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Abstract: The plasma metabolome is associated with multiple phenotypes and diseases. However,
a systematic study investigating clinical determinants that control the metabolome has not yet
been conducted. In the present study, therefore, we aimed to identify the major determinants of
the plasma metabolite profile. We used ultra-high performance liquid chromatography (UHPLC)
coupled to quadrupole time of flight mass spectrometry (QTOF-MS) to determine 106 metabolites
in plasma samples from 2503 subjects in a cross-sectional study. We investigated the correlation
structure of the metabolite profiles and generated uncorrelated metabolite factors using principal
component analysis (PCA) and varimax rotation. Finally, we investigated associations between
these factors and 34 clinical covariates. Our results suggest that liver function, followed by kidney
function and insulin resistance show the strongest associations with the plasma metabolite profile.
The association of specific phenotypes with several components may suggest multiple independent
metabolic mechanisms, which is further supported by the composition of the associated factors.

Keywords: metabolomics; glomerular filtration rate; insulin resistance; acylcarnitines; branched-chain
amino acids

1. Introduction

Metabolomics, as other “omics” such as genomics, transcriptomics and proteomics, aims for
a holistic view of biology in health and disease. In contrast to the transcriptome and proteome,
which change gradually, the metabolome reacts instantly upon environmental changes, or in response
to disease development [1]. Mass spectrometry (MS), coupled to various chromatographic techniques
are commonly used in metabolomics methods [2]. Separations based on liquid chromatography (LC)
combined with soft atmospheric pressure ionization have been increasingly applied in the last decade.
One reason for this is the wide polarity range covered by the variety of stationary phase chemistries
available in LC, allowing for separation of metabolites ranging from polar sugars to hydrophobic
lipids. Currently, reversed phase chromatography is widely applied because of its high reproducibility
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and MS compatibility [2]. In a single analysis, metabolomics is, therefore, capable of detecting a
broad range of physiological and pathophysiological processes. Consequently, metabolite profiling
studies have linked circulating metabolite profiles to multiple metabolic pathologies, including
cardiovascular [3,4], liver [5], and kidney disease [6], type 2 diabetes (T2D), and insulin resistance [7–9].
Recent studies indicated that the metabolite profile is more sensitive to disease development when
compared to traditional clinical markers, which may allow for earlier detection of disease [10,11].
Most metabolomics studies focus on a single trait, and may produce an incomplete description of health
status. Identified metabolite biomarkers are affected by the highly variable nature of the metabolome,
and are not only impacted by multiple diseases, but also lifestyle-related factors, and anthropometric
associations [1].

The aim of the present study was to identify the major determinants of the plasma metabolite
profile. Using reversed phase ultra-high performance LC (RP-UHPLC) coupled to quadrupole
time-of-flight MS (QTOF-MS), we measured plasma metabolite profiles of 2503 extensively phenotyped
individuals. Our method covered a wide range of metabolite classes, including (phospho)lipids, amino
acids, acylcarnitines, and bile acids. The metabolite profiles were converted into orthogonal metabolite
factors and associated with 34 clinical covariates.

2. Results

2.1. Correlation of Metabolites

We determined relative levels of 106 identified metabolites in plasma samples from
2503 individuals. These metabolites included amino acids, acylcarnitines, bile acids and
(phospho)lipids. After removal of duplicates and metabolites that were detected in <85% of the
individuals, 78 metabolites remained for further analysis. We first examined the composition of the
metabolite profiles. Correlation analysis revealed several clusters of metabolites, which corresponded
to distinct metabolite classes or pathways (Figure 1A). In particular, distinct clusters were observed for
phosphatidylcholines (PCs), lyso-PCs (LPCs), lyso-phosphatidylethanolamines (LPEs), purines, amino
acids, medium- and long-chain acylcarnitines.

2.2. Reduction of Metabolites into Uncorrelated Variables

To transform the correlated metabolites into uncorrelated factors, we analysed data using PCA.
Thereby, the 78 correlated metabolites were reduced into 18 uncorrelated factors, which together
explained 74.5% of the variation in the data (Figure 1B). Next, we used varimax rotation to enhance
interpretation of the factors. The first 9 factors, with eigenvalues ≥ 2, are shown in Figure 1C.
As metabolites that clustered along a particular component were generally related; specific metabolite
classes could largely explain these components. The largest systematic inter-individual variation
in the metabolite profiles was observed for LPCs (component 1, explaining 20.2% of the variation
in the data), followed by medium-chain acylcarnitines (component 2, 10.6%), and long unsaturated
LPCs (component 3, 6.8%). In addition, purines, caffeine, paraxanthine, and theophylline (component
4, 5.0%), branched-chain and aromatic amino acids (component 5, 4.3%), bile acids (component 6,
3.4%), LPE, phosphocholine, and amino acids (component 7, 3.2%), PC species (component 8, 3.0%),
and uremic aromatic homo-monocyclic compounds (component 9, 2.5%) clustered along a particular
component (Table S1 in Supplementary Materials).



Metabolites 2018, 8, 78 3 of 12

Metabolites 2018, 8, x 3 of 12 

 

 
Figure 1. Schematic overview of correlation and principal component analyses (PCA) revealing 
independent clusters of metabolites. (A) Metabolite profiles are highly correlated. Pearson correlation 
coefficients for metabolite pairs (rows and columns) are shown. Several distinct clusters that 
correspond to biochemical pathways were observed, including phosphatidylcholine (PC, light blue), 
lyso-PC (LPC, black), lysophosphatidylethanolamine (LPE, yellow), acylcarnitine (green), bile acid 
(purple), and amino acid (orange) clusters. (B) PCA was employed to reduce the number of correlated 
metabolites by transforming them into uncorrelated metabolite factors. Density coloured scatter plot 
indicating the scores for the first two principal components (PC1 and PC2). The score plot hence 
indicates similarities and differences between the metabolite profiles of the subjects. The relation to 
the original variables, i.e., the metabolites, is described by the loadings (not shown). (C) The loading 
matrix contains non-zero values for all metabolites in all components. Hence, varimax rotation was 
conducted on the 18 principal components with eigenvalues > 1 to improve the interpretation of the 
factors. Heat map displays varimax-rotated loadings for the first 9 factors with eigenvalues ≥ 2, in 
which |loadings| ≤ 0.2, indicating only small contribution to the component, were coloured in white. 
Hence, the first component is largely composed of LPCs (black) and the second by acylcarnitines 
(green). Detailed graphs of Figure 1A,C are available in Figure S3. 

2.3. Association of Metabolite Factors with Phenotypic Parameters 

After reduction of the metabolite data into independent variables with metabolite class 
signatures, we investigated the association between the factors and clinical parameters. For this, we 
built linear models on the scaled data, and calculated standardized regression coefficients (β). 

Prior to analysis, the 44 clinical covariates were screened for collinearity (Pearson |r| > 0.8) [12]. 
We used a relatively high threshold to keep the majority of clinically significant covariates. To focus 
on the most influential phenotypic traits, collinear parameters showing the weakest association with 
the first 10 principal components determined by principal component analysis (PCA) of the 
metabolite profiling data were excluded. The following clinical covariates showed collinearity: (1) 
body mass index (BMI), waist circumference, and weight; (2) cholesterol, low-density lipoprotein 
(LDL), and apolipoprotein B (ApoB); (3) free estradiol and estradiol; (4) testosterone, free androgen 
index (FAI), sex, and bio-available testosterone; (5) homeostasis model assessment of insulin 
resistance (HOMA-IR) and fasting insulin; (6) chronic kidney disease (CKD) and estimated 
glomerular filtration rate (eGFR). Of these variables, BMI, cholesterol, HOMA-IR, free estradiol, FAI 
and eGFR were used for association of phenotypic parameters to the metabolite factors. 

Component 1 associated strongly with measures of lipid metabolism, including cholesterol (β = 
−0.056, q = 1.20e−27), triacylglycerides (TAG; β = −0.050, q = 4.14e−22), and the apolipoprotein 

Figure 1. Schematic overview of correlation and principal component analyses (PCA) revealing
independent clusters of metabolites. (A) Metabolite profiles are highly correlated. Pearson correlation
coefficients for metabolite pairs (rows and columns) are shown. Several distinct clusters that correspond
to biochemical pathways were observed, including phosphatidylcholine (PC, light blue), lyso-PC
(LPC, black), lysophosphatidylethanolamine (LPE, yellow), acylcarnitine (green), bile acid (purple),
and amino acid (orange) clusters. (B) PCA was employed to reduce the number of correlated
metabolites by transforming them into uncorrelated metabolite factors. Density coloured scatter
plot indicating the scores for the first two principal components (PC1 and PC2). The score plot hence
indicates similarities and differences between the metabolite profiles of the subjects. The relation to
the original variables, i.e., the metabolites, is described by the loadings (not shown). (C) The loading
matrix contains non-zero values for all metabolites in all components. Hence, varimax rotation was
conducted on the 18 principal components with eigenvalues > 1 to improve the interpretation of
the factors. Heat map displays varimax-rotated loadings for the first 9 factors with eigenvalues ≥ 2,
in which |loadings| ≤ 0.2, indicating only small contribution to the component, were coloured in
white. Hence, the first component is largely composed of LPCs (black) and the second by acylcarnitines
(green). Detailed graphs of Figure 1A,C are available in Figure S3.

2.3. Association of Metabolite Factors with Phenotypic Parameters

After reduction of the metabolite data into independent variables with metabolite class signatures,
we investigated the association between the factors and clinical parameters. For this, we built linear
models on the scaled data, and calculated standardized regression coefficients (β).

Prior to analysis, the 44 clinical covariates were screened for collinearity (Pearson |r| > 0.8) [12].
We used a relatively high threshold to keep the majority of clinically significant covariates. To focus
on the most influential phenotypic traits, collinear parameters showing the weakest association
with the first 10 principal components determined by principal component analysis (PCA) of the
metabolite profiling data were excluded. The following clinical covariates showed collinearity: (1) body
mass index (BMI), waist circumference, and weight; (2) cholesterol, low-density lipoprotein (LDL),
and apolipoprotein B (ApoB); (3) free estradiol and estradiol; (4) testosterone, free androgen index
(FAI), sex, and bio-available testosterone; (5) homeostasis model assessment of insulin resistance
(HOMA-IR) and fasting insulin; (6) chronic kidney disease (CKD) and estimated glomerular filtration
rate (eGFR). Of these variables, BMI, cholesterol, HOMA-IR, free estradiol, FAI and eGFR were used
for association of phenotypic parameters to the metabolite factors.



Metabolites 2018, 8, 78 4 of 12

Component 1 associated strongly with measures of lipid metabolism, including cholesterol
(β = −0.056, q = 1.20e−27), triacylglycerides (TAG; β = −0.050, q = 4.14e−22), and the apolipoprotein
B/apolipoprotein A1 (ApoB/ApoA1)-ratio (β = 0.033, q = 2.73e−10) (Figure 2, left panel).
These associations remained significant after adjustment for age and sex (cholesterol: β = −0.041,
q = 5.91e−15; TAG: β = −0.034, q = 1.71e−10; ApoB/ApoA1-ratio (β = 0.017, q = 3.65e−3), and additional
adjustment for BMI (cholesterol: β = −0.040, q = 7.73e−15; TAG: β = −0.033, q = 3.91e−11;
ApoB/ApoA1-ratio: β = 0.017, q = 4.52e−3) (Table S2).Metabolites 2018, 8, x 5 of 12 

 

 
Figure 2. Principal components associate with distinct phenotypic features. (A) Associations of 
phenotypic traits with sample scores along the first three principal components (standardized 
regression coefficients, β; q < 0.05). (B) Cholesterol associates strongly with component 1 (left panel), 
eGFR with component 2 (middle panel), and HOMA-IR with component 3 (right panel). The linear 
regression line is shown in red. Abbreviations: Alcohol, alcohol intake gram/week; ApoA, 
apolipoprotein A1; ApoB, apolipoprotein B; CRP, c-reactive protein; DBP, diastolic blood pressure; 
eGFR, estimated glomerular filtration rate; Gluc0, fasting glucose; Gluc120, 120 min oral glucose 
tolerance test (OGTT) glucose level; HOMA-B, homeostasis model assessment of beta-cell function; 
HOMA-IR, homeostasis model assessment of insulin resistance; LAEI, large artery elasticity index; 
SAEI, small artery elasticity index; SBP, systolic blood pressure; SHBG, sex hormone binding globulin; 
TAG, triacylglycerides; WHR, waist/hip-ratio. 

3. Discussion 

In the present study, we established the main clinical covariates associated with differences in 
the plasma metabolite profiles in a cross-sectional sample of 2503 adult individuals. As multiple 
metabolites showed collinearity, we used PCA to reduce the large number of metabolites into 
independent components. The new orthogonal factors reflected different metabolite classes and 
pathways. Various LPCs contributed to component 1, which described the largest proportion of the 
variation in the data, and strongly associated with cholesterol and TAG levels, and the ApoB/ApoA1-
ratio. Cholesterol levels are largely controlled by the liver, which is the major source of cholesterol 
and LDL via very low-density lipoprotein (VLDL) production, and also the major site of LDL 
catabolism [13]. In addition, TAG levels are largely controlled by the liver via synthesis and secretion 
of VLDL [14], and plasma levels of LPCs distinguish metabolically benign from malignant non-
alcholic fatty liver [15]. Hence, our results suggest that liver function show the strongest association 
with the major differences in the plasma metabolite profiles measured in this study. 

Medium-chain acylcarnitines mainly contributed to component 2. This component is associated 
with hypertension and kidney function, as approximated by eGFR. Hypertension is a proven risk 
factor for CKD [16], and the metabolome may therefore primarily reflect variations in eGFR that are 
secondary to hypertension. Our results confirm previous studies, which indicated higher 
acylcarnitine levels in CKD [17] and an inverse association with eGFR [18], which was suggested to 
be caused by impaired excretory function in the failing kidney [19]. In addition, renal excretion has 
been reported to be the primary route for acylcarnitine elimination [20]. Hence, the results in our 
study suggest that kidney function is strongly associated with differences in the plasma metabolite 
profiles. 
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Figure 2. Principal components associate with distinct phenotypic features. (A) Associations of
phenotypic traits with sample scores along the first three principal components (standardized regression
coefficients, β; q < 0.05). (B) Cholesterol associates strongly with component 1 (left panel), eGFR with
component 2 (middle panel), and HOMA-IR with component 3 (right panel). The linear regression
line is shown in red. Abbreviations: Alcohol, alcohol intake gram/week; ApoA, apolipoprotein
A1; ApoB, apolipoprotein B; CRP, c-reactive protein; DBP, diastolic blood pressure; eGFR, estimated
glomerular filtration rate; Gluc0, fasting glucose; Gluc120, 120 min oral glucose tolerance test (OGTT)
glucose level; HOMA-B, homeostasis model assessment of beta-cell function; HOMA-IR, homeostasis
model assessment of insulin resistance; LAEI, large artery elasticity index; SAEI, small artery elasticity
index; SBP, systolic blood pressure; SHBG, sex hormone binding globulin; TAG, triacylglycerides;
WHR, waist/hip-ratio.

Component 2 associated with measures of kidney function, including eGFR (β = 0.059,
q = 1.60e−15) and plasma creatinine (β = −0.042, q = 9.77e−9). In addition, blood pressure-related traits
were associated with this component, including hypertension (β = −0.051, q = 3.14e−12), and both
systolic (β = −0.038, q = 2.09e−7) and diastolic (β = −0.018, q = 2.10e−2) blood pressure (Figure 2,
middle panel). After adjustment for age and sex, eGFR (β = 0.036, q = 5.62e−9), plasma creatinine
(β = −0.037, q = 3.28e−9), and hypertension (β = −0.031, q = 3.19e−6) remained significantly associated
with component 2, as well as after additional adjustment for BMI (eGFR, β = 0.037, q = 3.99e−9;
plasma creatinine, β = −0.037, q = 2.57e−9; hypertension, β = −0.029, q = 1.26e−5) (Table S2). Notably,
the association of eGFR and creatinine with component 2 were independent of hypertension (eGFR,
β = 0.056, q = 5.14e−9; creatinine, β = 0.051, q = 6.42e−8).

Component 3 associated with measures of glycaemia, including HOMA-IR (β = −0.065,
q = 3.92e−2), fasting glucose (β = −0.063, q = 5.53e−12), T2D (β = −0.062, q = 1.08e−11), 120 min
oral glucose tolerance test (OGTT) glucose level (β = −0.037, q = 6.84e−5), and homeostasis model
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assessment of beta-cell function (HOMA-B, β = −0.032, q = 5.80e−4), as well as measures of obesity
(BMI, β = −0.055, q = 7.58e−10; waist/hip-ratio (WHR), β = −0.054, q = 3.17e−9) (Figure 2, right
panel). The associations remained significant after adjustment for age and sex (HOMA-IR, β = −0.058,
q = 9.32e−10; fasting glucose, β = −0.049, q = 3.67e−8; T2D, β = −0.050, q = 3.67e−8; HOMA-B,
β = −0.035, q = 3.43e−4; BMI, β = −0.0, q = 1.42e−7; WHR, β = −0.034, q = 1.45e−6). Furthermore,
HOMA-IR (β = −0.032, q = 1.09e−4), fasting glucose (β = −0.038, q = 5.72e−5), T2D (β = −0.043,
q = 1.12e−5), HOMA-B (β = −0.022, q = 3.66e−2), and WHR (β = −0.016, q = 2.96e−2) remained
associated with component 3 after additional adjustment for BMI (Table S2).

Component 4 associated with eGFR (β = −0.086, q = 5.21e−16), FAI (β = −0.058, q = 2.16e−7),
and age (β = 0.048, q = 1.33e−5), of which eGFR remained significantly associated with the component
after adjustment for age and sex (β = −0.054, q = 9.89e−9), and additional adjustment for BMI
(β = −0.054, q = 5.94e−9).

Both component 5 and 6 associated with sex- and age-related parameters. Component 5 associated
with sex hormone binding globulin (SHBG; β = 0.168, q = 2.96e−52), FAI (β = −0.145, q = 3.2e−38),
free estradiol (FE1, β = −0.049, q = 1.08e−5), and age (β = −0.088, q = 1.51e−15), and component 6
with age (β = −0.089, q = 1.04e−11), FAI (β = 0.090, q = 1.11e−11), and SHBG (β = 0.046, q = 7.64e−4).
After adjustment for sex and age, however, component 5 associated strongly with HOMA-IR
(β = −0.128, q = 6.69e−29), BMI (β = −0.123, q = 3.23e−27), SHBG (β = 0.104, q = 1.46e−24), high-density
lipoprotein (HDL, β = 0.105, q = 2.92e−21), apolipoprotein A1 (ApoA1, β = 0.103, q = 5.07e−21),
and WHR (β = −0.071, q = 1.06e−15), and these associations remained significant after additional
adjustment for BMI (HOMA-IR, β = −0.063, q = 4.04e−10; SHBG, β = 0.061, q = 4.04e−10; HDL,
β = 0.071, q = 2.44e−10; ApoA1, β = 0.085, q = 2.13e−13; WHR, β = −0.023, q = 7.79e−3).

Component 7 associated strongest with TAG (β = 0.131, q = 2.32e−23), and this association
remained significant after adjustment for sex and age (β = 0.133, q = 1.23e−26), and additional
adjustment for BMI (β = 0.122, q = 1.43e−25).

Component 8 was only associated with eGFR (β = 0.043, q = 3.72e−2), which did not remain
significant after adjustment for sex and age.

Component 9 was associated with measures of obesity (WHR, β = 0.085, q = 7.99e−8; BMI,
β = 0.072, q = 4.67e−6), alcohol consumption (β = 0.074, q = 4.67e−6), and eGFR (β = 0.061, q = 1.68e−4).
These associations remained after adjustment for sex and age (BMI, β = 0.075, q = 3.70e−6; WHR,
β = 0.052, q = 2.85e−5; alcohol consumption, β = 0.062, q = 8.86e−5; eGFR, β = 0.047, q = 4.72e−4). Both
eGFR (β = 0.046, q = 1.53e−3) and alcohol consumption (β = 0.063, q = 1.86e−4) remained associated
with this component after additional adjustment for BMI. Notably, the association of eGFR with
component 9 was independent of alcohol intake (β = −0.045, q = 4.27e−3).

3. Discussion

In the present study, we established the main clinical covariates associated with differences in
the plasma metabolite profiles in a cross-sectional sample of 2503 adult individuals. As multiple
metabolites showed collinearity, we used PCA to reduce the large number of metabolites into
independent components. The new orthogonal factors reflected different metabolite classes and
pathways. Various LPCs contributed to component 1, which described the largest proportion
of the variation in the data, and strongly associated with cholesterol and TAG levels, and the
ApoB/ApoA1-ratio. Cholesterol levels are largely controlled by the liver, which is the major source of
cholesterol and LDL via very low-density lipoprotein (VLDL) production, and also the major site of LDL
catabolism [13]. In addition, TAG levels are largely controlled by the liver via synthesis and secretion
of VLDL [14], and plasma levels of LPCs distinguish metabolically benign from malignant non-alcholic
fatty liver [15]. Hence, our results suggest that liver function show the strongest association with the
major differences in the plasma metabolite profiles measured in this study.

Medium-chain acylcarnitines mainly contributed to component 2. This component is associated
with hypertension and kidney function, as approximated by eGFR. Hypertension is a proven risk
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factor for CKD [16], and the metabolome may therefore primarily reflect variations in eGFR that are
secondary to hypertension. Our results confirm previous studies, which indicated higher acylcarnitine
levels in CKD [17] and an inverse association with eGFR [18], which was suggested to be caused by
impaired excretory function in the failing kidney [19]. In addition, renal excretion has been reported to
be the primary route for acylcarnitine elimination [20]. Hence, the results in our study suggest that
kidney function is strongly associated with differences in the plasma metabolite profiles.

In addition to component 2, eGFR also associated strongly with components 4 and 9. Component
4 was mainly contributed by purines, suggesting an inverse association between kidney function
and circulating levels of purines. Increased intake of purines has been linked to hyperuricemia and
gout [21], which in turn was associated with increased renal disease progression in animals [22].
In addition to its association with eGFR, component 9 associated with measures of obesity and alcohol
consumption. Although BMI has been reported to be an independent risk factor for kidney disease [23],
studies have shown that equations used to estimate GFR generally overestimate the parameter in
obese individuals [24]. Whereas moderate alcohol consumption has been associated with an improved
eGFR [25], high alcohol consumption has shown the opposite effect [26]. In our sample, only 2.2%
of the individuals reported high alcohol consumption (≥4 servings of alcohol/day), whereas 77%
reported none to moderate alcohol consumption. In addition, adjustment for BMI showed that the
associations with eGFR were independent of obesity state. In line with this, a possible link between
alcohol consumption and obesity has been disproved in large cross-sectional studies [27]. Furthermore,
component 9 was enriched in uremic compounds, such as α-N-phenylacetyl-L-glutamine, hippuric
acid, and p-cresol. While the former have been reported to be elevated in dialysis patients and can
be reduced by increased dialysis frequency [28], elevated levels of p-cresol, a uremic toxin that is
produced by bacteria in the intestine and secreted in the urine, has been linked to higher mortality in
dialysis patients [29]. Although the association of eGFR with component 9 was independent of alcohol
intake, a lifestyle-related effect cannot be excluded. Together, the results suggest that eGFR associates
with two independent metabolic signatures, which are additionally associated with hypertension and
a lifestyle-related variable, respectively.

Insulin is often considered the main determinant of the plasma metabolite profile [30]. However,
the results in our study suggest that both liver and kidney function have a larger impact on the
metabolite profile. Together with other measures of glycaemia and obesity, insulin resistance strongly
associated with component 3. This finding is supported by similar results in studies that focused on
factors associated with insulin resistance, revealing strong associations with higher components [31].
In our study, long unsaturated LPCs contributed significantly to component 3. Phospholipids
containing unsaturated, long fatty acyl chains have been shown to be associated with a reduced
risk for future T2D, whereas phospholipid species with shorter, saturated acyl chains were associated
with an increased risk [32]. Overall, LPCs have been suggested to play a role in inflammation and
endothelial dysfunction, conditions that are strongly linked to diabetes [33]. In general, several of
the metabolites that comprised the main components presented in our study have been reported to
be detrimental for human health, including medium- and long-chain acylcarnitines that have been
reported to promote inflammation [34].

In the unadjusted model, component 5 associated with sex, SHBG and FAI. However,
after adjustment for age and sex, it was strongly associated with HOMA-IR. Notably, this component
was composed of branched-chain and aromatic amino acids, which are known to be higher in
males [35] and to associate with insulin resistance and future risk of T2D [8,31]. Furthermore, indole,
another metabolite associated with Component 5, is derived from dietary tryptophan in the gut [36].
The gut microbiota was recently reported as an important regulator of circulating branched-chain
amino acids [37].

In this study, we used RP-UHPLC/QTOF-MS, a technique that is widely applied in metabolomics
and that allows the detection of metabolites from multiple pathways, which have previously been
associated with the investigated phenotypes. However, other techniques, covering other parts of the
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metabolome, may yield different results. Hence, a limitation of the study is the bias that potentially has
been introduced by the choice of technique. Consequently, the number of detected metabolites remain
limited in comparison to comprehensive studies involving several orthogonal platforms. Nonetheless,
we cover metabolites from multiple classes, including amino acids, lipids and acylcarnitines, all of
which are involved in central metabolic processes. Another possible limitation may be the composition
of the sample; as the examined sample was collected in a specific region of Sweden, the application of
these results to other populations remains to be examined. Genotype, lifestyle factors, dietary habits
such as caffeine consumption, and medication are likely to influence the metabolome. We were not
able to account for a number of these factors, as the frequency of medication among the population
was low, and as information for several of these factors were not available. Finally, we have not
performed any functional studies to investigate which tissue is responsible for the metabolite profiles
we determined. Studying the link between tissue function and metabolite profiles is an interesting
subject for future studies.

4. Materials and Methods

4.1. Subjects

The rationale of and the methodology used in the Vara Skövde Cohort within the Skaraborg Project
have been described in detail [38–40]. In brief, a sample of 2816 subjects ranging from 30–74 years of
age was randomly selected from the population census register of Vara and Skövde, Sweden, between
2002 and 2005. The sample was stratified for sex and age and intentionally oversampled in the group
of 30–50 years of age, to obtain a mainly healthy, but representative sample of the population. Of these,
we analysed 2507 individuals. Four individuals were excluded as they were lacking a substantial
proportion of clinical data. Characteristics of the sample are shown in Table 1.

Table 1. Characteristics of the study population.

Variable Mean/Median/
Frequency SD/IQR a

N (men/woman) 1246/1257 -
Age (years) 47.8 11.8

Waist/hip-ratio (WHR) 0.9 0.1
Length (cm) 172.2 9.5

Body mass index (BMI; kg m−2) 26.9 4.6
Fasting plasma glucose (Gluc0; mmol L−1) 5.4 1.1

120 min OGTT plasma glucose (Gluc120; mmol L−1) 5.6 2.2
Homeostasis model assessment of insulin resistance (HOMA-IR) 1.2 0.8–1.9
Homeostasis model assessment of beta-cell function (HOMA-B) 59.8 42.6–84.2

Type 2 diabetes (T2D) (yes/no; %) 141/2359; 5.6% -
Small artery elasticity index (SAEI; mL mmHg−1) 7.4 3.5
Large artery elasticity index (LAEI; mL mmHg−1) 16.4 5

Pulse (min−1) 63.7 8.4
Systolic blood pressure (SBP; mm Hg) 121.8 16.9

Diastolic blood pressure (DBP; mm HG) 70.3 10.1
Hypertension (yes/no; %) 363/2140; 14.5% -

Apolipoprotein A1 (ApoA1; g L−1) 1.7 0.3
ApoB/ApoA1 0.6 0.2

Triacylglycerides (TAG; g L−1) 1.1 0.8-1.6
High density lipoprotein (HDL; mmol L−1) 1.3 0.3

Cholesterol (mmol L−1) 5.3 1.1
Creatinine (mol L−1) 78.8 13.9

Albumin/creatinine-ratio 0.3 0.2–0.5
Urine creatinine (mol L−1) 12.2 5.9

Estimated glomerular filtration rate (eGFR; mL min−1 1.73 m−2) 89.9 14.4
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Table 1. Cont.

Variable Mean/Median/
Frequency SD/IQR a

Testosterone (nmol L−1) 22.7 2.4–46.0
Estradiol (nmol L−1) 4.4 2.9–6.9

Sex hormone binding globulin (SHBG; nmol L−1) 37.5 26.7–52.2
Health (1/2/3/4/5) b 434/1380/581/76/7 -
Exercise (1/2/3/4) c 171/1432/748/73 -
Smoking (yes/no; %) 454/2040; 18.2% -

Alcohol (g/week) 25.2 6.3-59.7
C-reactive protein (CRP; mg L−1) 1.3 0.7–2.7

Endothelin 1 (pg mL−1) 2.4 1.3
Cortisol (nmol L−1) 2 2.0–3.5

a Quartile 1–quartile 3; b Health was defined as (1) excellent, (2) good, (3) fair, (4) poor, and (5) very poor [41];
c Level of exercise was defined as (1) inactive or mostly inactive, e.g., reading or watching television; (2) slightly
active, at least 4 h of activity, e.g., spare time walking, cycling, gardening including walks or cycling to or from
work; (3) moderate, less strenuous, e.g., exercise for at least 2 h a week, such as jogging, swimming and tennis;
(4) strenuous, e.g., intensive jogging, swimming and tennis several times a week [42].

4.2. Clinical and Anthropometric Assays

Lifestyle and personal history questionnaires and anthropometric data were collected at baseline.
Blood samples were collected after overnight fasting and stored at −80 ◦C until analysis. In total,
114 clinical covariates were available. These parameters included blood pressure, measured twice in
supine position, artery elasticity by pulse wave analysis, and glucose and insulin levels as determined
during an oral glucose tolerance test (OGTT). Lipoprotein profiles, inflammatory markers, albumin and
creatinine levels were determined at the Clinical Chemistry Laboratory, Lund University. Hypertension
was defined in accordance with international expert guidelines and JNC 7 criteria [43] or as on-going
treatment for high blood pressure. T2D was defined after previous diagnosis of the disease or from the
OGTT data according to World Health Organization (WHO) criteria [44].

After filtering for duplicates and variables with small variation (e.g., self reported diseases with
low frequencies), 44 clinical covariates remained. For duplicates, clinically determined parameters
were favoured over patient-reported information.

4.3. Metabolite Profiling

Metabolites were extracted from 40 µL blood plasma, spiked with internal standards, followed
by analysis using RP-UHPLC/QTOF-MS as previously described in detail [30], with minor changes.
In brief, metabolites were separated on an Acquity UPLC CSH C18 column (1.7 µm, 2.1 × 100 mm;
Waters Corporation, Milford, MA, USA) using a 1290 Infinity UPLC connected to a 6550 iFunnel Q-TOF
(Agilent Technologies, Santa Clara, CA, USA). Metabolites were eluted using a gradient composed of
A, water with 0.1% (v/v) formic acid, and B, acetonitrile/isopropanol (75/25, v/v) with 0.1% (v/v)
formic acid. The gradient was set to the following: 0–2 min, 2-20% B; 2–3 min, 20–40% B; 3–5 min,
40–95% B; 5–6 min, 95% B; 6–7.5 min, 95–2%; 7.5–10 min, 2% B. Analyses were performed in both
positive (ESI+) and negative (ESI−) electrospray ionization mode. Metabolites were identified by
MS/MS using in-house libraries and the MassHunter METLIN Metabolite PCDL (Agilent Technologies,
Santa Clara, CA, USA). Leucine and isoleucine (leu/ile) were reported as a single metabolite, as these
amino acids were not resolved with our method. All metabolites were manually integrated and
confirmed in MassHunter Profinder B.06.00 Build 6.0625.0 (Agilent Technologies, Santa Clara, CA,
USA). Only metabolites that were identified by MS/MS were used for data analysis; duplicates and
metabolites with 100% missing values within a single batch were excluded. Within-batch variation
was corrected for using the scores along the first principal component from PCA calculated in Simca
P+ 12.0 (Umetrics, Umeå, Sweden) on the un-centred and unit variance scaled internal standards [45].
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4.4. Statistical Analysis and Data Visualisation

All statistical analyses were conducted in R version 3.3.3 (2017-03-06). Metabolites were
log2-transformed to approximate normal distributions. Samples were analysed over one year in
batches of 150 samples. Hence, batch-to-batch variation was expected in the data. We used common
variance compensation (ComBat, SVA package) to remove variation between batches [46], and used a
dummy model matrix to not overfit the data (Figure S1). Missing data (≤15%) were imputed using k
nearest-neighbour averaging (impute.knn, impute package) [47,48]. Correlation structures between
the metabolites were visualized in heat maps using the packages heatmap.2 and hclust. Metabolite
data were mean centred, scaled to unit variance, and analysed by PCA (princomp package; Figure S2).
Subsequently, factors with eigenvalue ≥ 1.0 were further analysed by varimax rotation (varimax, stats
package). Associations between factor scores and clinical covariates were evaluated by building linear
models on the scaled data (lmFit, eBayes, limma package), and calculating standardized regression
coefficients (β). For all analyses, significance was defined as q < 0.05 using multiple testing adjustments
according to the false discovery rate method (p.adjust, stats package).

4.5. Compliance with Ethical Standards

All procedures performed in studies involving human participants were in accordance with the
ethical standards of the institutional and/or national research committee and with the 1964 Helsinki
declaration and its later amendments or comparable ethical standards. The Skaraborg Project was
approved by the local ethical review board at Gothenburg University (Ö199-01). Informed consent
was obtained from all individual participants included in the study.

5. Conclusions

The results in this study suggest that liver function is strongly associated with the differences in
plasma metabolite profiles as determined by RP-UHPLC/QTOF-MS, followed by kidney function and
glycaemic control. These results also indicate multiple independent components that are associated
with the same phenotypic trait, which may suggest independent mechanisms determining the
function of related organs. Whereas previous metabolomic studies have highlighted a vast number of
biomarkers for various diseases, this study shows that a large number of these appear in a concerted
manner. Moreover, several biomarkers previously detected in severe clinical conditions, e.g., in dialysis
patients, could also be confirmed in the general population.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/8/4/78/s1,
Figure S1: Additional information of data pre-treatment, Figure S2: PCA scree plot, Figure S3: Detailed graphs of
Figure 1A,C, Table S1: Overview of the first 9 factors with eigenvalues ≥ 2 from PCA, Table S2: Overview of the
results from the linear models to assess the association of metabolite factors with phenotypic parameters.
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