as [9]: 

2
L LT =k ω(t)                                                                                                                  (5) 
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Figure 4: Chopper-controlled DC drive. 

During chopper on period, the voltage equation governing the operation of the drive is  
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During chopper off period the voltage equation governing the operation of the drive is 
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(and   ia(t) = ia(tb)) 

Equation of the motion of the drive during both on and
 
off periods of the chopper is 

 2
L )(ω k)( k

dt

ω(t)d
J ttia −Φ=                                                                                         (8) 

‘ta’ and ‘tb’ appearing in equations (6) and (7) have the same definitions and meanings 
as described earlier. 

 Utilizing the minimum and maximum values of armature current during each
 individual cycle, then solution of Equation (6) (during on period) is 

( ) )DTt0(for       ) τ / t exp( I  )τ / t exp(1 
R

)(ω  kΦV
  (t) ama1ma

a

ns ≤≤−+−−






 −
=

t
ia    (9) 

And solution of equation (7) (during off  period of the chopper) is 
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 Since mechanical transients are much slower than electrical transients, the 
solution of

 

Equation (8), for both
 

on and off periods of the chopper can be formulated as 
given below: 

) ω k   kΦ ( J) / h (ω )(ω 2
1nL1)a(n1nn −−− −+=  it       ( )(ω)(ω n tt = ) (11) 

 It is needless to mention that the current and speed are updated after each 
computation step. I1 and I2, which are key parameters in calculation of the drive 
performance, are updated at the end of each on and off periods of the chopper in the 
same manner as described earlier for R-L circuit. 

 The core algorithm given for R-L circuit is extended to cover DC drive 
equations that are described above and the resulting algorithm is given below. 
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Figure 5. Transient response of the drive for continuous current operation 
Computed using proposed algorithm     
Computed using Runge-Kutta method  
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Figure 6 . Steady-state response of the drive for continuous current operation 
Computed using algorithm given in this paper     
Computed using Runge-Kutta method  

 The algorithm given above is applied to a separately excited dc motor drive 
which is powered from a chopper circuit and drives a fan type load. Chopper frequency 
of the chopper is chosen as 200 Hz and the input voltage as 250 V. The parameters of 
the motor are : Ra=0.465 Ω, La=28 mH, kΦ = 4.0818 V sec rad-1 and J = 0.165 kg-m2.

  For the continuous current operation the load torque constant kL is chosen as 0.06 Nm 
sec2 rad-2, and it is chosen as 0.006 Nm sec2 rad-2 for discontinuous current operation. 

 The transient and the steady state performance of the drive are computed by 
implementing the proposed algorithm, for D = 0.5 and continuous current operation 
case (kL=0.06 Nm sec2 rad-2), and they are illustrated in Figures 5 and 6 respectively. 
These figures also include the direct numerical solution of the state equations of the 
drive using fourth-order Runge-Kutta method [8]. The steady-state performance shown 
in Figure 6 is the zoomed version of the transient solution from t = 280 ms to t=300 ms, 
as shown in Figure 5, where the transient solution completely converges to its steady-
state regime. From these figures it can be seen that the given algorithm gives excellent 
results, which are very close to the exact solution of the drive state-space equations 
obtained using Runge-Kutta's fourth-order method 
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Figure 7. Transient response of the drive for discontinuous current 
operation 

  Computed using proposed algorithm      
 Computed using Runge-Kutta method  
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Figure 8. Steady-state response of the drive for discontinuous 
current operation 

                               Computed using proposed algorithm     

                              …… Computed using Runge-Kutta method 
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 For further verification of the accuracy of the given algorithm, the transient and 
steady state performance of the drive is obtained for discontinuous current operation 
case with again D=0.5 and kL=0.006 Nm sec2 rad-2, results are illustrated in figures 7 
and 8 respectively. Although the transient performance is computed for t=300 ms, in 
order to be able to see the effect of discontinuity clearly, plots are show up to t=180 ms 
only. These figures also include the direct numerical solution of the state-space 
equations of the drive using fourth-order Runge-Kutta method. Examination of these 
figures show again that the proposed algorithm, besides its very simple structure and 
much less computing time, gives excellent results, as resulting response closely follows 
the results obtained from the application of Runge-Kutta fourth-order method. 

 The authors of reference [5] have mentioned in their paper that their method can 
be extended to chopper-controlled drives such as the ones mentioned in reference [10]. 
The authors of this current paper have made an attempt to verify the validity of the 
claims made in [5]. It was found that there is no possibility of extending the method of 
[5] to electrical drives hence the claims raised in that paper is baseless. 

3. CONCLUDING REMARKS 

 A simple, practical and yet very accurate algorithm is proposed for computing 
transient as well as steady-state performance of chopper-controlled passive (R-L) and 
active (DC drive) loads. With this algorithm there is no need for Laplace and inverse 
Laplace transforms of the circuit differential equations as proposed in [5], nor for the 
knowledge of any numerical differential equation solving techniques. The algorithm is 
first applied to evaluation of the transient and steady-state performance of a series 
connected R-L load. Results are compared with the detailed numerical solution of the 
circuit differential equation using fourth-order Runge-Kutta method and excellent 
agreement is obtained between the two. The algorithm is further extended for 
computing the performance of a DC drive, both for continuous and discontinuous 
current operating modes. Again results obtained from the proposed algorithm are 
compared with the results obtained from the detailed solution of the drive differential 
equations using fourth-order Runge-Kutta method and excellent agreement is obtained 
between the two solutions. These results confirm the validity and accuracy of the 
proposed algorithm. To accomplish such a task by extending the method given in [5] 
will be near to impossible. It is believed that the proposed algorithm will be very useful 
for fast, easy and accurate computation of the transient as well as steady-state 
performance of chopper controlled loads and it can be easily extended for different 
types of forcing functions (different types of input voltage). 

Nomenclature 

 Ra, La : Armature winding resistance and inductance respectively 
 τ m : Armature winding time constant (La/Ra) (sec) 
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 kΦ : Motor back emf constant  (Nm/A or V/rad/sec) 
  J : Combined load and motor inertia (kg/m2) 
 kL : Load torque constant (Nm sec2/rad2) 

 f : Chopper frequency (Hz.) 
 Vs : Chopper supply voltage (V) 
 T : Chopper period (=1/f ) (sec) 
 ton : Chopper on period  (sec) 
 toff  : Chopper off period (toff = (1-D) T )  (sec) 
 D : Chopper duty cycle (=  ton / T ) 
Va or Vmotor: Voltage across the motor armature (V) 
 H : Computation step size (sec) 
 ( )a ni  : Current (motor armature) at nth computation step (A) 

( 1)a ni −  : Current (motor armature) at (n-1)th computation step (A) 

 ω : Motor speed (rad/sec) 

 ωn : Motor speed at n-th computation step (rad/sec) 

 ωn-1 : Motor speed at (n-1)th computation step (rad/sec) 
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