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Abstract: Microorganisms produce secondary metabolites with a remarkable range of bioactive
properties. The constantly increasing amount of published genomic data provides the opportunity
for efficient identification of biosynthetic gene clusters by genome mining. On the other hand, for
many natural products with resolved structures, the encoding biosynthetic gene clusters have not
been identified yet. Of those secondary metabolites, the scaffolds of nonribosomal peptides and
polyketides (type I modular) can be predicted due to their building block-like assembly. SeMPI
v2 provides a comprehensive prediction pipeline, which includes the screening of the scaffold in
publicly available natural compound databases. The screening algorithm was designed to detect
homologous structures even for partial, incomplete clusters. The pipeline allows linking of gene
clusters to known natural products and therefore also provides a metric to estimate the novelty of
the cluster if a matching scaffold cannot be found. Whereas currently available tools attempt to
provide comprehensive information about a wide range of gene clusters, SeMPI v2 aims to focus on
precise predictions. Therefore, the cluster detection algorithm, including building block generation
and domain substrate prediction, was thoroughly refined and benchmarked, to provide high-quality
scaffold predictions. In a benchmark based on 559 gene clusters, SeMPI v2 achieved comparable or
better results than antiSMASH v5. Additionally, the SeMPI v2 web server provides features that can
help to further investigate a submitted gene cluster, such as the incorporation of a genome browser,
and the possibility to modify a predicted scaffold in a workbench before the database screening.

Keywords: secondary metabolites; natural compounds; machine learning; nonribosomal pep-
tides; polyketides

1. Introduction

Microorganisms, such as bacteria and fungi, have always been subject to evolutionary
pressure. The law of “survival of the fittest” has led to a remarkable diversity of strategies
to overcome competitors. At the level of biosynthesis, microorganisms “learned” to pro-
duce a vast number of natural products that help them to survive [1]. These secondary
metabolites (SMs) often possess biological activities, which can be exploited for pharma-
ceutical purposes. The molecular machinery for the production of SMs is encoded in gene
assemblies organized in biosynthetic gene clusters (BGCs). For most known gene clusters,
the produced metabolite is unknown and various approaches have been explored for the
prediction of SM scaffolds [2]. However, for most known SMs, the encoding BGC has not
yet been discovered.

A first general approach in connecting SMs and BGCs was made with our SeMPI
v1 web server [3]. The server combined predictions of modular polyketides (PKs) with
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a screening of putative matches in the StreptomeDB [4], a database dedicated to natural
products produced by streptomycetes. In SeMPI v2, this approach has now been extended
by including nonribosomal peptides (NRPs) to the prediction scope. Additionally, the
database screening was increased by seven publicly available natural compound-related
libraries, allowing the screening of more than 190,000 compounds. The new libraries
include the NANPDB [5], ChEBI [6], Drugbank [7], Analyticon [8], Molport [9], and
Norine [10] database.

Whereas SeMPI v1 was dependent on antiSMASH v3 [11] as the BGC prediction back-
end, SeMPI v2 uses an entirely independent prediction approach. For the new pipeline,
various improvements were implemented. The profile hidden Markov models (profile-
HMMs) used to detect biosynthetic domains were benchmarked to determine sensitive
detection thresholds. The biosynthetic modules of known BGCs were investigated to im-
prove the building block generation. Additional methylation patterns were implemented
for PK and NRP building blocks. A novel algorithm was designed to determine the possible
module order for clusters that do not follow the co-linearity principle [12]. Polyketide syn-
thase (PKS) acetyltransferase (AT)-domain and nonribosomal peptide synthetase (NRPS)
adenylation (A)-domain substrate specificities are predicted using random forest (RF)
models. To increase the range of A-domain specificity predictions, a novel, very large
training dataset of 2145 sequences was generated. To predict postsynthetic modifications
(PSMs), correlating domains annotated in the Pfam database v32 [13] were extracted and
used to build regression models. The database screening was improved by extending
the path-based algorithm used in SeMPI v1 to a maximum common substructure-based
(MCS) algorithm.

The prediction and ranking performance was benchmarked using 559 PKS and NRPS
BGCs with known substrates from the MIBiG database v2 [14]. Compared to antiSMASH
v5, SeMPI v2 predictions achieved better overall performance. Benchmarking of the
ranking allowed the identification of the correct SM among the Top 10 of the 559 SMs in
almost 50% of all cases.

The web server provides detailed information about the cluster, including a genome
browser which allows visual investigation of the cluster. The predicted SMs can be modified
and extended using a molecular workbench before submission to the database screening.
Custom molecule libraries can be used to extend the default natural compound screening
database. The SeMPI v2 web server is available at http://sempi.pharmazie.uni-freiburg.de.

2. Results
2.1. Benchmark of the PKS and NRPS Profile-HMMs

BGC detection relies on the correct identification of domains involved in SM biosynthe-
sis. Therefore, the profile-HMMs used to detect biosynthetic domains were benchmarked
and sensitive detection thresholds were determined. The cross-validation results and
detection thresholds (domT) of the profile-HMMs are shown in Table 1. Most profiles show
very high F-scores above 0.95. Only two domains reached F-scores below 0.9: the bACP
domain (0.59) and the DHt domain (0.88).

The precision for the bACP domains reached only 0.42, meaning that many domains
are falsely classified as bACP. A detailed investigation of the cross-validation results
showed that only the ACP domains were classified as bACP. In total, 215 ACP domains
were classified as bACP, as opposed to 155 truly detected bACP domains. The recall of
0.8 of the DHt domain shows that, in rare cases, this domain is classified wrongly. The
cross-validation results revealed that the tAT_d can be detected as a DHt domain. This
happened in 21 instances, as opposed to 91 truly detected DHt domains. In one case, the
DH2 domain was detected as a DHt domain.

http://sempi.pharmazie.uni-freiburg.de
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Table 1. Cross-validation results and detection thresholds for biosynthetic domains used in the pipeline. The detection
thresholds are referred to as domT by the HMMER manual [15].

Abbreviation Name F1 Precision Recall Support Threshold

ACP Acyl carrier protein 0.96 1.00 0.91 4315 13.9
AT Acyltransferase 1.00 1.00 1.00 2893 47.4
A Adenylation domain 1.00 1.00 0.99 3092 19.6

CAL Coenzyme A ligase 0.94 0.89 1.00 180 221.8
C Condensation domain 1.00 1.00 1.00 2734 25.9

DH2 1 Dehydratase 0.98 0.95 1.00 414 33.2
DH Dehydratase 0.99 1.00 0.99 1469 31.1

DHt 2 Dehydratase 0.88 0.98 0.81 113 44.3
ER Enoylreductase 1.00 1.00 1.00 646 68.8
E Epimerization domain 1.00 0.99 1.00 424 60.4

KR Ketoreductase 1.00 1.00 1.00 3374 20
KS Keto-synthase 1.00 1.00 1.00 3970 72

PCP Peptide carrier protein 0.97 0.95 1.00 2785 21.9
TD Reductive Thioesterase 1.00 1.00 1.00 118 42.1
TE Thioesterase 1.00 1.00 1.00 824 36.5

bACP β-branching acyl carrier protein 0.59 0.42 1.00 155 28.9
cMT C-Methyltransferase 1.00 0.99 1.00 326 104.7
nMT N-Methyltransferase 0.99 1.00 0.99 173 42.7
oMT O-Methyltransferase 0.99 0.99 0.99 184 70.6

tAT_d Trans-acyltransferase docking domain 0.98 0.97 1.00 665 50
Macro avg. 0.97 0.96 0.99 30,144
Micro avg. 0.99 0.99 0.99 30,144

Weighted avg. 0.99 0.99 0.99 30,144
1 Specific dehydratase which is more commonly found in trans-AT PKS [16]. 2 Avoids false positive pyran synthase domain detection [16].

2.2. PKS and NRPS Domain Architecture

To improve the existing PKS domain patterns for module detection and extend the
detection scope to NRPS and PKS-NRPS mixed modules, the BGCs in the MIBIG v2 were
observed and categorized. A summary of the extracted modules is shown in Figure 1 and
the 20 most common modules are listed in Table 2. A complete list with all 212 module
arrangements is shown in Supplementary Materials Table S1.

Table 2. The 20 most common modules found in the MIBiG. The functional classification, normal
(N), special (S), and not functional (NF) is explained in Section 4.2. The modification refers to the
reduction profile of PKS modules or epimerization of NRPS modules. The occurrence refers to the
overall count in all BGCs of the MIBiG v2.

Domain Order Functional Type Modification Occurrence

C-A-PCP N NRPS L 1429
KS-AT-DH-KR-ACP N PKS Enoyl 895

KS-AT-KR-ACP N PKS Hydroxyl 628
C-A-PCP-E N NRPS E 362

KS-AT-DH-ER-KR-ACP N PKS Alkyl 335
KS-AT-ACP N PKS Ketone 247

A-PCP N NRPS L 235
C-A-PCP-TE N NRPS L 202

KS-tAT_d-KR-ACP S PKS Hydroxyl 139
KS-tAT_d-DH-KR-ACP S PKS Enoyl 125

C-A-nMT-PCP N NRPS L 120
KS-tAT_d-ACP S PKS Alkyl 71
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Table 2. Cont.

Domain Order Functional Type Modification Occurrence

cAL-ACP NF PKS - 62
KS-AT-DH-KR-ACP-TE N PKS Enoyl 61

C-A-ACP N Mixed L 61
C-PCP NF NRPS - 59

KS-ACP S PKS Ketone 52
KS-tAT_d S PKS Ketone 52

KS-AT S PKS Ketone 49
KS-tAT_d-DH-KR-cMT-ACP S PKS Enoyl 49
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Figure 1. Summary of MIBiG module arrangements which occur at least twice in the MIBiG v2
database. The summary includes: functional classification (a) as explained in Section 4.2; module
type (b), where mixed refers to modules which are composed of both PKS and NRPS domains (e.g.,
C-A-ACP); reduction profile of PKS modules (c), where the special reduction profile ketone * refers
to modules in which reductive domains are present but the reduction cannot be performed because
the KR module is missing (e.g., KS-AT-DH-ACP); epimerization of the NRPS module (d), where L
refers to the L-configuration of the substrate and E refers to the R-configuration of the substrate; the
presence of MTs (e); number of domains in the modules (f); classification of PKS modules into normal
and trans-AT acting modules (g); position in the BGC (h); and number of overall occurrences in the
database (i).

2.3. Adenylation and Acyltransferase Substrate Specificity
2.3.1. Adenylation Domain Dataset

In order to improve the performance of the A-domain specificity prediction models, a
novel, very large training dataset was generated. Overall, 1028 new A-domains could be
collected, leading to 2145 sequences altogether. An overview of the phylogenetic composi-
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tion of the dataset is shown in Figure 2. The largest amount of A-domain sequences could
be collected for proteobacteria (642) and actinobacteria (510). The dataset for actinobacte-
ria, cyanobacteria, and proteobacteria could be more than doubled. The fungus dataset,
represented mainly by ascomycota, could only be increased by 11 domains. The complete
domain list is provided in Supplementary Table S2.
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Figure 2. Phylogenetic composition of the A-domain training dataset. The composition is shown
for each protein (a) and all the A-domains (b). Almost all fungi sequences can be attributed to the
phylum of ascomycota. The division of others comprises domains where no taxonomy could be
found or small groups, such as streptophyta (No. 6), candidatus tectomicrobia (No. 5), and arthropoda
(No. 3).

2.3.2. Random Forest Parameter Grid Search

Different parameters for the RF models were evaluated using a grid search based on
the cross-validation described in Section 4.4.2. The best parameters for the RF models for
both domain types are shown in Table 3.

Table 3. Best grid search parameters for the RF models for AT- and A-domain specificity classification.
The error for the micro F1-score is based on the standard deviation over all cross-validation queries.

Parameter A-Domains AT-Domains

Max. depth 100 50
Max. features auto auto
N. estimators 1000 100

Min. samples split 10 1
Bootstrap No No
Criterion Gini Gini

Min. samples leaf 1 2
F1-score 0.75 ± 0.05 0.96 ± 0.02

2.3.3. Classifier Performance

The RF models with the best parameters determined in Section 2.3.2 were bench-
marked for individual substrate prediction as well as their overall performance. The
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individual performances per substrate class for the AT-domains are shown in Table 4 and
for the A-domains in Table 5. As a general trend, it can be observed that the performances
improve with the number of training samples. For example, the F1-scores for methyl-
malonyl and malonly predictions are much higher compared to substrates with fewer
samples such as ethylmalonyl and methoxymalonyl. A similar tendency can be observed
for the NRPS substrates. However, there are also a few exceptions from this trend. For
example, 3,5-dihydroxy-phenyl-glycin, with only 12 training samples, has an F1-score of
1, and phenylalanine, with 122 training samples, can only be predicted with an F1-score
of 0.4.

Table 4. Performance for each substrate for AT-domain classification.

Substrate F1-Score Precision Recall Support

Ethylmalonyl 0.5 1 0.33 15
Malonyl 0.98 0.99 0.98 278

Methoxymalonyl 0.59 1 0.42 12
Methylmalonyl 0.94 0.9 0.99 194

Micro avg. 0.95 0.95 0.95 499
Macro avg. 0.75 0.97 0.68 499

Table 5. Performance for each substrate for A-domain classification. The amino acids are named
according to the standard amino acid one-letter code. Special substrate abbreviations are: 2-amino-
adipic-acid (aad), beta-hydroxy-tyrosine (bht), diaminobutyric acid (dab), 2,3-dihydroxy-benzoic
acid (dhb), 2,3-dehydroaminobutyric acid (dhbu), 3,5-dihydroxy-phenyl-glycin (dhpg), Hydroxy-L-
ornithine (horn), 4-hydoxy-phenyl-glycine (hpg) ornithine (orn), pipecolic acid (pip).

Substrate F1-Score Precision Recall Support

A 0.91 0.92 0.90 395
C 0.83 0.79 0.88 64
D 0.75 0.75 0.75 56
E 0.46 0.7 0.35 55
F 0.40 0.32 0.54 122
G 0.77 0.73 0.82 78
H 0.15 0.33 0.10 10
I 0.77 0.86 0.70 63
K 0.36 0.62 0.25 20
L 0.70 0.73 0.67 149
N 0.75 0.74 0.76 55
P 0.76 0.79 0.74 61
Q 0.84 0.84 0.84 37
R 0.56 0.63 0.50 24
S 0.77 0.76 0.79 132
T 0.83 0.78 0.89 118
V 0.72 0.68 0.76 119
W 0.77 0.79 0.76 41
Y 0.50 0.64 0.42 72

aad 0.82 0.88 0.78 63
bht 0.48 0.43 0.55 11
dab 0.88 0.92 0.84 44
dhb 0.97 0.96 0.99 155

dhbu 0.27 0.50 0.18 11
dhpg 1.00 1.00 1.00 12
horn 0.73 0.80 0.67 12
hpg 0.91 0.89 0.93 42
orn 0.58 0.67 0.52 31
pip 0.60 0.86 0.46 13

Micro avg. 0.76 0.76 0.76 2065
Macro avg. 0.69 0.74 0.67 2065
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The different metrics for the overall performance of each classifier are shown in
Table 6. Macro-averaged scores, which take all classes equally into account, show poorer
performance as compared to micro-averaged scores, for PKS and NRPS substrates. The
AT-domain classifier shows a very high performance, with an accuracy of 0.95. Even
the MCC-score, which is more suited to representing unbalanced classifiers, has a score
of 0.91 for the AT-domain classifier. The A-domain classifier only reaches an accuracy
of 0.76 (MCC: 0.74), which is still an acceptable performance given the large amount of
possible substrates.

Table 6. Performance metrics for the classification of AT- and A-domain substrates. ROC-AUC refers
to the area under the receiver operating characteristic curve.

Metric AT-Domains A-Domains

Accuracy 0.95 0.76
Error rate 0.05 0.24

Matthews correlation coefficient (MCC) 0.91 0.74
ROC-AUC (macro) 1.00 0.96
ROC-AUC (micro) 1.00 0.97
Precision (macro) 0.97 0.74
Precision (micro) 0.95 0.76

Recall (macro) 0.68 0.67
Recall (micro) 0.95 0.76

F1-score (macro) 0.75 0.69
F1-score (micro) 0.95 0.76

Support 499 2065

2.4. Detection of Postsynthetic Modifications

Pfam domains were correlated to specific PSMs and used to build regression models
for PSM prediction. Correlating Pfam domains are listed in Table 7. For most domains,
the Pfam description matches the synthesized PSM. For example, the involvement of the
pyridine nucleotide-disulphide oxidoreductase (Pfam ID: PF07992.13) in disulfide synthesis
or the diaminopimelate epimerase (Pfam ID: PF01678.18) in nitro group synthesis can be
explained with the function of the specific domains. In a few cases, highly correlating
domains could be detected, where the involvement in PSM synthesis is not evident from
the description. For example, the role of PF12680.6 and PF00890.23 in spiroketal synthesis
or PF06722.11 in nitro group synthesis should be further investigated.

The Pearson correlation coefficient is rather average for all observed domains, with
less than 0.67. Hence, most PSMs cannot be predicted based on linear correlation to one
specific domain. Therefore, regression models that take multiple domains as features were
generated to predict the number of PSMs. The performances of the regression models
are shown in Table 8. The models were compared to hypothetical baseline models that
compute the R2-score (coefficient of determination) for the case in which no PSM would
be predicted for each sample BGC. The regression models could outperform the baseline
models in all cases. In particular, the addition of glyco, spiroketal, and 6-Ring-formation
PSMs could greatly improve the prediction scope.
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Table 7. Selected Pfam domains and corresponding PSMs. The number of appearances of a certain PSM in the structure
of a secondary metabolite is correlated to the number of Pfam domains found in the producing cluster. The descriptions
are derived from the Pfam database. Pfam-derived abbreviations are: deoxythymidine diphosphate (dTDP), nicotinamide
adenine dinucleotide (NAD), nucleoside diphosphate (NDP), uridine diphosphate glucose (UDP), guanosine diphosphate
(GDP), flavin adenine dinucleotide (FAD), domain of unknown function (DUF).

PSM Pfam ID Description Pearson Correlation

Glyco PF00908.16 dTDP-4-dehydrorhamnose 3,5-epimerase 0.67
Glyco PF01370.20 NAD dependent epimerase/dehydratase family 0.64
Glyco PF03559.13 NDP-hexose 2,3-dehydratase 0.61
Glyco PF00201.17 UDP-glucoronosyl and UDP-glucosyl transferase 0.59
Glyco PF03033.19 Glycosyltransferase family 28 N-terminal domain 0.56
Glyco PF01041.16 DegT/DnrJ/EryC1/StrS aminotransferase family 0.52
Glyco PF08421.10 Putative zinc binding domain 0.47
Glyco PF16363.4 GDP-mannose 4,6 dehydratase 0.44
Glyco PF04101.15 Glycosyltransferase family 28 C-terminal domain 0.28
Glyco PF01075.16 Glycosyltransferase family 9 (heptosyltransferase) 0.21
Glyco PF00728.21 Glycosyl hydrolase family 20, catalytic domain 0.18
Glyco PF02838.14 Glycosyl hydrolase family 20, domain 2 0.18
Glyco PF01915.21 Glycosyl hydrolase family 3 C-terminal domain 0.13
Glyco PF00933.20 Glycosyl hydrolase family 3 N terminal domain 0.13
Glyco PF14885.5 Hypothetical glycosyl hydrolase family 15 0.1

Cl PF04820.13 Tryptophan halogenase 0.66
Cl PF00999.20 Sodium/hydrogen exchanger family 0.51

Spiroketal PF12680.6 SnoaL-like domain 0.61
Spiroketal PF00890.23 FAD binding domain 0.54

SS PF07992.13 Pyridine nucleotide-disulphide oxidoreductase 0.46
NO2 PF01678.18 Diaminopimelate epimerase 0.67
NO2 PF06722.11 Protein of unknown function (DUF1205) 0.27

6-Ring PF16197.4 Ketoacyl-synthetase C-terminal extension 0.53
6-Ring PF02801.21 Beta-ketoacyl synthase, C-terminal domain 0.52
6-Ring PF08990.10 Erythronolide synthase docking 0.51
6-Ring PF00743.18 Flavin-binding monooxygenase-like 0.46
5-Ring PF12680.6 SnoaL-like domain 0.56
5-Ring PF00890.23 FAD binding domain 0.53
5-Ring PF01551.21 Peptidase family M23 0.46
5-Ring PF08990.10 Erythronolide synthase docking 0.45
5-Ring PF00486.27 Transcriptional regulatory protein, C terminal 0.26
5-Ring PF16197.4 Ketoacyl-synthetase C-terminal extension 0.26
5-Ring PF00109.25 Beta-ketoacyl synthase, N-terminal domain 0.26

Table 8. R2-score (coefficient of determination) for the prediction of PSMs based on 5-fold cross-
validation. The baseline is based on a hypothetical model, assuming that no PSM is predicted
at all.

PSM Name Baseline Model Regression Model

Glyco −0.118 0.548
Cl −0.091 0.26

Spiroketal −0.031 0.427
SS −0.02 0.126

NO2 −0.015 0.097
6-Ring −0.14 0.416
5-Ring −0.052 0.374
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2.5. Benchmark of the Scaffold Prediction
2.5.1. Similarity of the Predicted Scaffolds to the True Metabolites

SeMPI v2 and antiSMASH v5 were benchmarked based on the Tanimoto similarity
of the predicted scaffolds to the true SMs of all MIBiG v2 BGCs. The average (arithmetic
mean) Tanimoto similarities for each BGC type are shown in Table 9.

Table 9. Average (arithmetic mean) Tanimoto similarity between produced SMs and the predictions
made by SeMPI v2 and antiSMASH v5.

Cluster Type Number of Clusters SeMPI v2 AntiSMASH v5

PKS 110 0.44 0.42
NRPS 158 0.57 0.50
Mixed 219 0.45 0.42

All 487 0.48 0.45

2.5.2. Grid Search for the Best Weights of the Mixed Ranking Score

Different scoring metrics were combined to allow for the best comparison of natural
compounds to the predicted scaffolds. The ranking benchmark shown in Section 2.5.3 was
used to determine the optimal weight for the mixed ranking score. The best weights and
corresponding benchmark performance for each BGC type are shown in Table 10. The
parameter configuration which led to the best Top 10 ranking for all BGC types was chosen
for the final mixed score.

Table 10. Best scoring parameter weights for each BGC type. The corresponding percentage of Top
10 and Top 50 ranked instances of the true SMs are shown.

Type Similarity-Score MCS-Score PSM-Score Top 10 Top 50

PKS 1 1 0.3 0.53 0.72
NRPS 1 0.4 0.5 0.59 0.72
Mixed 0.4 0.6 0.1 0.45 0.64

All 0.3 0.4 0.1 0.47 0.67

2.5.3. Metabolite Ranking Database Comparative ranking

The ranking performance of SeMPI v2 and antiSMASH v5 predictions was bench-
marked based on the ranking of the MIBiG compounds. The percentages of true SMs
ranked into the Top 10 and Top 50 similar compounds are shown in Table 11. The mixed
score is based on the grid search performed in Section 2.5.2. Since antiSMASH v5 does not
predict PSMs, the mixed score can only be used for SeMPI v2 predictions. The ranking per-
formance of SMs predicted from both pipelines can still be compared when the Tanimoto
similarity- or MCS-based ranking is considered.

2.6. Web Server Design and Features

The SeMPI v2 web server is available at http://sempi.pharmazie.uni-freiburg.de and
has processed hundreds of genomic input files without error (except for wrong input files).
The processed files include 200 complete streptomyces genomes and all PKS, NRPS, and
PKS-NRPS hybrid BGCs from the MIBiG, which were added to the server as a database
feature. The server has been running continuously since 26 March 2019, without incidents.
A detailed description of its features and usage is provided at the help page of the web
server. A selection of screenshots is shown in Figure 3.

http://sempi.pharmazie.uni-freiburg.de
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Table 11. Percentage of Top 10 and Top 50 ranked instances of true SMs based on different scoring functions. The mixed
scoring is based on the parameter weights determined in Section 2.5.2.

Scoring Function Cluster Type SeMPI v2 (Top 10) AntiSMASH v5
(Top 10) SeMPI v2 (Top 50) AntiSMASH v5

(Top 50)

Similarity PKS 25.4 20.3 45.61 48.55
MCS PKS 36.0 22.5 56.14 49.28

Mixed PKS 49.1 - 72.81 -
Similarity NRPS 50.3 45.9 64.57 61.01

MCS NRPS 45.1 45.9 57.71 61.01
Mixed NRPS 55.4 - 68.57 -

Similarity Mixed 25.1 22.6 46.91 41.03
MCS Mixed 32.5 22.6 47.74 41.03

Mixed Mixed 39.9 - 62.14 -
Similarity All 33.5 29.5 52.44 49.59

MCS All 37.4 30.1 52.82 49.80
Mixed All 47.0 - 66.54 -Metabolites 2021, 11, x FOR PEER REVIEW 11 of 28 
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to further analysis resources. (c) The genome browser allows the observation of all biosynthetic relevant domains, genes,
and clusters in the surrounding genome. (d) The molecular workbench enables expert users to submit custom molecular
queries to the database screening.
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3. Discussion
3.1. Profile-HMMs and Detection Thresholds

The overall high F-scores above 0.95 indicate that the MIBiG-derived pHMMs are
appropriate tools for BGC detection. Only the ACP and bACP domains are wrongly
classified in some cases, but since the role of ACP and bACP is identical for the SeMPI v2
module detection algorithm, the misclassification does not pose a problem for the overall
scaffold generation. The DHt profile-HMM could be improved, but the detection error is
still rather low and the domain is only seldom found in a BGC. The MIBiG v2 contains
considerably less DHt domains (133) compared to DH (1469) and DH2 (414) domains.

The detection thresholds (domT) were derived from the minimum scores needed to
detect the true domain in the MIBiG. It seemed reasonable to use the curated MIBiG as a
reference for domain detection. Nevertheless, the threshold should be frequently updated
with newly added BGCs in the database. The only core profile-HMM which is not derived
from this analysis is the KSQ profile since it was not separately labeled in the GenBank
annotation of the MIBIG. The profile-HMM was directly taken from the antiSMASH v5
pipeline. The same threshold as for the KS domain was used.

3.2. PKS and NRPS Domain Architecture

To assign biosynthetic module arrangements with corresponding SM building blocks,
a detailed investigation of the extracted modules was performed.

3.2.1. The Position and Role of the Methyltransferases in PKS

A detailed investigation of the carbon methyltransferase (cMT) containing modules
revealed that the cMT domain can be found primarily in three possible arrangements in a
PKS module. First, the cMT can be positioned between the reduction domains. For most
modules containing reduction domains, the cMT was integrated at a conserved position
(e.g., BGC0001000 [KS-AT-cMT-KR-ACP], BGC0001136 [KS-AT-DH-cMT-KR-ACP], and
BGC0001001 [KS-AT-DH-cMT-ER-KR-ACP]). Second, if there were no reduction domains
present, the cMT was located between the AT and the ACP/PCP domains (e.g., BGC0000017
[KS-AT-cMT-ACP] and BGC0001203 [KS-AT-cMT-PCP]). Third, surprisingly, trans-AT
associated modules showed a different cMT arrangement as opposed to the normal (cis-AT)
modules: the cMT was positioned between the reductive domains and the ACP domain
(e.g., BGC0001071 [KS-tATd-DH-KR-cMT-ACP], BGC0000177 [KS-tATd-KR-cMT-ACP],
BGC0001470 [KS-tATd-KR-cMT-bACP], and BGC0000186 [KS-tATd-DH-KR-cMT-bACP]).

Only one example of a trans-AT module with three reductive domains is described in
the MIBiG v2 (BGC0001106). Since this module does not include a cMT domain, the correct
cMT position for this arrangement could not be inferred. The characteristic cMT position
could also be observed for putative trans-AT modules, where the trans-AT docking domain
could not be detected (e.g., BGC0000177 [KS-DH-KR-cMT-ACP]), which could be a further
marker for trans-AT detection.

The module arrangements described above were integrated into the module detection
algorithm. The corresponding molecular scaffolds were derived by the addition of a methyl
at the α-position of the building block. This could be observed for cis-AT [17–19] as well as
trans-AT [18,20] modules.

A special case is represented by the methylmalonyl substrate, where the building
block is already α-methylated. In this case, a second α-methylation is also possible (e.g.,
in the case of Kirromycin [21]). However, the reduction to the double bond or alkyl is
chemically not possible for this scaffold. This is confirmed by the BGC encoding for
epothilone (BGC0000989 [22]). In the eighth module, the arrangement of DH-MT-KR leads
to an α-methylation of the methylmalonyl substrate, but the reductive domains are inactive.

The oxygen methyltransferase (oMT) could be found predominantly (16 times) in
modules that only contain a KR domain (e.g., BGC0000976 [KS-AT-oMT-KR-ACP]). In those
cases, the keto-group in β-position is first reduced to a hydroxyl group and subsequently
methylated. The oMT domain could also be observed in modules lacking reduction do-
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mains. Trans-AT modules (e.g., BGC0001110), as well as cis-AT modules (e.g., BGC0000982)
without reduction modules, have been observed harboring an oMT domain. Although
biosynthesis routes for BGCs with these module types have been proposed (cis-AT [23]
and trans-AT [11]), the function of the oMT domain in these modules is too specialized
and the proposed biosynthesis routes are only hypothetically described in publications.
Therefore, a general rule for the transformation performed by these module types was not
included in the module detection algorithm. A summary of all PKS module arrangements
detected by SeMPI v2 and corresponding building blocks is shown in Figure 4.
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Figure 4. Reduction and methyltransferase domain combinations for described PKS modules. The
resulting building block modifications are depicted below the domain combination. The methyl-
transferase position for cis and trans-AT modules are shown. Each domain combination (X) is
encapsulated such as KS-(AT)-X-ACP. The figure is based on the article by Nguyen et al. [18].

3.2.2. The Position and Role of the Methyltransferases in NRPS

The most prominent MT found in NRPS modules is the N-methylating type. The
arrangement C-A-nMT-PCP can be observed 120 times in the MIBiG, being the most
commonly occurring methylation. The nMT is located between the A and PCP domain in
all observed cases, e.g., BGC0001971 (C-A-nMT-PCP), BGC0000461 (C-A-nMT-PCP-TE),
BGC0000384 (A-nMT-PCP), and BGC0000326 (C-A-nMT-PCP-E). The nMT domain usually
leads to methylation of the nitrogen in the peptide bond of the inserted building block (e.g.,
retimycin and rakicidin A [24]).

In very rare cases, a C-methyltransferase (cMT) is also observed (C-A-cMT-PCP-TE).
This cMT is responsible for the methylation of the α-carbon of a thioproline building block
in thiazostatin-like metabolites (e.g., BGC0001014, BGC0000324, and BGC0001801). This
reaction is too specific to infer a general biosynthetic rule.

3.2.3. NRPS-PKS Hybrid Modules

A detailed investigation of PKS-NRPS mixed modules showed that, in all cases, the
ACP/PCP domain led to the classification as a mixed module (e.g., C-A-ACP or KS-AT-
KR-PCP). These domains are structurally related and share similar tasks, namely the
transport of the building blocks. Therefore, it is probable that mixed forms exist which
cannot be reasonably distinguished with pHMMs. In some cases, they might be wrongly
detected (e.g., BGC0001699). In other cases, especially in PKS-NRPS mixed clusters, the
ACP/PCP domain could represent the link between the PKS and the NRPS part of the
cluster (e.g., BGC0000459). In regard to the building block generation, this domain swap
can be disregarded, since the substrate carrying domains do not lead to modifications of
the building block.
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3.2.4. Scaffold Generation

Based on the module analysis, detection rules for module arrangements with known
substrates were derived. For each module, a building block is generated using SMILES. The
building block represents the attachment of two carbon atoms to the growing metabolite in
the case of PKs. The positions are labeled as described in the article by Keatinge-Clay [25]
and are shown in Figure 5. NRP building blocks add a peptide bond and a carbon atom to
the growing chain. Analogous to PK, the NRP positions are referred to as β for the peptide
bond and α for the added carbon with the side chain.
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Figure 5. Nomenclature for PK and NRP building blocks. R1 in alpha position is defined by the
substrate choice of the AT- or A-domain. The α-position of PK substrates can be further modified
co-synthetically by C-methyltransferases. The stereo configuration of the α-carbon of NRP substrates
is defined by the presence of an E domain. The β-position of PK substrates can be further reduced.
For NRP substrates, only the nitrogen atom, also referred to as β-position, can be methylated.

The PKS reduction pattern and putative methylation are created as described in Figure 4.
For the building block generation, it is important to consider that the reductive domains
act on the previous building block (not the one activated in the observed module) and
therefore this modification needs to be assigned accordingly. There are two possible NRP
modifications. First, the stereo configuration of the α-atom can be modified depending on
the presence of an epimerization domain. Second, the nitrogen of the peptide bond can
be methylated.

PKS loading models are defined by the presence of a KSQ domain or the absence
of a KS domain. NRPS loading modules are defined by the absence of a condensation
domain. Building blocks of loading modules are missing the carbon atom in β-position.
Terminal modules for both cluster types are defined by the presence of a TE or TD domain.
Additional to the β- and α-position, these modules add a carboxyl group (TE) or a hydroxyl
group (TD) to the building block.

For each complete block, the building blocks are joined together to generate the final
metabolite. An example of the scaffold generation for a hypothetical mixed cluster is shown
in Figure 6.
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Figure 6. Scaffold generation for a hypothetical mixed cluster. The NRP positions are marked α for
the N-C-rest and β for the ketone following the PK nomenclature. The substrate specificity leads to a
modification in the α-position. The module arrangement results in a modification in the β-position.
Each parameter and corresponding modification is color-coded. Loading modules do not add a
carbon atom in the β-position, marked with a dashed box (β1). Terminal modules add an additional
carboxyl (TE) or hydroxyl (TD) substructure to the scaffold. Epi. refers to the epimerization of the
NRP substrates, resulting in L- or D-forms.

3.3. PKS and NRPS Module Order

The correct order of modules in clusters that deviate from the co-linearity principle is
difficult to predict. In some cases, the correct order can be derived by arranging starting
modules at the beginning of a block and terminal modules at the end. However, for clusters
composed of multiple disjointed modules, this simple approach does not suffice.

Although docking domains for PKS allow one to infer the order of modules in some
cases, in many clusters, these domains are missing or cannot be identified with the existing
profile-HMMs. In the study by Yadav et al. [26], 17 clusters were used to demonstrate
the possibility of predicting the module order based on docking domains. A larger study
has not been performed yet. Moreover, additional structurally different docking domains
(class 2) have been described [27], further complicating the prediction of PKS module
order. To the best of our knowledge, for NRPS and hybrid BGCs, no such study has been
performed yet.

Since clear ab-initio rules are missing, SeMPI v2 infers the order of modules by compar-
ing the overall domain architectures with known clusters. This approach could lead to cor-
rect module compositions for various clusters including nigericin (BGC0000114), incednine
(BGC0000078), fluvirucin B2 (BGC000157), and even meilingmycin (BGC0000093)—which
is composed of a very complex composition of six disjointed blocks. A final assessment
of the method would require a large selection of disjointed BGCs, where the correct order
is derived from the literature. Since such a collection is not yet available, the ordering
algorithm was measured indirectly based on the quality of the predicted scaffolds (see
Sections 2.5.1 and 2.5.3).

3.4. Adenylation and Acyltransferase Substrate Specificity

In the last decade, various methods have been proposed for the prediction of the
substrate specificity of AT- [28–32] and A-domains [30,31,33–36]. For each study, different
datasets with known substrates have been collected and used to implement a prediction
algorithm or train machine learning models. Although the studies tried to compare their
predictive accuracy against each other, in most cases, this comparison is of little significance,
since the used datasets are not identical. Different cross-validation methodologies and
classification metrics further hinder the comparability of substrate classification models.
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Despite these difficulties, it could be observed that most substrate prediction tools reach
rather similar performances, especially concerning the most common substrates.

For AT-domain substrate predictions with a rather small substrate choice, the accuracy
reaches more than 90%. For example, Khayatt et al. could predict 163 domains with
95% [35] accuracy and Minowa et al. reached an accuracy of 93% for 471 domains [37].
A-domain predictions which are more challenging—due to their large substrate range—
reached F1-scores (micro or macro) between 0.7 and 0.8. The latest study, SANDPUMA [36],
could demonstrate that various methods achieve this performance. However, it should
be mentioned that the demonstrated ensemble method is slightly better than the individ-
ual classifiers.

The RF models used for substrate prediction in SeMPI v2 yielded comparable per-
formances with the aforementioned state-of-the-art tools. The AT substrates could be
predicted with an accuracy of 95% and the A-domain specificity classification reached a
micro F1-score of 0.76.

The observation of a performance peak in substrate predictability allows the assump-
tion that further improvements should be focused on the training dataset, rather than on
the used algorithm. It can be hypothesized that various algorithm-independent parame-
ters are responsible for the difficulty of substrate specificity classification. First, substrate
variability hinders the predictability of one outcome class [38]. Second, substrate classes
with few known instances are difficult to predict. Finally, since the training datasets are
manually collected, wrongly assigned specificities can further impair the predictive power.

Therefore, a strong focus was placed on increasing the A-domain training dataset for
the SeMPI v2 classifier. The dataset collected by Prieto et al. [34] comprised the largest
collection of annotated A-domain sequences (1598). Surprisingly, even the dataset used
for the SANDPUMA algorithm—which is composed of the dataset collected by Khayatt
et al. (494) and newly annotated sequences (434)—was smaller than the Prieto dataset
(928). Consequently, we decided to use the Prieto dataset as a basis and added manually
annotated sequences, which allowed us to generate the largest dataset of annotated A-
domain sequences of overall 2145 samples.

3.5. Detection of PSMs

PSMs are more challenging to predict than the rather straightforward linear assembly
lines of the PKS and NRPS core modules. This is partly because the involved domains
are rather arbitrarily located in proximity to the BGC. However, the main reason can be
attributed to missing learning data. Although hundreds of BGCs and their SMs are stored
in the MIBiG, only a few instances of each PSM can be found—the only exception being
carbohydrate scaffolds, where various examples are known, but the type and number of
glycosides vary greatly between clusters.

Therefore, the scope of PSMs in SeMPI v2 is mainly targeted by the subsequent
database screening. Nevertheless, for some PSMs where at least a few instances are de-
scribed, a prediction was attempted. Eventually, the addition of PSMs into the screening
process can bring researchers closer to the true product of a BGC. The correlation analysis
yielded various Pfam domains that were positively correlated to a given PSM. The regres-
sion models built based on these domains could predict the number of PSMs for a cluster
with a high R2-score.

For carbohydrate scaffolds, only the number of glycosides is predicted since the
prediction of the glycoside type depends on complex domain arrangements. To the best of
our knowledge, only PRISM v3 [39] provides a combinatorial approach for sugar prediction,
although a detailed benchmark of the method is missing.
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3.6. Benchmark
3.6.1. Similarity of the Prediction to the True Secondary Metabolite

The comparison of the predicted scaffolds with the true metabolite shows that the
predictions made by SeMPI v2 are slightly better compared to the antiSMASH v5 predic-
tions. The best predictions are made for NRPS products (mean Tanimoto similarity: 0.57),
which shows that the A-domain specificity classification of SeMPI v2 can compete with the
SANDPUMA algorithm implemented in antiSMASH v5.

The rather average Tanimoto similarity between prediction and true SM for both tools
can be seen as a general indicator of how much structural information is still missing in the
prediction scope. Some of this structural information gap can potentially be completed by
comparison of the prediction with similar, already described compounds.

3.6.2. Ranking of the True Metabolite

For the NRPS products, the MCS-based ranking yielded rather similar performance
for antiSMASH v5 (Top 10: 45.9%) and SeMPI (Top 10: 45.1%) predictions. However, for the
PK dataset, the MCS-based scoring performed much better for SeMPI v2 predictions (Top
10: 36.0%) as compared to antiSMASH v5 (Top 10: 22.5%) predictions. Since the similarity
benchmark did not show such a discrepancy, this observation was further investigated.

The careful observation of various PK predictions showed that antiSMASH v5 pre-
dictions have an offset concerning the reduction patterns of PK products. Furthermore, in
the observed scaffolds, the double bonds were assigned at the wrong position. A demon-
stration based on the abyssomicin BGC is shown in Supplementary Figure S1. This wrong
assignment led to false matching in the MCS algorithm for antiSMASH v5 predictions.
This observation could demonstrate the advantage of the MCS-based ranking as opposed
to Tanimoto similarity-based ranking. To further increase the ranking power, the three
ranking scores were combined to a mixed score, which yielded the overall best possible
ranking. This mixed score ranked 47% of the true SM into the Top 10.

The NRPS–PKS hybrid BGCs led to the poorest rankings in the benchmark. This is
not surprising, since NRPS–PKS mixed BGCs can lead to very complex scaffolds, which
are difficult to match with the linear predictions. Nevertheless, 40% of the mixed products
could be ranked in the Top 10. Considering the Top 50 ranked compounds, which is the
default output on the web server, 66% of the true SMs were matched.

The ranking benchmark demonstrates that researchers aiming to identify BGC prod-
ucts can gain significant support by using the SeMPI v2 database screening approach.

4. Materials and Methods
4.1. PKS and NRPS Profile-HMMs

The widely used domain annotations from the MIBIG database v2 [14] were taken as
a basis for constructing new profile-HMMs for the SeMPI v2 pipeline. The domain names
were based on the commonly used antiSMASH [4,11,16,40,41] nomenclature.

To evaluate the detection sensitivity of the created profiles, a benchmark was designed
where the profiles were 5-fold cross-validated. Precision, recall, F1-score, and the support
for each profile are reported. Additionally, the detection threshold (domain-specific e-value
as reported by the HMMER software [15,42], referred to as domT) was adjusted for each
profile-HMM. The minimum threshold required for the detection of the correct domains in
the MIBIG v2 was used for each profile-HMM in the SeMPI v2 pipeline.

4.2. PKS and NRPS Module Architecture

Domains that are jointly responsible for the incorporation and co-modification of a
new building block in the synthesis of a SM are defined as modules. To systematically
investigate known module architectures and their associated building blocks, NRPS, PKS,
and PKS–NRPS hybrid modules were extracted from the MIBIG v2 database. Specific
properties which allowed us to examine and categorize the modules were computed: the
number of occurrences of the module in the MIBiG, the MIBiG accession IDs, the order
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of the domains, the occurrence of methylation domains, the reduction or epimerization
profile, and the possibility of a trans-acting AT.

The modules were categorized into three groups. First, the normal modules com-
prised domain sets for which complete building blocks could be derived. These modules
contained either an A-domain or an AT-domain, allowing classification of the substrate
and co-synthetic modifications of the building block. For the PKS system, modifications
comprised the reduction profile as well as possible methylation of the substrate. For the
NRPS system, the stereo-configuration of the α-carbon was determined as well as possible
methylations. Additionally, for releasing modules, the possible reduction of the carbonyl
group was determined.

Second, the special modules were defined as modules for which building blocks could
only be partly defined. For these modules, either the substrate specificity could not be
predicted (e.g., trans-AT) or the co-synthetic modifications could not be inferred (e.g., PKS
modules with an unusual reduction domain arrangement, such as KS-AT-DH-ACP).

Third, the non-functional modules comprised all domain combinations which did not
allow us to determine a possible building block, because crucial domains for the function
of the module were missing (e.g., DH-ACP, C-PCP, KR-ACP).

Based on the functional and special modules, patterns were derived, which can be
used to screen novel BGCs for known modules.

4.3. PKS and NRPS Module Order

An algorithm was designed which allows us to score possible module combinations
in a BGC based on known BGC arrangements.

4.3.1. Database of Clusters with Known Module Order

The MIBiG v2 BGCs modules were combined into blocks. Each block represented a
unit in which the modules were arranged in succession. Only modules that were located
directly next to each other on the same DNA strand were combined into blocks. The blocks
were split up if a terminal module (harboring a TE or TD domain) was not located at the
end position of the block.

Those BGCs in the MIBiG v2 database, where exactly one block could be defined, were
taken as reference BGCs. The reference database comprised 252 BGCs.

4.3.2. Module Order Scoring for Novel Clusters

For a novel BGC, the modules are ordered into blocks. For all blocks in a BGC, an all-
vs.-all matrix is computed. For each pair in the matrix, an artificial domain set is generated,
representing hypothetical combined blocks. Only reasonable block combinations are
considered. For example, starting domains can only be at the beginning of a block pair and
terminal domains can only be at the end of a pair. The generated domain combinations are
aligned with the reference BGCs and scored.

The alignment is performed using the Smith-Waterman algorithm [43] for local align-
ments. The parameters are matched domains yield 1 point, unmatched domains cost 1
point, gap opening costs 2 points, and gap extension costs 1 point. The block pairs which
yield the highest scores are combined into the final blocks. If not all blocks can be combined
(e.g., if two terminal domains are present), the blocks are left disconnected. The module
order algorithm is demonstrated in Figure 7.
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Figure 7. Demonstration of the module order algorithm. (a) Example blocks which cannot be
combined since they are on different strand sides or far apart in the cluster. (b) An all-vs.-all matrix
which generates hypothetical combined block pairs. Each block can be either at the beginning or
the end of the newly generated block. Unreasonable combinations are excluded, marked with a red
line. (c) A hypothetical example of 2 alignments performed for the D-A block combination. Each
combination is scored with 252 reference BGCs. (d) Based on the score assigned to each block pair,
the best scoring pairs are extracted and combined to the final block.

4.4. Adenylation and Acyltransferase Substrate Specificity
4.4.1. Sequence Datasets

Sequences of PKS AT-domains with known substrate specificity were taken as de-
scribed in SeMPI v1 [3]. The initial set of annotated NRPS A-domain sequences was taken
from Prieto et al. [34]. This dataset comprised 1598 annotated A-domains. The dataset was
used to generate a profile-HMM [15,42,44]. The profile-HMM was used to screen the entire
MIBiG v2 [14] and collect a novel set of A-domain sequences. The sequences collected by
Prieto et al. and the newly collected sequences were aligned using MAFFT (for multiple
alignment using fast Fourier transform) [45]. Duplicated sequences with an identity of
100% were removed. Substrate specificities for the new sequences were inferred from the
scientific literature of described metabolites.

For both sequence datasets, only sequences where at least 10 known specificities
could be assigned were used. The A-domain dataset was further trimmed to only include
unambiguous specificities. The final datasets comprised 500 AT-domains and 2145 A-
domains. The A-domains were furthermore phylogenetically categorized. Therefore, the
taxonomy for each sequence was derived from UniProt [46].

4.4.2. Specificity Prediction

The sequences were used to train random forest (RF) classifiers. The sequences were
aligned using MAFFT. The alignments were transformed into an array that could be used
as a feature set to train RF models. Each position in the alignment can be interpreted as a
categorical feature. The RF models were implemented using scikit-learn [47]. The scikit-
learn models require binary features; hence, the categorical feature space was transformed
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into binary features using one-hot encoding (also referred to as dummy encoding). The
encoding scheme and model building are visualized in Figure 8.
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Figure 8. Explanation of the sequence encoding scheme. (a) The annotated sequences are aligned. (b)
Each position in the alignment is encoded in a binary feature using one-hot encoding. (c) The RF
models are trained on the encoded arrays. A very simplified decision is demonstrated. On the live
system, many more positions are taken into consideration.

To determine the best parameters for the RF classifiers, an extensive parameter grid
search was performed. The parameters are listed in Table 12. All parameter combinations
resulted in overall 2160 configurations. For each parameter combination, a model was
built and evaluated using 10-fold cross-validation. The model performance was evaluated
using the micro F1-score. For the models with the best configuration, the performance for
individual substrates was further evaluated. To allow comparison with other methods,
various metrics for the cross-validation were computed: accuracy, precision, recall, F1-
score, area under the receiver operating characteristic curve (ROC-AUC), error rate, and
Matthews correlation coefficient (MCC).

Table 12. RF parameters and their configuration used for the grid search to determine the best
configuration for substrate specificity prediction. Each parameter is described in detail in the scikit-
learn documentation [48].

Parameter Configurations

Max. depth 10, 50, 100, None
Max. features 1, 3, 10, auto, sqrt
N. estimators 100, 500, 1000

Min. samples split 2, 5, 10
Bootstrap True, False
Criterion gini, entropy

Min. samples leaf 1, 5, 10

Precision, recall, and F1-score were computed individually for each class. To evaluate
the power of the entire model, the metrics were also averaged using micro-, macro-, and
weighted-averaging. Similarly, micro- and macro-AUC scores were computed.

4.5. Detection of Postsynthetic Modifications

The GenBank annotation of the MIBIG database v2 was used to extract the number
of non-overlapping Pfam domains present in each BGC. The scaffolds of the produced
SMs were screened for putative PSMs using the substructure search as implemented in
RDKit [49]. SMARTS patterns used to match the PSMs are shown in Table 13.
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Table 13. SMARTS patterns used to match PSMs in known BGC products described in the MIBiG.

Name SMARTS Patterns

Glyco [#6]O[D3]1CCCCO1
Cl Cl

Spiroketal [C&R]O[C&R]([C&R])([C&R])O[C&R]
SS SS

NO2 O=[N+][O−]
6-Ring CC1CCCC(C)O1
5-Ring C1CCCO1

The number of Pfam domains per BGC was correlated with the number of substruc-
tures in the related metabolites using the Pearson correlation coefficient. The positively
correlating domains were further investigated to derive their function in the PSM. The in-
vestigation was based on the Pfam description. For example, domains that correlated with
sugar scaffolds were examined for sugar biosynthesis association, such as glycosyltrans-
ferase activity. The selected domains were used to build logistic regression models with
scikit-learn. The models were evaluated with 5-fold cross-validation. The performance was
measured using the R2-score (coefficient of determination) [50]. As a baseline, the R2-score
was also computed for a hypothetical model, assuming no PSMs are predicted at all. The
models which performed better than the baseline were incorporated into the prediction
pipeline. The predicted PSMs were added as additional features to the predicted scaffold.

4.6. Natural Product Database Screening
4.6.1. Natural Compound Databases

SMILES of various open-source databases with a focus on natural compounds were
collected. The StreptomeDB v2.0 [4], NANPDB [5], ChEBI [6], and Drugbank [7] molecules
were retrieved via their web interface in SDF format. ChEBI contains manually curated
and automatically collected molecules. Only the manually curated ones were taken. The
MIBiG v2 molecules were extracted from JSON files downloaded via the web interface.
Molport molecules were retrieved from the Molport FTP server [9]. Only those molecules
which were marked as natural products (NPs) in the database were taken. Analyticon [8]
molecules were retrieved via their ZINC [51] deposit. Norine [10,52,53] peptides were
downloaded via the REST API of the web interface.

Furthermore, a collection of streptomyces genomes were processed using SeMPI v2,
and the results were stored as a database feature on the web server. The predicted BGC
products were also included as a possible natural compound screening option. This option
allows one to detect the putative BGC for a given streptomyces natural product. The
streptomyces genomes included all complete genomes associated with compounds stored
in the StreptomeDB v3 [54]. Whereas the database screening allows for the detection of
putative SMs for a submitted BGC, the addition of preprocessed BGCs also enables reverse
screening, thus allowing one to connect SMs with their putative BGCs. A summary of the
databases is shown in Table 14.

The molecules were parsed using RDKit and incorporated into a PostgreSQL [55]
database. Duplicated SMILES were removed from the database. The SMILES were con-
verted into circular Morgan fingerprints (radius: 3) using the RDKit database cartridge.
The fingerprints were indexed using the Generalized Search Tree (GiST) [56] algorithm.
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Table 14. Databases and the number of stored molecules used for the screening of predicted scaffolds.
All compounds are linked to their source database. The predicted streptomyces SMs are linked to the
preprocessed database on the SeMPI v2 web server.

Database Name Number of Molecules

MIBiG 1528
StreptomeDB 2.0 3990

NANPDB 6841
DrugBank 9277

MolPort NP 120,555
Analyticon Zinc 663

ChEBI (3star) 46,547
Norine 641

Predicted streptomyces SMs 1519

4.6.2. Predicted Scaffold Scoring

The database set-up achieves a Tanimoto similarity search of the predicted scaffolds
with more than 180,000 molecules in less than a second. The Tanimoto similarity search
allows the selection of a group of closely related scaffolds to the query prediction. How-
ever, especially repeating patterns such as PK and NRP scaffolds do not allow for good
scaffold comparison using molecular fingerprint-based algorithms. Therefore, an addi-
tional most common substructure (MCS)-based scoring algorithm was implemented. The
MCS algorithm scores the predicted molecules with the compounds in the database, by
detection of a MCS. The score is computed by dividing each matching atom and bond in
the predicted molecule and the target molecule by the total number of atoms and bonds.
Because the MCS algorithm is very time-consuming, it is by default only performed on a
preselection of 50 compounds from the similarity search. The RDKit implementation only
allows the generation of the MCS between one query and one target molecule. To allow for
the matching of incomplete BGCs, the algorithm was extended to allow for the matching
of multiple query molecules (e.g., multiple disconnected building blocks) in the natural
compound targets. The extended MCS scoring algorithm is demonstrated in Figure 9.

A third scoring algorithm was implemented to cover the influence of PSMs on the
ranking of the metabolites. This scoring function performs a substructure search using
RDKit for the predicted PSMs on the preselected natural compounds. The match between
the PSMs in the predicted scaffold and the natural compound is computed using the
Bray–Curtis similarity [57]. The Bray-Curtis similarity is defined as:

BC = ∑|ui − vi|/∑|ui+vi|, (1)

where u is the array of PSMs found in the predicted compound and v is the array of PSMs
found in the natural compound from the database. This similarity score was chosen since
the interpretation is rather intuitive: if both molecules have the same number of PSMs, the
score is 1; the greater the distinction, the closer the score is to 0.

The scores are used to rank the natural products to present a selection of possible
complete SMs that might be produced by the observed BGC. For the final ranking, a mixed
score was designed where the individual scores are added with different weights:

Mixed-score (a,b,c) = a × Similarity-score + b × MCS-score + c × PSM-score. (2)

To determine the weight of each score to allow for the best possible ranking perfor-
mance, a grid search was performed. Each score was weighted from 0 to 100% in steps of
10%, leading to overall 3992 parameter configurations. The performance of each parameter
configuration was measured using the MIBiG-based ranking benchmark.
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Figure 9. Example demonstration of the extended MCS algorithm. To simplify the example, only two
building blocks are used; the algorithm can potentially scale up to 10 building blocks. (a) Initially, the
building blocks are ordered by their number of atoms. The matches of the biggest building blocks are
most meaningful. (b) All MCSs of the first block (B1) with the target molecule (Mol) are computed.
The example shows only one MCS, but some molecules (especially ring systems) can have large
numbers of MCS. The number of MCS to find for each B1 in a target molecule (Mol) is limited to
20. (c) A new molecule is created for each MCS, where the MCS is removed from the scaffold. This
new molecule is then submitted to a new MCS search with the next building block (B2). (d) A visual
example of the scoring algorithm based on two predicted scaffold fragments. First, the dipeptide (B1)
is scored; then, the second molecule (B2) is scored on the remaining part of the target molecule (Mol).

4.7. Secondary Metabolite Prediction and Ranking Benchmark

Following the benchmark for SeMPI v1 [3], where the ranking of 40 BGC products was
used as a metric to evaluate the pipeline performance, a novel benchmark was designed.
For this benchmark, all PKS, NRPS, and PKS–NRPS hybrid BGCs in the MIBiG v2 with
known products were collected. A total of 559 clusters were evaluated.

Two metrics were defined: First, the Tanimoto similarity (circular Morgan fingerprint,
radius: 3) of the predicted scaffold with the known product of each cluster was computed.
Second, all MIBiG v2 products of the benchmark BCGs were ranked based on the scoring
metrics defined in Section 4.6.2. On the web server, the MCS-based and mixed-score-based
rankings are only computed for preselected compounds, but for the benchmark, the scores
were computed for all metabolites. In total, 828 metabolites were ranked, which is more
than the total number of BGCs in the benchmark, since for some clusters, multiple possible
products are described (e.g., abyssomicin C and atrop-abyssomicin C for BGC0000001).
The rank of the true SM was used as a metric. Since the pipeline reports the Top 10 and Top
50 matching candidates, the percentage of true SMs ranked in this category was calculated.

To the best of our knowledge, the only other pipeline which produces mostly one
predicted scaffold per BGC and is actively maintained is antiSMASH v5. We used the
predicted scaffolds of antiSMASH v5 [16] as a comparison to our pipeline. For the natural
compound ranking metric, the scoring scheme had to be adjusted, since antiSMASH v5 does
not predict PSMs. Therefore, the comparative benchmark was performed on the predicted
scaffolds without PSM ranking. The number of predicted BGCs for both pipelines was
not the same for each cluster type. Multiple factors contributed to this discrepancy. First,
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the cluster type classification differs between pipelines. For example, SeMPI v2 classifies
the clusters only based on the presence of functional modules, whereas we assume that
the antiSMASH v5 classification is based on any biosynthetic domain found in the BGC.
Second, in some rare cases, antiSMASH v5 would split the cluster query into multiple
BGCs. These BGCs were excluded. Third, in some cases, either antiSMASH v5 or SeMPI v2
did not predict scaffolds. Nevertheless, for most BGCs, scaffolds were predicted by both
pipelines. To show a fair comparison, a dataset was generated in which the predictions of
both pipelines were merged. BGCs which were not predicted by either tool were excluded
from this dataset. The cluster type classification from SeMPI v2 was used for all predictions.
For some BGCs, antiSMASH v5 produced multiple cluster variants—for these instances,
the mean of the similarity was taken.

Other tools are difficult to compare to our pipeline since the output characteristics are
significantly different and hinder comparability. SBSPKS v2 [58] only predicts the products
for domains encoded by one gene, not for entire clusters. Moreover, SBSPKS v2 can only
process a maximum of 10 proteins via its web interface, which makes the processing of over
500 clusters very time-consuming. PRISM v3 produces a collection of scaffold permutations
for most clusters. Our benchmark was designed to score single predicted scaffolds; hence,
PRISM v3 was not used as a comparison. Moreover, we experienced various technical
problems when submitting multiple BGCs in FASTA format to the PRISM v3 pipeline.

The benchmark was also used to determine the optimal weight of the three different
scoring metrics. Therefore, a grid search was performed, where each of the scores was
weighted differently.

4.8. Pipeline and Web Server Implementation

SeMPI v1 was designed as an extension to antiSMASH v3 [11], with the main goal of
predicting PKs with deviations from the co-linearity principle as well as implementing a
database screening in the StreptomeDB v2.0. To create an independent and flexible tool,
SeMPI v2 was completely redesigned. SeMPI v2 performs the entire cluster prediction and
scaffold generation independently.

4.8.1. Input

The input must be provided in FASTA or GenBank format. The files can contain
multiple records. SeMPI creates one result page for each record. If only DNA data are
provided, the genes are predicted using Prodigal [59]. If the genes are already assigned,
SeMPI can try to parse the genes and use them for further analysis.

4.8.2. Cluster Prediction

The biosynthetic domains are detected using the profile-HMMs and thresholds de-
scribed in Section 2.1. The proteins and their characteristics—such as position, gene locus,
and strand direction—are transferred into a Pandas [60] DataFrame. The DataFrame allows
very fast vectorized operations. The processing of an entire genome including database
screening for similar natural compounds takes only a few minutes.

The modules are detected based on the rules described in Section 3.1. The most
probable order of modules is generated using the module order algorithm described in
Section 4.3. The substrates for each module are predicted using the RF models for AT-
and A-domains. Based on the module characteristics and the substrate specificity, the
corresponding building blocks are generated. These building blocks are combined into the
putative metabolite scaffolds.

For each scaffold, a set of PSMs is generated using the profile-HMMs and regression
models as described in Section 4.5.

4.8.3. Metabolite Ranking

The predicted scaffolds are submitted to the database screening. The screening is
performed using a user-selected choice of publicly available databases and/or a custom
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uploaded database (SDF or SMILES format). A custom database could be, for example, a
set of bioactive samples that are assumed to be produced by a specific host. The screening
can help to connect the samples with specific BGCs in the host.

The predicted scaffolds can also be modified and resubmitted to the natural compound
screening. The molecular operations are performed using the JSME Molecule Editor [61].
This allows expert users to add certain modifications and substructures which are not
yet correctly predicted. The database screening can also be used independently of the
cluster prediction. Any molecule can be submitted, modified, and resubmitted via the
web interface.

This feature also allows the usage of the SeMPI v2 database screening backend in
combination with other BGC prediction tools such as PRISM v3 and antiSMASH v5.

4.8.4. Web Server

The web server is built using Django [62] and a PostgreSQL database backend.
Genomes are submitted via a simple input form. A real-time view shows the progress of
the pipeline using Ajax [63,64]. The results are presented in the form of a data table [65].
The results include a summary page with detailed information about the domains and
modules used to generate the clusters and an overview of the scaffolds for each BGC. Each
BGC and also the entire genome can be investigated visually via the genome browser
D3GB [66]. The browser shows the genes, domains, modules, blocks, and clusters.

5. Conclusions

The SeMPI v2 web server combines state-of-the-art predictions of PK and NRP scaf-
folds with a specialized screening in publicly available databases. This allows researchers
to further connect the dots between BGCs and SMs. The information generated with SeMPI
v2 is presented in a user-friendly web server frontend. The web server allows further
customization of the predictions and thus more flexibility for expert users. BGCs can be
observed in detail using the visually appealing integrated genome browser.

Since SeMPI v2 yields predictions that are complementary to existing pipelines, a
comprehensive BGC analysis should include all available resources, such as antiSMASH
v5, PRISM v3, SBSPKS v2, and others. Expert users can combine the generated structural
features and submit multiple queries to the SeMPI v2 database screening backend to search
for natural compound targets in different databases. In this role, SeMPI v2 contributes to
further unraveling BGC mysteries and complements the link to putative SMs.
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