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Abstract: The paper introduces a valuable new description of fatigue strength in relation to material
properties and thus a new perspective on the overall understanding of the fatigue process. Namely,
a relation between the endurance limits and the accompanying values of the critical resolved shear
stress (CRSS) for various metallic materials has been discovered by means of a multiscale approach
for fatigue simulation. Based on the uniqueness of the relation, there is a strong indication that it is
feasible to relate the endurance limit to the CRSS and not to the ultimate strength, as often done in
the past.
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1. Introduction

A scientific approach to the question of fatigue strength would be to consider the effects of crystal
structure on fatigue mechanisms [1–4]. Researchers from the field of fatigue are aware of the ratio
between endurance limit and ultimate tensile strength, Se/Rm (see Figure 1b). This ratio is also known as
the fatigue ratio and is typically higher for ferrous materials (including steels—see red line in Figure 1b),
which are of the body-centered cubic (BCC) type, than for non-ferrous materials (see, e.g., blue line in
Figure 1b), which possess a face-centered cubic (FCC) crystallographic structure. Furthermore, ferrous
materials generally show a pronounced “knee” in the strength-life (S-N, or Wöhler) diagram at about
106 cycles, after which the fatigue life curve flattens (see an example in Figure 2). The fatigue strength
at this point is known as the endurance limit (Se). Interestingly, non-ferrous materials exhibit a gradual
flattening between 107–108 cycles. Although some researchers have explained these effects in terms of
strain ageing and dislocation locking (see [4]), there is also evidence that the involved crystal structure
plays an important role [1,2].

However, the study from [5] showed that the crystallographic structure is not the predominant
factor that determines the shape and position of the fatigue life curves in the S-N diagram, but it
is rather the parameter critical resolved shear stress (CRSS). Mlikota and Schmauder [5] reported
the existence of a pronounced transition from finite life (slope in the typical S-N curve; see Figure 2)
to the infinite life region (below the endurance limit) as well as high Se values even in some FCC
metals with relatively high CRSS magnitudes. Namely, the higher the CRSS of a certain material,
the more pronounced is the transition between the finite and the infinite life region, the higher is the
curve position in the diagram and accordingly the higher is its Se magnitude (see [5] for more details).
The present study is the follow-up study of the one published in [5] and brings new insights to the
simulation-based understanding of CRSS for the fatigue performance of metallic materials.
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Figure 1. (a) Relation between endurance limit (Se) values (from [5] and updated with the new results 

for the Fe 99.9% and for the steel AISI 1141, marked with diamonds and with *) of the investigated 

metals and their critical resolved shear stress (CRSS) values [6–9]. (b) Relation between Se and ultimate 

tensile strength (Rm) values for various metals [4,10–14], including new simulation-based Se values 

(diamonds) and those from [5] (circles). Simulation-based Se values for the standard loading case 

characterized by loading ratio R = −1 and stress concentration factor Kt = 1 are obtained from the values 

characteristic for R = 0 and Kt ≅ 2.45 by using an approach taking into account mean stress and/or 

loading ratio [10] in combination with the notch sensitivity approach [15] (see Appendix A for more 

details). 

 

Figure 2. Comparison between simulated and experimental Se values for AISI 1141 steel [13]. For 

details on the numerical determination of Se values, see [5,16,17]. 
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Figure 1. (a) Relation between endurance limit (Se) values (from [5] and updated with the new results
for the Fe 99.9% and for the steel AISI 1141, marked with diamonds and with *) of the investigated
metals and their critical resolved shear stress (CRSS) values [6–9]. (b) Relation between Se and ultimate
tensile strength (Rm) values for various metals [4,10–14], including new simulation-based Se values
(diamonds) and those from [5] (circles). Simulation-based Se values for the standard loading case
characterized by loading ratio R = −1 and stress concentration factor Kt = 1 are obtained from the
values characteristic for R = 0 and Kt � 2.45 by using an approach taking into account mean stress
and/or loading ratio [10] in combination with the notch sensitivity approach [15] (see Appendix A for
more details).
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Figure 2. Comparison between simulated and experimental Se values for AISI 1141 steel [13]. For details
on the numerical determination of Se values, see [5,16,17].

2. Methods and Materials

2.1. Methods and Reference to Previous Work

A study published in [5] by Mlikota and Schmauder dealt with the numerical estimation of
the fatigue life represented in the form of S-N curves of metals with BCC and FCC crystallographic
structures and with different magnitudes of CRSS. An example of a simulation-based S-N curve is
shown in Figure 2 for BCC steel AISI 1141. Such fatigue life curves are obtained by determining the
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number of cycles for initiation of a short crack under the influence of microstructure (Nini; Figure 3b)
and subsequent number of cycles for the growth of a long crack (Nprop; Figure 3c), respectively. Final
failure of a specimen or a component occurs at the number of cycles Nf = Nini + Nprop. Micro-models
containing microstructures of the materials are set up by using the finite element method (FEM) and
are analyzed in combination with the Tanaka-Mura (TM) equation [18,19] in order to estimate the
number of cycles required for crack initiation (see Figure 3b and especially [5] for more details). Long
crack growth analysis is typically based on classical fracture mechanics.

A dislocation model forms the physical basis of the TM equation (Equation (1)), which is frequently
used to determine when a grain, subjected to an outer cyclic loading, will develop a slip band and
subsequently a micro-crack. The number of cycles, Ng, needed for micro-crack nucleation within a
single grain can be derived as follows [18,19]:

Ng = 8GWc/(1 − ν)(∆τ − 2CRSS)2πd, (1)

One of the parameters of the TM model (Equation (1)) is the CRSS, which is a threshold value of
the shear stress along the glide direction that a dislocation needs to surpass in order to start moving.
According to the TM model, micro-cracks form along slip bands (see Figure 3b), depending on grain
size (i.e., slip band length) d, the average shear stress range ∆τ on the slip band, the shear modulus
G, the crack initiation energy Wc, Poisson’s ratio ν, and the CRSS [16,17,20–22]. A more extended
and detailed description of the implementation of the TM equation into FEM-based modelling and
simulation of the crack initiation process has been reported in publications of the authors of this study
in [5,16,17,20,23–25] and by other researchers, too, in [21,22,26,27].

The multiscale approach for fatigue simulation, consisting of CRSS determination either from
micro-pillar tests (MPT) or from molecular dynamics (MD) simulations (both in Figure 3a), crack
initiation simulations based on the TM equation (Figure 3b) and long crack growth simulations
based on fracture mechanics principles (Figure 3c), has been previously reported in [8,16,24,25,28,29].
The methodology forms the basis of the past [5] and present research work, which has been conducted
with the aim to further elucidate the relevance of the parameter CRSS for fatigue strength in general.
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Figure 3. Multiscale approach—coupling of methodologies at the relevant scales and accompanying
outputs (O/P). (a) Determination of the parameter CRSS either from molecular dynamics (MD)
simulations or from micro-pillar tests (MPT). (b) Determination of crack growth rate (da/dN) and
number of stress cycles for crack initiation (Nini) from crack initiation analysis. (c) Determination of
number of stress cycles for crack propagation (Nprop) [5,8,23,30].
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2.2. Materials

Table 1 contains metallic materials considered in the study from [5] and their mechanical properties,
namely, the Young’s modulus E, the shear modulus G, the Poisson’s ratio υ, the yield strength Rp0.2,
the ultimate strength Rm, their average grain size d, and eventually the CRSS values. The details on
boundary and loading conditions as well as on specimen geometry that were applied in the study can
be found in [5], too. It is suitable to indicate here that all the materials’ constitutive laws have been
defined as purely elastic, i.e., just by using the elastic material constants. In another study of Mlikota
and Schmauder [17] on aluminum alloy AlSi8Cu3, it has been shown that plasticity does influence the
fatigue performance of this alloy, however, not significantly.

Table 1. Mechanical properties of the considered metals.

Material E
(GPa)

G
(GPa) υ

Rp0.2
(MPa)

Rm
(MPa)

d
(µm)

CRSS
(MPa)

AISI 304 188 79.0 0.26 322 [31] 574 [31] 30 160 [9]
AISI 1141 200 78.125 0.28 564 [13] 875 [13] 60 117 [8]
Fe 99.9% 205 81.0 0.28 260 [32] 414 [33] 65 35 [7]
AA 1050 72 26.0 0.33 95 [34] 110 [34] 65 14 [6]

2.3. New Insights into Previous Work

As reported by several researchers, the CRSS may be up to 100 times larger in BCC steels than in
metals with FCC crystal structures [4]. However, after a detailed survey, it was observed that certain
FCC steels also exist which have an unusually high CRSS (e.g., austenitic stainless steel AISI 304 with a
160 MPa high CRSS, see Table 1). As already mentioned, BCC metals typically show a pronounced
transition from finite life to the endurance limit region, and on the other hand, certain FCC metals
with a low CRSS show relatively smoother transition between the two regions in the S-N diagram.
In addition to that, the results from [5] illustrate (see Table 2) the existence of definite endurance
limits in the considered BCC (AISI 1141 and Fe 99.9%) as well as FCC steels (AISI 304 and AA 1050).
Despite being an FCC material, the austenitic stainless steel AISI 304 shows an untypically high Se

value of 103 MPa (expressed in terms of nominal stress amplitude Sa for loading ratio R = 0 and stress
concentration factor Kt � 2.45—see Table A1 for more details), which is higher than the Se value
estimated for the BCC steel AISI 1141 (76 MPa for CRSS = 117 MPa). The remaining two investigated
metals, the BCC-based pure iron (Fe 99.9%) and the FCC-based high purity aluminum alloy (AA)
1050 possess, according to the numerical study from [5], relatively low endurance limits, i.e., 22 and
8 MPa, respectively.

Table 2. Simulation-based endurance limits (Se) from [5] of the investigated materials in comparison
with experimental values (Se values are expressed in terms of nominal stress amplitude Sa). For details
on how to deduct Se values for R = −1 and Kt = 1 (axial loading), see Appendix A.

Material Lattice CRSS (MPa) Se (MPa)/Sim.
R = 0, Kt � 2.45

Se (MPa)/Sim.
R = −1, Kt = 1

Se (MPa)/Exp.
R = −1, Kt = 1

AISI 304 FCC 160 [9] 103 [5] 303.7 325 [14]
AISI 1141 BCC 117 [8] 76 [5] 190.7 450 [13]
Fe 99.9% BCC 35 [7] 22 [5] 49.7 222 [12]
AA 1050 FCC 14 [6] 8 [5] 19.5 29 [11]

According to the observations from [5], the magnitude of the CRSS seems to be directly responsible
for the magnitude of the simulated Se values of all investigated materials. The simulation-based
magnitudes of Se from [5] have been tabulated in Table 2 (see fourth column). Furthermore, these values
from the fourth column of Table 2 have been converted to the case of an unnotched sample (Kt = 1) with
purely alternating stress (R = −1) in order to compare them with the experimental Se values; see fifth
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and sixth columns, respectively. For more details on how to deduct Se values for Kt = 1 and R = −1,
see Appendix A. It is opportune to indicate that the authors realized in the time after publication of
the first paper [5] on the CRSS relevance for the fatigue performance of metallic materials and before
performing the present study that the values of Se in [5] represent maximum nominal stress (Smax) and
not nominal stress amplitude (Sa) as given there. Since the R ratio selected in the present simulations
was 0 (for axial loading and Kt � 2.45), the revised Se values in Table 2 (fourth column) are two times
lower than those published in [5] (Sa = Smax/2 for R = 0).

As visible in Table 2, the numerical study provided relatively good agreement between the
calculated Se values and the experimentally determined Se values of some investigated materials (AISI
304 and AA 1050). This observation refers firstly to AISI 304 steel whose numerically determined Se

value of 303.7 MPa well fits the experimental value of 325 MPa that can be found in literature [14]
(see Appendix A for more details). A relatively good agreement, however with a slight underestimation,
was achieved for the aluminum alloy AA 1050 (19.5 versus 29 MPa [11]). An exception is the value
determined for the steel AISI 1141 of 190.7 MPa, which is considerably lower than the experimental
counterpart (450 MPa [13]). It is expected that a better agreement with the experimental results can
be achieved by selecting another—considerably higher—CRSS magnitude. The CRSS of 117 MPa
calculated by means of MD for BCC α-Fe by Hummel [8] was used in the initial study [5] due to the lack
of a more appropriate value for the steel AISI 1141. The reason to expect a higher CRSS magnitude—and
by that a higher Se value—for the considered steel, AISI 1141, are its improved mechanical properties
over iron—achieved by microstructural modifications, i.e., by the addition of small amounts of the
micro-alloying elements such as vanadium (V, 0.053 wt%) [13,35]. It is known that such alloying
elements contribute to the strength in general, but also to the CRSS magnitude. Another reason to
expect a higher CRSS is the relatively high Rp0.2 of around 560 MPa for this steel. Another divergence
from the values that can be found in literature is seen for Fe 99.9%; the numerically obtained Se value of
49.7 MPa is considerably lower than the experimental value of 222 MPa, as reported in [12]. Here again
the CRSS magnitude could be considered as a reason for the discrepancy. Namely, the CRSS value of
35 MPa extracted from MPT of Rogne and Thaulow [7] and used in [5] is considerably lower than the
MD-based 117 MPa [8] for BCC α-Fe.

Interestingly, when these four simulation-based Se values of the investigated metals (see Table 2)
are plotted versus their Rm values (see Table 1), again a similar observation from Figure 1b follows;
namely, the Se-Rm points of AA 1050 (green circle denoted with number 1) and AISI 304 (golden circle
denoted with number 4)—agreeing well with the Se experiments in Table 2—fall into the range of
points characteristic for their groups of materials, i.e., to light metals and steels, respectively. On the
other hand, the Se-Rm points of the two other metals—Fe 99.9% (purple circle denoted with number
2 in Figure 1b) and AISI 1141 (blue circle denoted with number 3 in Figure 1b)—deviate considerably
from the data representing steels and BCC metals, the same as they deviate from the experimental Se

values from Table 2 (see red crosses in Figure 1b). This observation suggests that the Se values and by
that the CRSS values, too, of the last two metals might be too low. It is necessary to point out once again
that simulation-based Se values for the standard loading case characterized by loading ratio R = −1
and stress concentration factor Kt = 1 (Figure 1b) are obtained from the Se values characteristic for
R = 0 and Kt � 2.45 (direct results from the simulations) by using an approach taking into account mean
stress and/or loading ratio [10] in combination with the notch sensitivity approach [15] (see Figure 1a
as well as Appendix A for more details).

3. Results

3.1. Relation between the Critical Resolved Shear Stress and the Fatigue Endurance Limit

When the numerically determined Se values of the four investigated metals from the initial study
published in [5] are plotted with respect to their initially prescribed CRSS values (see both values in
Table 2), an interesting relation can be observed, as shown in Figure 1a. Namely, the Se and CRSS
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values relate to each other in a linear manner, despite considering incorrect CRSS values in some cases
(Fe 99.9% and AISI 1141). This newly discovered relation can be expressed by a power-law:

Se = m0CRSSs, (2)

where m0 is the intercept with the y-axis in Figure 1a and s the slope of the dotted lines. According
to the power-law approximation, m0 equals 0.5142 and s 1.0477 for loading ratio R = 0 and stress
concentration factor Kt � 2.45. Interestingly, the slope factor s is approximately equal to 1 in this case.
The Se-CRSS relation can also be expressed by using a linear function, as Se = 0.65CRSS for these
specific R (= 0) and Kt (� 2.45) values. However, the power-law approximation is preferably used due
to higher accuracy, while the simple linear relationship is practically simpler and easier to use. It is
noteworthy that the parameters m0 and s of Equation (2) are dependent on R ratio, Kt, etc. For the
standard loading case (R = −1 and Kt = 1), m0 = 1.0331 and s = 1.1123, while the slope of the linear
function is equal to 1.8625 (see Figure 1a).

3.2. Application of the Newly Discovered Relation

Even though based purely on the simulation results and just partly validated, the Se-CRSS relation
(Equation (2)) can be used as a valuable tool in the next step to shed some light on the two cases in
Table 2 (Fe 99.9% and AISI 1141) where the discrepancies with respect to the experimental results have
been observed. A rather straightforward case to clarify is the one of Fe 99.9%, where by using the
CRSS = 117 MPa [8] for BCCα-Fe directly in the Se-CRSS relation (for R = 0 and Kt � 2.45), an endurance
limit of 75.5 MPa is obtained. To prove the approach also from the numerical side, an additional
simulation with the CRSS value of 117 MPa was performed, resulting in an Se value of 74 MPa, which
matches well the experimental Se = 222 MPa [12] when translated to the case characterized by R = −1
and Kt = 1 (200 MPa; see Table 3 as well as Appendix A for more details). This could be a confirmation
that the initially used [5] and MPT-based CRSS of just 35 MPa [7] is too low. The other case of AISI
1141 can be approached from another side; namely, by knowing the target Se = 155 MPa from the
experimental study of Fatemi et al. [13] (R = 0 and Kt � 2.45), an estimation of the necessary CRSS
to reach this Se value using the multiscale fatigue simulation approach (see Figure 3) can be done
by means of the Se-CRSS relation (Equation (2)): CRSS = s√(Se/m0) = 1.0477√(155/0.5142) = 232.5 MPa.
To validate this estimation, is was necessary to perform additional simulations to determine the
endurance limit by taking all the input parameters the same as in the study on AISI 1141 from [5] and
just by replacing the previously used CRSS of 117 MPa [8] with the new Se-CRSS relation-based value
of 232.5 MPa. The failure cycles resulting from the Se simulations are presented in Figure 2 versus the
applied amplitude levels (Sa = 145–160 MPa, R = 0) and are, at the same place, compared with the
experimental result. These results confirm the estimation of the CRSS magnitude of 232.5 MPa for the
steel AISI 1141 by using the Se-CRSS relation as being correct; the numerically obtained Se = 152 MPa
is slightly lower than the experimentally derived Se = 155 MPa [13] (= 450 MPa for R = −1 and Kt = 1;
see Table 3), which seems to be an acceptable deviation of 2% only.

Table 3. Simulation-based Se values of the investigated materials (revised with the new results for the
steel AISI 1141 and for the Fe 99.9%, marked with * in comparison with experimental values. For details
on how to deduct Se values for R = −1 and Kt = 1, see Appendix A.

Material Rm (MPa) CRSS (MPa) Se (MPa)/Sim.
R = 0, Kt � 2.45

Se (MPa)/Sim.
R = −1, Kt = 1

Se (MPa)/Exp.
R = −1, Kt = 1

AISI 304 574 [31] 160 [9] 103 [5] 303.7 325 [14]
AISI 1141 * 875 [13] 232.5 (Equation (2)) 152 438.5 450 [13]
AISI 1141 875 [13] 117 [8] 76 [5] 190.7 450 [13]
Fe 99.9% * 414 [33] 117 [8] 74 200 222 [12]
Fe 99.9% 414 [33] 35 [7] 22 [5] 49.7 222 [12]
AA 1050 110 [34] 14 [6] 8 [5] 19.5 29 [11]
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Moreover, data from Table 2 can now be revised with the new results for the steel AISI 1141 and
for Fe 99.9% in Table 3. Aside from that, these new simulation-based results are added to Figure 1 and
at the same place visually compared with the experimental values for these metals (see red crosses in
Figure 1b).

It is important to note that no matter whether there is a correct (i.e., validated by a correct resulting
Se value of an investigated existing material) or incorrect CRSS value, there is always a linear relation
between the used CRSS value and the numerically obtained Se value, as can be seen in Figure 1a.

In addition, and in contrast to the initial data from Figure 1b (see circles denoted with numbers
2 and 3), the Se-Rm points of the two revised metals—Fe 99.9% (purple diamond denoted with number
2) and AISI 1141 (blue diamond denoted with number 3)—agree well with the experimental values for
these metals (see red crosses) as well as falling into the acceptable range of points characteristic for steels
and BCC metals. This suggests that the revised Se values of these two metals should be correct—as
well as the accompanying CRSS values—similar to those of AA 1050 (green circle denoted with number
1 in Figure 1b) and AISI 304 (golden circle denoted with number 4 in Figure 1b), which were already
considered correct in the initial study from [5].

4. Discussion

It follows from these observations that the Se-CRSS relation (Equation (2)) introduces a valuable
new description of fatigue strength relations in material properties and a new perspective on the
overall understanding of the fatigue process, especially in comparison to contemporary relations where
Se is being related to, e.g., Rm in a non-unique manner (see Figure 1b). Accordingly, it seems to be
more logical to relate Se to CRSS and not to Rm due to the scattering of Rm that results from different
strain hardening levels (i.e., cold-working) of the material [36], in addition to other strengthening
mechanisms like grain boundary strengthening and phase boundary strengthening, which on the
other hand have no influence on the CRSS (see [5] for more details on the known and applicable linear
superpositioning principle of the strengthening mechanisms that contribute to the CRSS magnitude).

5. Conclusions

To conclude, the presented analysis yields a groundbreaking view on the importance of the
parameter critical resolved shear stress (CRSS) for estimating the fatigue strength of metallic materials.
The newly discovered linear relation between the endurance limit (Se) and CRSS provides a facet
of fatigue theory which is numerically predictive and which allows the selection of fatigue resistant
materials. Even though additional simulations as well as experimental studies are planned to uphold
this finding, the Se-CRSS relation can already now be used to estimate endurance limits of metallic
materials solely from their CRSS values—which can be on the other hand estimated from micro-pillar
tests, from molecular dynamics simulations or by using the linear superpositioning principle of the
strengthening mechanisms that contribute to its magnitude.
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Appendix A

The endurance limit (Se) value for the stress concentration factor (Kt) equal to 1 (i.e., notch radius
r = 0 mm—unnotched sample) can be deduced from any Se value determined at Kt > 1 (i.e., r > 0) by
multiplying it by a factor Kfat, which is commonly called fatigue stress concentration factor, i.e., [15,37]:

Se,Kt1 = SeKfat, (A1)

The factor Kfat is determined from the factor Kt by using the expression

Kfat = 1 + q(Kt − 1), (A2)

where q is the notch sensitivity and can be obtained for different types of metals from a diagram q
versus r, as shown in Figure A1 [15].
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Figure A1. Notch sensitivity charts for steels with different ultimate strengths (Rm) and aluminum
alloys AA 2024 subjected to reversed bending or reversed axial loads. For larger notch radii, the use of
the values of q corresponding to r = 4 mm is recommended [15].

Furthermore, any Se value determined for a non-zero mean stress (Sm , 0, i.e., R , −1) can be
translated to the zero Sm case (Sm = 0, R = −1; often referred to as the standard loading case) as
follows [10]:

Se,R-1 = Se
√

[1 − (Sm/Rm)], (A3)

By combining these two approaches (Equations (A1) and (A3)), it can explained how the Se values
characterizing purely alternating stress (R = −1) and for an unnotched sample (Kt = 1) from Tables 2
and 3 were determined. Table A1 shows the translation of the simulation-based Se values of the
investigated metals from loading and geometry conditions defined by R = 0 and Kt � 2.45 values to the
R = −1 and Kt = 1 case.

The translation of the experimental Se values (from Tables 2 and 3) of the investigated metals from
loading and geometry conditions defined by different R and Kt values to the R = −1 and Kt = 1 case is
shown in Table A2.

The Se value for high purity aluminum (AA 1050/1100) reported in [11] (34.5 MPa, Table A2) is
obtained for purely alternating stress (R = −1) conditions and by using an R.R. Moore machine and
unnotched rotating-beam specimen. In such a case, a Marin equation [15,38] can be used to adjust the
Se value to the axial loading case by applying load modification factor kc:

Se,axial = kcSe,bending, (A4)
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where kc is equal to 0.85 for axial loading [15].

Table A1. Simulation-based Se values of the investigated materials (revised with the new results for
the steel AISI 1141 and for the Fe 99.9%, marked with *, see Section 3 for more details) translated to the
case of an unnotched sample (Kt = 1) and of purely alternating stress (R = −1).

Material
Se (MPa)

R = 0
Kt � 2.45

Kt q Kfat

Se (MPa)
R = 0
Kt = 1

Sm
(MPa)

Rm
(MPa)

Se (MPa)
R = −1
Kt = 1
(Axial)

AISI 304 103 [5] 2.53 0.83 2.27 233.8 233.8 574 [31] 303.7
AISI 1141 * 152 2.39 0.90 2.25 342.2 342.2 875 [13] 438.5
AISI 1141 76 [5] 2.39 0.90 2.25 171.1 171.1 875 [13] 190.7
Fe 99.9% * 74 2.41 0.80 2.13 157.5 157.5 414 [33] 200.0
Fe 99.9% 22 [5] 2.41 0.80 2.13 46.8 46.8 414 [33] 49.7
AA 1050 8 [5] 2.46 0.84 2.23 17.8 17.8 110 [34] 19.5

Stress concentration factors (Kt) are determined from the numerical model of the notched sheet sample from [13]
and vary between each material slightly due to different material properties defining their stress-strain responses.
Kt = 2.45 is the average value.

Table A2. Experimental Se values of the investigated materials translated to the case defined by Kt = 1
and R = −1.

Material Se
(MPa) R L Kt q Kfat

Se (MPa)
R = 0
Kt = 1

Sm
(MPa)

Rm
(MPa)

Se (MPa)
R = −1
Kt = 1
(Axial)

AISI 304 217 [14] −1 a 1.6 0.83 1.50 -> - 574 [31] 325
AISI 1141 155 [13] 0 a 2.39 0.90 2.25 348.9 348.9 875 [13] 450
Fe 99.9% 150 [12] −1 a 1.6 0.80 1.48 -> - 414 [33] 222
AA 1050 34.5 [11] −1 b 1 - - -> - 110 [34] 29

Stress concentration factor of the AISI 1141 steel (Kt = 2.39) is determined from the numerical model of the notched
sheet sample from [13] and varies slightly from the value reported in the same source (Kt = 2.75). The Kt values for
the notched sheet specimens of AISI 304 steel (see [14]) and of Fe 99.9% (see [12]) are determined as recommended
in [15]—see page 1034, Figure A-15-3. L—loading type; a—axial, b—bending.
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