
micromachines

Article

Adaptive Tracking Control for the Piezoelectric
Actuated Stage Using the
Krasnosel’skii-Pokrovskii Operator

Rui Xu 1,2 , Dapeng Tian 1,2,3,* and Zhongshi Wang 1,2

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China; xur@ciomp.ac.cn (R.X.); zhongshiwang@ciomp.ac.cn (Z.W.)

2 Key Laboratory of Airborne Optical Imaging and Measurement, Chinese Academy of Sciences,
Changchun 130033, China

3 Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin 150001, China
* Correspondence: d.tian@ciomp.ac.cn

Received: 22 April 2020; Accepted: 22 May 2020; Published: 25 May 2020
����������
�������

Abstract: In this paper, a discrete second order linear equation with the Krasnosel’skii-Pokrovskii
(KP) operator is used to describe the piezoelectric actuated stage. The weights of the KP operators
are identified by the gradient descent algorithm. To suppress the hysteresis nonlinearity of the
piezoelectric actuated stage, this paper proposes an adaptive tracking control with the hysteresis
decomposition on the designed error surface. The proposed adaptive tracking controller dispenses
with any form of the feed-forward hysteresis compensation and the unknown parameters of the
discrete second order linear equation are adaptively adjusted. Some simulations are implemented to
verify the effectiveness of the KP operators, then a series of modeling and control experiments are
carried out on the piezoelectric actuated stages experimental systems. The comparative experimental
results verify the feasibility of the KP operators modeling method and the adaptive tracking
control method.
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1. Introduction

Piezoelectric actuated stages are extensively applied in the high-precision imaging mechanism
and ultra-precision positioning field, such as optical alignments, scanning tunneling microscope,
and photoelectric imaging tracking systems, because of their high response speed, big work-distance
and strong stress [1,2]. However, the hysteresis of the piezoelectric materials damages the positioning
accuracy of the stage [3]. To solve this problem, numerous modeling methods have been proposed
to capture hysteresis of the piezoelectric actuated stage, which mainly include the differential
equations-based models and operator-based models. So far, the Duhem model, Bouc-Wen model,
and Coleman-Hodgdon model are the common differential equations-based models [4]. For example,
the Coleman-Hodgdon model, which had two differential equations with different exponential,
was used to describe the rising and declining hysteresis curves [5]. Lin et al. [6] conducted a depth
research for a class of generalized Duhem models. Experimental results demonstrated that the
generalized Duhem model can describe the hysteretic characteristics more accurately. In [7], the
Bouc-Wen model was used to represent the hysteresis nonlinearity of the piezoelectric actuated stage
and it got the great results. The Preisach model describes the hysteresis nonlinearity by the weighted
summation of series of Preisach operators with the values of 0–1 [8–10]. The Prandtl-Ishinskii (PI)
model is a modification form of Preisach model [11,12]. The PI model exploits two basic operators
of Play and Stop [13]. Furthermore, it obtains widespread application for its simple mathematical
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structure. For example, Kuhnen K et al. [14] investigated a modified PI model in which the different
operators have different thresholds. The Krasnosel’skii-Pokrovskii (KP) model is another modification
form of the Preisach model [15]. The element operator of KP model overcomes the drawback of the
jump discontinuities of Preisach operators. Moreover, it includes minor loops within its major loop
which make it more closed to the actual behaviors of the hysteresis nonlinearity [16,17]. In [18],
a rate-dependent KP model is proposed to describe the dynamic hysteresis nonlinearity of the
piezoelectric-driven platform. The unknown parameters are identified by the interior point method.
The simulation results show the proposed hysteresis model can describe the hysteresis loop with the
different frequencies driving input of the piezoelectric-driven platform.

Based on above hysteresis models, some control methods have been designed to eliminate the
hysteresis effects and achieve high-precision trajectory tracking control for the piezoelectric actuated
stage, such as the inverse feed-forward control [19], sliding mode control [20–22], and disturbance
rejection control [23]. Merry et al. [24] designed a feedforward compensation controller based on an
extended Coleman-Hodgdon model to eliminate the hysteresis nonlinearity. Li et al. [25] proposed an
inverse compensation control method with the inverse rate-dependent PI model to solve the hysteresis
of the piezoelectric actuated platform and achieve high-precision positioning control. Nguyen et al. [26]
utilized a discrete-time quasi-sliding-mode control with a new sliding variable to alleviate the effects
of the hysteresis nonlinearity. Shan et al. [27] proposed a robust output feedback controller to degrade
the hysteresis nonlinearity of piezoelectric actuated systems, the tracking error remained less than
5%. Cao et al. [28] presented a hybrid control method by integrating the inversion feedforward
control and PID-based sliding model control to compensate the hysteresis nonlinearity more effectively.
Ge et al. [29] proposed a hybrid controller comprised of inverse Preisach model as feedforward
compensation and PID control to improve the tracking accuracy for a piezoelectric actuated system,
when the amplitude of reference displacement is 12 µm, the maximum error rate is 2.08%. While
Lin et al. [30] developed an intelligent integral backstepping sliding-mode controller using a recurrent
neural network to eliminate the hysteresis nonlinearity of the piezo-driven nanopositioning stage.
Xu [31] utilized the dynamical model of the piezo-stage to design a digital integral terminal sliding
mode controller, the effectiveness of which was supported with experimental results.

This study adopts a discrete second order linear equation with hysteresis input to express the
piezoelectric actuated stage. Next, an adaptive tracking controller based on the new designed error
surface is proposed to mitigate the hysteresis nonlinearity of the piezoelectric actuated stage, where the
hysteresis model of this stage is separated on the proposed error surface to facilitate the design of the
adaptive control approach. Comparative experimental results show that the output displacement of
the piezoelectric actuated stage with the proposed adaptive controller can track the desired trajectory
signal, its hysteresis characteristics have been restrained more effectively.

The remainder of this paper is organized as follows. In the Section 2, the piezoelectric actuated
stage is modeled by a discrete second order linear equation with KP operators. The design of the
adaptive tracking control law is presented in Section 3. The Section 4 performs the experimental setup
and experimental results. Followed by the conclusion in Section 5.

2. Hysteresis Modeling of the Piezoelectric Actuated Stage

The piezoelectric actuated stage is a complex nonlinear system; it is made up of the mechanical
platform and piezoelectric actuator. The mechanical platform is modeled using the mass spring
damping system, and the piezoelectric actuator is regarded as an driving force with the voltage input.
In general, the dynamic equation of the piezoelectric actuated stage is expressed as

mÿ(t) + b1ẏ(t) + b2y(t) = Ho(t), (1)

where y(t) is the output displacement of the piezoelectric actuated stage, Ho(t) is the driving force from
the piezoelectric actuator, and it has severe hysteresis. m, b1, and b2 are the mass, friction coefficient,
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and stiffness factor of the mechanical platform. In this study, we use a discrete second order linear
equation to express the system (1), and its mathematical description is written as:

a
(

z−1
)

y (k) = z−2b
(

z−1
)

Ho(k), (2)

where the z−1 is the delay operator; b
(
z−1) is replaced by b0, and b0 > 0 is unknown. The a

(
z−1) is

expressed as:

a
(

z−1
)
= 1 + a1z−1 + a2z−2, (3)

where the parameters a1 and a2 are unknown. In this paper, we use the KP operator to describe the
hysteresis of the piezoelectric actuator, the Ho(k) is replaced by the KP operator formula. So, the whole
piezoelectric actuated stage system is expressed as:{

a
(
z−1) y (k) = z−2b

(
z−1)H [u] (k)

H [u] (k) =
∫∫

α≤β p (α, β)KPαβ [u] (k) dαdβ,
(4)

where u(k) is the input of the piezoelectric actuated stage at time k, respectively; KPαβ [u] (k) is the
output of the elementary KP kernel at time k, which is shown in Figure 1a. H [u] (k) is the elementary
KP kernel with the superimposed density weight (p (α, β)) [19]. KPαβ [u] (k) is expressed as:

KPαβ [u] (k) =

{
max [ξ(k), r (u(k)− β)] if u (k− 1) < u (k)
min [ξ(k), r (u(k)− α)] if u (k− 1) > u (k),

(5)

where α and β represent the thresholds of the KP operator. As shown in Figure 1a, it influences the
width of the hysteresis loop of the KP operator. r(·) is the boundary auxiliary function, which is
expressed as:

r[u](k) =


0 u (k) < 0

umax ∗ u (k) /$ 0 ≤ u(k) ≤ $

umax u (k) > $,

(6)

where $ is the slope of the boundary auxiliary function, it is calculated by $ = (umax − umin)/(L− 1),
umax and umin are the maximum and minimum values of the model input. Next, the Preisach plane
is divided into a mesh using the L for numerically calculating the KP model in Figure 1b. For more
descriptions of the Preisach plane, the reader can find it in [19]. ξ(k) is the memory value of the KP
operator and it is expressed as:

ξ(k) =


0 for k = 0

KPαβ[u](k) for sign(u̇(k)) = −sign(u̇(k− 1))
ξ(k− 1) for sign(u̇(k)) = sign(u̇(k− 1)),

(7)

where sign(·) is the signum function. For ease of the algorithm design, we discrete the KP operator on
Preisach plane as follows:

H [u] (k) =
N

∑
i=1

KPi
αβ[u](k)pi(α, β), (8)

where N is the number of the KP kernel, it is calculated using N = (L + 1)(L + 2)/2.
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(a) (b)

Figure 1. Structure chart of the Krasnosel’skii-Pokrovskii (KP) kernel and Preisach plane. (a) KP kernel;
(b) Preisach plane.

In this study, we use the KP operator to represent the hysteresis of the piezoelectric actuated
stage. So, the unknown weights must be obtained at first. Next, we use the gradient descent algorithm
to identify the unknown weights of the KP operator. The identification structure diagram of the KP
operators are shown in Figure 2. The input signal is used to actuate the KP kernel, then these KP
kernels are superimposed with the weights to calculate the output of the KP operators. The output of
the KP operator with the estimated weights is expressed as:

Ĥ [u] (k) =
N

∑
i=1

KPi
αβ[u](k) p̂i(α, β), (9)

where p̂i(α, β) is the estimated weights. Next, we set the objective function Jg(k) as the sum of the
squared modeling error defined by

Jg [u] (k) = [H [u] (k)− Ĥ [u] (k)]2/2, (10)

When the value of Jg [u] (k) is equal or small than default value, the estimated weights p̂i(α, β) are
close to the desired values, the output of the KP operators is consistent with the hysteresis output of
the piezoelectric actuated stage. Otherwise, it is necessary to calculate ∆pi(k) for adjusting the weight
values. The adjustment criterion is shown as:

∆pi(k) = ηg
∂Jg(k)
∂pi(k)

= ηg(H [u] (k)− Ĥ [u] (k))KPi
αβ[u](k), (11)

where ηg is the learning factor, which decides the convergence rate of the gradient descent algorithm.
The unknown weights of the KP operator are updated based on the gradient descent algorithm
as following:

pi(k + 1) = pi(k) + ∆pi(k). (12)

According to the system model (4), when the input and output of the piezoelectric actuated
stage are known, the unknown parameters of the piezoelectric actuated stage model include a0, a1,
b0, and p(α, β). In this study, the density weight p(α, β) has been obtained using the gradient descent
algorithm by the offline way; other unknown parameters are adaptively acquired using the proposed
adaptive control approach.
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Figure 2. Identification structure diagram of the KP operators with the gradient descent algorithm.

3. Adaptive Tracking Control Law Design

The purpose of this paper is to use the proposed controller to obtained the appropriate input
voltage u(k), so that the output y(k) of the piezoelectric actuated stage can track the desired trajectory
signal yd(k) precisely. The adaptive control strategy is a comment control method to make the output
of the nonlinear system with unknown parameters track the trajectory signal. In this section, we put
forth an adaptive tracking control law based on a new design approach to mitigate the hysteresis of
the piezoelectric actuated stage and achieve its high-precision tracking control. At first, the initial error
surface is defined as:

σ (k + 2) = c
(

z−1
)
(y (k + 2)− yd (k + 2)) , (13)

where c
(
z−1) = 1 + c1z−1 + c2z−2, and the coefficient ci is chosen such that the c

(
z−1) is Hurwitz.

It can be shown that, if limk→∞ σ (k) = 0, limk→∞ (y (k)− yd (k)) = 0 exponentially. Since the density
weights of the KP operators are obtained, we decompose the hysteresis part and the linear part of the
system model on the error surface to facilitate the design of adaptive tracking controller, and the new
error surface σ (k + 2) is

σ (k + 2) =g
(

z−1
)

H[u] (k) + f
(

z−1
)

y (k)− c
(

z−1
)

yd (k + 2) , (14)

where g
(
z−1) = g0 + g1z−1, f

(
z−1) = f0 + f1z−1; and the parameters g0, g1, f0, and f1 can uniquely

be determined in [32]. Substituting the KP operators (8) into Equation (14), one can express the error
surface σ (k + 2) as:

σ (k + 2) =φT (k) θ + g0

N

∑
i=1

KPi
αβ[u](k)pi(α, β)

+ g1

N

∑
i=1

KPi
αβ[u](k− 1)pi(α, β)− c

(
z−1
)

yd (k + 2) , (15)

where φ (k) = [y(k), y(k− 1)]T , θ = [ f0, f1]
T . For now, we assume that all of the parameters are known.

According to Equation (15), we get that the input u(k) satisfies

g0

N

∑
i=1

KPi
αβ[u](k)pi(α, β) =− g1

N

∑
i=1

KPi
αβ[u](k− 1)pi(α, β)

− φT (k) θ + c
(

z−1
)

yd (k + 2) , (16)
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the error surface σ(k + 2) = 0, the actual output of the piezoelectric actuated stage is consistent
with the desired trajectory signal. Next, we write the estimated values of the parameters as
ĝ(k) = [ĝ0(k), ĝ1(k)]T , θ̂(k) = [ f̂0(k), f̂1(k)]T . The unknown parameters on the right side of the
Equation (15) are replaced by the estimated values, we define σ̄(k) as σ̄(k) = σ(k) + c

(
z−1) yd (k).

Then, the estimation error is expressed as:

e(k) = σ̄ (k)− φT (k− 2) θ̂(k− 1)− ĝ0

N

∑
i=1

KPi
αβ[u](k)pi(α, β)

− ĝ1

N

∑
i=1

KPi
αβ[u](k− 1)pi(α, β), (17)

Substituting Equation (15) into Equation (17), the estimated error e(k) can be rewritten as:

e(k) = −y(k− 2) · f̃0(k− 1)− y(k− 3) · f̃1(k− 1)

− g̃0

N

∑
i=1

KPi
αβ[u](k)pi(α, β)− g̃1

N

∑
i=1

KPi
αβ[u](k− 1)pi(α, β), (18)

where the new variables are f̃i(k) = f̂i(k) − fi(k), (i.e., θ̃(k)), g̃i(k) = ĝi(k) − gi(k), (i = 0, 1).
To estimate unknown parameters of the linear part, the cost function is set as:

J( fi, gi)(k) =
1
2

e2(k). (19)

Next, we adopt the following Equation (20) to adjust unknown parameters adaptively.

˙̃θ(k) = −γ
∂J(k)
∂θ̃(k)

= −γe(k)
∂e(k)
∂θ̃(k)

˙̃gi(k) = −γ
∂J(k)
∂g̃i(k)

= −γe(k)
∂e(k)
∂g̃i(k) ,

(20)

where γ is the adjustment speed of the estimated parameters, and it satisfies 0 < γ < 1. If a fast
adaptation of the unknown parameters is needed, the γ should be increased in the range 0 < γ < 1.
Substituting Equation (18) into Equation (20), the adjustment results for each parameter can be derived
as follows:

f̂0(k) = f̂0 (k− 1)− γ · e(k) · y (k− 2),

f̂1(k) = f̂1 (k− 1)− γ · e(k) · y (k− 3). (21)

ĝ0(k) = ĝ0 (k− 1)− γ · e(k) ·
N

∑
i=1

KPi
αβ[u](k)pi(α, β),

ĝ1(k) = ĝ1 (k− 1)− γ · e(k) ·
N

∑
i=1

KPi
αβ[u](k− 1)pi(α, β). (22)

The unknown parameters are estimated by Equation (21) and Equation (22). The convergent of
the parameters estimated method is not proved in this paper, the more discussions of this method,
the reader may refer to [33]. Next, we propose the adaptive control law (23) to eliminate the hysteresis
and achieve the high-precision trajectory tracking control for the piezoelectric actuated stage.

u (k + 1) =u (k)− η ·
(

ψ (k)− ĝ0

N

∑
i=1

KPi
αβ[u](k)pi(α, β)

)
,

(23)
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where the constant η influences the adjustment speed of the input voltage, ψ (k) is expressed as:

ψ (k) = −φT θ̂ (k)− ĝ1

N

∑
i=1

KPi
αβ[u](k− 1)pi(α, β)

+ c
(

z−1
)

yd (k + 2) + κσ (k) , (24)

where κ is the weight factor. Based on the Equation (16), if ψ (k) satisfies the following equation:

ψ (k) =
N

∑
i=1

KPi
αβ[u

∗](k)pi(α, β), (25)

where u∗(k) is equal to the ideal input voltage, and the σ(k) will tend to zero. However, the actual input
voltage u∗(k) cannot be accurately calculated. This paper use a weakened condition of Equation (25):
it satisfies that

∣∣∣∑N
i=1 KPi

αβ[u
∗](k)pi(α, β)− ψ (k)

∣∣∣ ≤ ε, for a given admissible error bound ε. So, the
adaptive tracking control law (23) can make the tracking error e(k) be approximated to a tolerable
error range at the k→ ∞.

4. Simulation and Experimental Results

4.1. Simulation Results

In this part, we conducted some simulation studies of the KP kernel with the weights to describe
the hysteresis in the piezoelectric actuated stage. In simulation, we used three KP kernel with the
different weights (which were 0.2, 0.6, and 0.3) as the actual system, then the gradient descent algorithm
was used to identify the unknown weights for verifying the validity of the proposed KP operator
modeling method. The simulation results are shown in Figures 3 and 4. When the input signal was the
triangular wave, it is obvious that the modeling error was close to zero after a period. To avoid the
contingently of the simulation results, the sine wave signal was used as the input signal; the output of
the KP operators based on the gradient descent algorithm was consistent with the output of actual
system after a period from the Figure 4. Simulation results showed that the proposed KP operators based
on the gradient descent algorithm could describe the hysteresis of the piezoelectric actuated stage.

0 5 10 15 20 25
t

0

0.2

0.4

0.6

0.8

1

1.2

O
ut

pu
t

Actual output
KP operator output
Error

Figure 3. Simulation results of the KP model with the gradient descent algorithm under the triangular
wave voltage signal.
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0.6

0.8
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1.2

O
ut

pu
t

Actual output
KP operator output
Error

Figure 4. Simulation results of the KP model with the gradient descent algorithm under the sine wave
voltage signal.

4.2. Experimental Results

In this part, an experimental facility, as shown in Figure 5, was set up to verify the effectiveness
of the proposed adaptive tracking control method. It consisted of the piezoelectric actuated stage
(MPT-2MRL102A, HuiBo Robotics Technology Co., Ltd, China), the computer, the data collection
card (PCI-1710), and the integral driving controller. In the experiment, the control algorithm was
implemented using the Matlab/simulink software in the host computer. The integral driving
controller with the open-loop mode drove the piezoelectric actuated stage to generate the output
displacement. The data collection card was used to handle the D/A or A/D conversion and collect
output displacement data of the piezoelectric actuated stage.

At first, we set triangular wave signal as the driven signal to actuate the piezoelectric actuated
stage. The the learning factor ηg was set as 0.01; the cutting line of the Preisach plane L was set as 17
by trial and error in this paper. The identification results are shown in Figure 6. It notes that a larger
modeling error was generated as the first period, and then the modeling error decreased gradually
to stabilization. The maximum modeling steady error was 0.53 µm, and the corresponding relative
error rate was 0.99%. So, the KP operators with the obtained weights could capture the hysteresis
characteristics of the piezoelectric actuated stage.

Figure 5. Picture of the piezoelectric actuated stage experimental setup.
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Figure 6. Experimental result of KP operator based on the gradient descent algorithm under the
triangular wave voltage signal.

To avoid the contingency of modeling experimental results, the complex wave signal
(i.e., u = 22.5 sin(10πt− 0.5π) + 15 sin(2πt− 0.5π) + 37.5) was the input voltage signal to actuate the
piezoelectric actuated stage. The modeling experimental results are shown in Figure 7, the output of
the KP operators with the obtained weights were consistent with the actual output of the piezoelectric
actuated stage. The maximum modeling steady error rate was 1.21%; it satisfies the requirements of
the practical engineering application.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

0

10

20

30

40
Actual Output
KP operator output
Error

Figure 7. Experimental result of KP operator based on the gradient descent algorithm under the
complex wave signal.

To prove the effectiveness of the proposed adaptive control method, the triangular wave signal was
used as the desired trajectory signal to implement the tracking control experiments. The parameters
of the proposed controller were set as γ = 0.2, η = 0.025, and κ = 6.8. It can be seen form Figure 8,
the estimated unknown parameters could converge to their true values quickly. The convergence time
of the proposed adaptive controller was about 0.25 s. Figure 9 shows that the output displacement of
the piezoelectric actuated stage based on the proposed adaptive tracking controller was consistent
with the desired trajectory signal. The mean tracking error and root-mean-square error of the controller
were 0.2526 µm and 0.3063 µm, respectively. The effectiveness of the proposed adaptive controller
was verified.

Furthermore, in order to further validate the superior performance of the proposed adaptive
controller, we chose the complex wave signal as the desired trajectory signal to carry out the
comparison tracking experiments. The parameters of the proposed controller were the same as
above. The experimental results of the proposed adaptive tracking control method for the piezoelectric
actuated stage are shown in Figures 10 and 11. Figure 10 showed that the estimated parameters ( f̂0, f̂1,
ĝ0, and ĝ1) could converge quickly to 2.2782, −0.2148, 0.0723, and 0.0355. Figure 11 showed that the
proposed adaptive control method achieved more accurate tracking results in comparison with the
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traditional sliding mode control (SMC) method, where the mean tracking error was reduced by 23.43%.
It is concluded from experimental results that the proposed adaptive tracking controller is feasible.

(a)

 

(b)

Figure 8. Estimated parameters θ̂ and ĝi of the proposed adaptive controller for the triangular wave
signal. (a) convergent curve of θ̂; (b) convergent curve of ĝi.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

0

10

20

30
Desired signal
Proposed method

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-2

0

2

4

(b)

Figure 9. Experimental results of the piezoelectric actuated stage with the triangular wave signal.
(a) tracking curve of the piezoelectric actuated stage; (b) tracking error.
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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-2

0

2
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(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

(b)

Figure 10. Estimates results of the parameters θ̂ and ĝi. (a) convergent curve of θ̂; (b) convergent
curve of ĝi.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

0

20

40

60
Desired signal
CSMC
Proposed method

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-2

0

2
CSMC
Proposed method

(b)

Figure 11. Comparative results of the piezoelectric actuated stage with the complex wave signal.
(a) tracking curve of the piezoelectric actuated stage; (b) tracking error.
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5. Conclusions

In this paper, the KP operator with the weights identified by the gradient descent algorithm
is used to capture the hysteresis part of the piezoelectric actuated stage. Then, the discrete second
order linear equation with the KP operators describes the whole piezoelectric actuated stage system.
Next, an adaptive tracking control methodology has been designed for the piezoelectric actuated
stage to track the desired trajectory signal. The unknown parameters of the stage systems are
adaptively obtained and converge to their desired values. Some comparative tracking experiments are
implemented on the piezoelectric actuated stage, where the results verify the superior performance
of the proposed adaptive controller in tracking the desired complex wave signal compared with the
traditional SMC method.
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