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Abstract: In this work, the piezoresistive properties of heavily doped p-type 4H-SiC at room
temperature were investigated innovatively. It was verified by a field emission scanning electron
microscope (FESEM), X-ray diffraction (XRD), and laser Raman spectroscopy (LRS) that the crystal
quality of the epitaxial layer was good. The doping concentration and thickness of the epitaxial
layer were measured by secondary ion mass spectrometry (SIMS) to be ~1.12 × 1019 cm−3 and
~1.1 µm, respectively. The 4H-SiC cantilever beam along [1100] crystal orientation was fabricated,
and the fixed end of the cantilever beam was integrated with longitudinal and transverse p-type
4H-SiC piezoresistors. A good ohmic contact was formed between Ni/Ti/Al/Au and a p-type 4H-SiC
piezoresistor under nitrogen environment annealing at 1050 ◦C for 5 min. The free end of the cantilever
beam was forced to cause strain on the p-type 4H-SiC piezoresistor, and then the resistances were
measured by a high precision multimeter. The experimental results illustrated that longitudinal and
transverse gauge factors (GFs) of the p-type 4H-SiC piezoresistors were 26.7 and −21.5, respectively,
within the strain range of 0–336µε. In order to further verify the electro-mechanical coupling effect of
p-type 4H-SiC, the piezoresistors on the beam were connected to the Wheatstone full-bridge circuit
and the output changes were observed under cyclic loading of 0–0.5 N. The measuring results revealed
that the transducer based on the 4H-SiC piezoresistive effect exhibited good linearity and hysteresis,
which confirmed that p-type 4H-SiC has the potential for pressure or acceleration sensing applications.
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1. Introduction

Since the discovery of the semiconductor piezoresistive effect by Smith in 1954, the pressure
sensors based on the piezoresistive effect have been the primary focus of many researchers, thanks
to its simple reading circuit, stable performance, wide linear output range, easy IC integration, and
many other advantages [1–3]. The most typical piezoresistive pressure sensor is based on the silicon
piezoresistive effect, which electrically isolates the Si piezoresistor from the Si substrate by the PN
junction. When the measured ambient temperature exceeds 120 ◦C, the PN junction reverses break
down and the sensor performance is seriously degraded [4–6]. In order to achieve the pressure
measurements in a higher temperature environment, a layer of silicon dioxide is introduced between
the Si piezoresistor and the Si substrate, which is called the silicon-on-insulator (SOI). The SOI structure
increases the operating temperature of the silicon piezoresistive pressure sensor to 400 ◦C, but in
situ pressure measurement is still not possible for extreme environments, such as the drilling head,
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rocket engines, and aerospace, due to plastic deformation of silicon in high temperature environments
exceeding 400 ◦C [7–10].

As one of the third-generation semiconductor materials, SiC has a large energy band gap, superior
mechanical properties, and extreme chemical inertness. Accordingly, the SiC-based pressure sensors
are considered to be the most promising semiconductor for use in extreme environments, such as
high temperatures, strong corrosion, and high radiation [11–13]. Silicon carbide has more than
250 crystal types, while it has three major crystal types, such as 3C-, 4H-, and 6H- [14,15]. The 3C-SiC
piezoresistive property has been experimentally confirmed with a gauge factor (GF) of about 30, and
the GF was found to be stable at the temperatures ranging from 300 to 573 K [14]. However, 3C-SiC can
only hetero-epitaxially grow on the Si substrate in the form of thin films, which limits the operating
temperature and performance of the transducers-based 3C-SiC [16–18].

In contrast, α-SiC, such as 4H-SiC and 6H-SiC, can make all -SiC devices, which has attracted
significant attention from many researchers [19–21]. So far, the research on the piezoresistive effect of
6H-SiC is relatively mature and the 6H-SiC pressure transducers capable of operating at 600 ◦C have
been developed by Robert S. Okojie et al. from the NASA Glenn Research Center [22]. However, at
600 ◦C, the full-scale output of these transducers dropped by about 50–65% of the room temperature
values, indicating that these devices have poor high temperature performance and cannot work
at higher temperatures [22]. Therefore, in order to improve the performance of all-SiC pressure
transducers, the piezoresistive effect of 4H-SiC has been studied in recent years [23–25]. In 2012,
T Akiyama et al. [26] conducted the first study on the piezoresistive properties of n-type 4H-SiC with
the longitudinal and transverse GFs of −10 and 20.8, respectively. Meanwhile, the piezoresistive
properties of n-type 4H-SiC was found to be related to the size (length and width) of the resistance,
which was not found in the piezoresistive effect of 6H-SiC [26]. In 2015, Robert S. Okojie et al. from the
NASA Glenn Research Center demonstrated that n type 4H-SiC piezoresistive pressure sensors could
operate at 800 ◦C and the characteristic sensitivity recovery beyond 400 ◦C reached values that were
nearly equal to the room temperature values at 800 ◦C, and the anomaly may be caused by sensor
encapsulation [27]. The above results have greatly encouraged scholars to study the piezoresistive
properties of 4H-SiC further. Nguyen T. K. et al. experimentally verified the piezoresistive properties
of moderate doped p-type 4H-SiC with transverse and longitudinal GF of −27.3 and 31.5, showing
superiority over n-type 4H-SiC and 6 H-SiC [28]. However, to the best of our knowledge and literature
review, research is needed to confirm the effect of heavy doped p-type 4H-SiC. These results and the
piezoresistive effect of heavy doped p-type 4H-SiC has not been reported yet, which is focused on in
this research.

In this paper, the p-type 4H-SiC epitaxial wafer was characterized by a field emission scanning
electron microscope (FESEM), X-ray diffraction (XRD), laser Raman spectroscopy (LRS), and secondary
ion mass spectrometry (SIMS) to verify the good quality of epitaxial layer crystal and obtain crucial
electrical parameters, including doping concentration, epitaxial layer thickness, and so on. Reactive
ion etching (RIE) was used to prepare SiC resistance strips. Through the thermally annealed process,
a good ohmic contact was formed between p-type 4H-SiC and Ni/Ti/Al/Au. Cantilever beams with

longitudinal and transverse p-type 4H-SiC piezoresistors along [1
−

100] directions were prepared, which
was used to measure the gauge factors at room temperature. The experimental results show that the
heavy doped p-type 4H-SiC has the longitudinal and transverse GFs of 26.7 and −21.5, respectively.
The four piezoresistors on a cantilever beam were then connected to be the Wheatstone full-bridge
circuit, and the circuit output exhibited excellent linearity and hysteresis under cyclic loading of 0–0.5 N.
These results demonstrate the application potential of p-type 4H-SiC in the mechanical sensing field.



Micromachines 2019, 10, 629 3 of 9

2. Materials and Methods

2.1. Experimental Design

The phenomenon of the piezoresistive effect of semiconductor refers to the resistivity of
semiconductor changes due to the change of carrier mobility when the semiconductor is subjected to
stress. The gauge factor (GF) was introduced to quantify the piezoresistive effect of the semiconductor,
which is defined as [29,30]:

GF =
4R/R
ε

(1)

where ε is the strain and 4R/R is piezoresistor change rate with strain. Transverse piezoresistors
have a current flow perpendicular to the direction of strain, and longitudinal piezoresistors have a
current flow parallel to the direction of the strain, quantified using the transverse GF and longitudinal
GF, respectively.

In order to study the piezoresistive effect of p-type 4H-SiC, 4H-SiC cantilevers along [1
−

100]
directions were prepared with dimensions of 30-mm-long, 3-mm-wide, and 0.3-mm-thick, as illustrated
in Figure 1a. The SiC cantilever was mounted at one end (0–10 mm) to a printed circuit board (PCB)
using epoxy resin. Four p-type 4H-SiC piezoresistors with dimensions of 300 µm × 400 µm, including
two transverse piezoresistors and two longitudinal piezoresistors, were prepared, centered at 11 mm
from the fixed end of the cantilever. A known force (F) was applied to the free end of the cantilever,
which induced strain (ε) at the upper surface of the beam and conducted it to the 4H-SiC piezoresistors.
From beam mechanics, the strain (ε) induced into the 4H-SiC piezoresistor is given by [31–34]:

ε =
6F(l− x)

Ebh2 (2)

where E is Young’s modulus of the 4H-SiC, x is the distance along the length of the cantilever measured
from the root, l is the length, b is the width, and h is the thickness of the cantilever. When a force of
0–0.5 N was applied vertically to the free end of the cantilever, the strain at the center of piezoresistors
was 0–336µε, which was consistent with ANSYS (Pittsburgh, PA, USA) simulation results, as shown in
Figure 1b.
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2.2. Characterization of the P-type 4H-SiC Epitaxial Layer 

The n-type 4H-SiC wafer (0001) used in this study was purchased from Tankeblue in China with 
a diameter of 100 mm, a thickness of 350 μm, a nitrogen doping concentration of 1014 cm−3, and 
Young’s modulus of 453 GPa. The n-type 4H-SiC buffer layer was homoepitaxially grown on an n-
type 4H-SiC silicon surface with a nitrogen doping concentration of 1018 cm−3 and a thickness of 2 μm, 
followed by a p-type 4H-SiC piezoresistive layer with an aluminum doping concentration of 1019 cm−3 
and thickness of 1 μm using the chemical vapor deposition (CVD). Characterization of the resulted 
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Figure 1. (a) Cantilever beam based on p-type 4H-SiC piezoresistors (R1, R4 longitudinal piezoresistors,
R2, R3 transverse piezoresistors); (b) Finite element analysis (FEA) shows a linear gradient of the strain
induced into the cantilever using the bending beam method.

2.2. Characterization of the P-type 4H-SiC Epitaxial Layer

The n-type 4H-SiC wafer (0001) used in this study was purchased from Tankeblue in China with a
diameter of 100 mm, a thickness of 350 µm, a nitrogen doping concentration of 1014 cm−3, and Young’s
modulus of 453 GPa. The n-type 4H-SiC buffer layer was homoepitaxially grown on an n-type 4H-SiC
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silicon surface with a nitrogen doping concentration of 1018 cm−3 and a thickness of 2 µm, followed by a
p-type 4H-SiC piezoresistive layer with an aluminum doping concentration of 1019 cm−3 and thickness of
1 µm using the chemical vapor deposition (CVD). Characterization of the resulted 4H-SiC epitaxial wafer
was done with the use of FESEM, XRD, LRS, and SIMS. Figure 2a highlights the illustrative SEM images
of the cross-sectional view of the p-type 4H-SiC epilayer on the n-type 4H-SiC substrate at 5000 times
magnification, which revealed the stratification phenomenon between the epilayer and substrate and the
epitaxial thickness of ~1.091 µm. The use of XRD with Cu Kα radiation (λ= 1.5406) was made for the
purpose to characterize the phase structure of the 4H-SiC epilayer. The XRD pattern (Figure 2b) revealed
the fact that every characteristic peak of the 4H-SiC epilayer was substantially identical to the substrate
and could be fully indexed as 4H-SiC, which certified that the epilayer belonged to just the 4C-SiC phase
and had good crystallinity. Additionally, the characteristic peak of the epitaxial layer was slightly shifted
to the left, which was attributable to dope aluminum atoms with a larger radius than carbon and silicon
atoms, to make the lattice constant of SiC larger. The use of a laser Raman spectroscopy analyzer with an
Ar+ atomic laser source (P = 100 mW, λ= 532 nm) was made for the purpose of characterizing the crystal
quality of the 4H-SiC epitaxial layer. Figure 2c shows the Raman spectra of the n-type 4H-SiC substrate
and the p-type 4H-SiC epitaxial layer. As can be seen, the peaks of the two Raman spectra are very close
and consistent with the standard 4H-SiC Raman spectroscopy data, indicating that the epitaxial layer
continues the crystal type of the substrate well and possesses good crystalline quality. The difference
between the two Raman spectra may be due to the type and concentration of doping elements. For the
characterization of actual doping parameters, the SIMS was employed to monitor the 4H-SiC epitaxial
layer. The SIMS profile (Figure 2d) reveals the fact that the doping concentration of Al element is uniform
up to ~1.1 × 1019 cm−3 and the doping thickness is ~1.1 µm.
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Figure 2. (a) Cross-sectional view of the p-type 4H-SiC epilayer on the n-type 4H-SiC substrate at
5000 times magnification. (b) X-ray diffraction (XRD) spectrum of the 4H-SiC epitaxial layer and
substrate. (c) Raman spectra of the 4H-SiC epitaxial layer and substrate. (d) Secondary ion mass
spectrometry (SIMS) profile of the 4H-SiC epitaxial layer.
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2.3. Fabrication of 4H-SiC Cantilever Beam

The cantilever beams for characterizing the p-type 4H-SiC piezoresistive effect were prepared using
a standard micro-electro-mechanical systems (MEMS) process, as shown in Figure 3. The fabrication
process of the cantilever includes the following primary steps: Piezoresistive etching, metal contact
hole machining, metal leads deposition, and so on.
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process, Ni 250 Å/Ti 500 Å/Al 1000 Å/Au 3000 Å (Figure 4a) was deposited on the photoresist mask 
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automatic dicing saw) (Disco Corporation, Tokyo, Japan). Finally, these beams were heat-treated 

Figure 3. The processing flow of 4H-SiC cantilever beam structure. (a) P-type 4H-SiC epitaxial wafer.
(b) Piezoresistive structures were patterned by the first lithography. (c) Resistance stripes were etched
using reactive ion etching (RIE). (d) The SiO2 isolation layer was grown by plasma-enhanced chemical
vapor deposition (PECVD). (e) The ohmic contact hole was patterned by the second lithography. (f) The
ohmic contact hole was opened in buffered HF solution. (g) Metal structures were patterned by the
third lithography. (h) Ni 200 Å/Ti 500 Å/Al 3000 Å/Au 3000 Å were deposited and then patterned by
stripping the AZ6130 photoresist in acetone. (I) The cantilever beam structures were prepared by using
an automatic dicing saw.

Firstly, the 4H-SiC wafer was cleaned using the root cause analysis (RCAprocess. The wafer was
then dry-oxidized at 1100 ◦C for 4 h in a thermal oxidation furnace, and the thickness of the SiO2 film
was measured for 110 nm using NANOMETRICS Nanospec/AFT 210 (Milpitas, CA, USA), after which
the oxide was corroded away in buffered HF solution, rinsed in de-ionized (DI) water and blow dried
in nitrogen. The above procedure typically removes suspended Si- and C- bonds and chlorine, which
resides on the surface, to leave a cleaner surface. After the first lithographic process, the epilayer was
dry-etched to form a piezoresistor by reactive ion etching (RIE) with a 5.3 µm AZ4620 photoresist mask.
The etching parameters were as follows: Chamber pressure of 2 Pa, power of 200 W, and SF6 with a flow
rate of 50 sccm. After etching for 11 min, the height of the piezoresistive mesa was measured to 1.3 µm
using the step profiler, which was more significant than the thickness of the p-type 4H-SiC epitaxial
layer and ensured the piezoresistor was insulated from the substrate. Subsequently, to insulate the
metal leads from SiC substrates, a 200 nm SiO2 thin film was deposited on the silicon surface of the
4H-SiC wafer by plasma-enhanced chemical vapor deposition (PECVD). Next, the second lithographic
process was performed to pattern the metal contact holes, which were opened in buffered HF solution
with a 2.3 µm AZ6130 photoresist mask. After the third lithographic process, Ni 250 Å/Ti 500 Å/Al
1000 Å/Au 3000 Å (Figure 4a) was deposited on the photoresist mask by magnetron sputtering and were
defined by stripping the AZ6130 photoresist in acetone. Further, the wafer was diced into rectangular
beams for varistor characterization by DISCO DAD322 (an automatic dicing saw) (Disco Corporation,
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Tokyo, Japan). Finally, these beams were heat-treated using the GSL-1100X-RTP50 (HF-Kejing, Hefei,
China), a rapid heat treatment furnace, to achieve excellent ohmic contacts between the metal and
p-type 4H-SiC.

3. Results and Discussion

A total of 10 identical SiC cantilever structures were manufactured in the same batch and showed
the same piezoresistive effect in the experiments described below. In order to form a good ohmic contact
on SiC, it is essential to anneal at temperatures exceeding 800 ◦C. After annealing under a nitrogen
environment at different temperatures, as shown in Figure 4b, Keithley 4200 semiconductor analyzers
were used to measure the relationship between current (I) and voltage (V) of SiC piezoresistors.
Figure 4c shows the I/V characteristics of the piezoresistor before and after annealing, which indicates
that good ohmic contact has been formed between Ni/Ti/Al/Au and p-type 4H-SiC after annealing
under a nitrogen environment at 1050 ◦C for 5 min. Based on the test results, it can be calculated that
the sheet resistances of the 1.1 µm p-type layer is 5.6 KΩ/�. In addition, the metal’s surface morphology
was characterized by SEM after annealing at 1050 ◦C, as shown in Figure 4d. It can be seen that the
ultra-high annealing temperature only slightly affects the surface compactness, which did not affect
the electrical test of the SiC piezoresistive.
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Next, a force of 0–0.5 N with the increment of 0.05 N was applied to the fixed end of the assembled
cantilever beam and at the same time the resistances of p-type 4H-SiC piezoresistors were measured
by a high precision multimeter, as shown in Figure 5a. Figure 5b shows the change rate of SiC
piezoresistor (4R/R) functions with the strain caused by the external force. By fitting the test results,
the longitudinal and transverse GFs of p-type 4H-SiC piezoresistives are 26.7 and −21.5, respectively,
which are comparable to the previous results in the reported literature [28] and have larger gauge
factors (GFs) than 6H-SiC and n-type 4H-SiC [26,35] under the condition of heavy doping. In order to
further verify the electro-mechanical coupling effect of SiC, the piezoresistors on the beam were placed
into a four-arm Wheatstone bridge, and a fixed input voltage of 5 V was applied. The output of the
bridge is a function of the cantilever deflection under cyclic loading of 0–0.5 N, as shown in Figure 5c.
The relationship between the SiC piezoresistors’ change and the measured output voltage (Vout) is:

Vout =
Vin
2

(
R1 −R3

R1 + R1
−

R4 −R2

R1 + R1

)
(3)

where Vin = 5 V is the supplied voltage of the Wheatstone bridge and R1, R2, R3, and R4 are SiC
piezoresistors on the beam, as shown in Figure 1a. It can be seen that the piezoresistance of p-type
4H-SiC exhibited good linearity and low hysteresis. The above experiments have proved that p-type
4H-SiC has a good piezoresistive effect, which demonstrates the application potential of p-type 4H-SiC
in the mechanical sensing field.
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4. Conclusions

The piezoresistive effect of heavily doped p-type 4H-SiC was characterized experimentally by
applying the cantilever beam. It has been shown that longitudinal and transverse GFs of 4H-SiC
piezoresistives are 26.7 and−21.5 respectively. Moreover, transducers based on the 4H-SiC piezoresistive
effect was proved to have good linearity and hysteresis, which indicated that p-type 4H-SiC could be
used to measure the change of mechanical parameters, such as pressure, acceleration, strain, and flow.
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