Supplementary Material: Iron(III) Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions

Susana L. H. Rebelo, André M. N. Silva, Craig J. Medforth and Cristina Freire

Figure S1. (a) UV-Vis spectra of the reactions performed in microwave heating under conditions c and i of Figure 2; (b) comparison of the isolated yields of H$_2$TPFPP under conventional (upper) and microwave (lower) heating using acetic acid as the reaction solvent and 0.1 mol dm$^{-3}$ reactant concentrations.

Figure S2. FAB$^+$ mass spectrum of Compound V [Fe(TF$_4$NMe$_2$PP)Cl] resulting from the reaction in Entry 1, Table 1 and comparison with the MNBA reference.
Figure S3. High resolution ESI+ mass spectrum of the final reaction mixture of compound 1 oxidation.

Figure S4. High resolution ESI+ mass spectrum of the final reaction mixture of compound 3 oxidation.
Figure S5. 1H-NMR spectrum (in DMSO-d_6) of the total reaction mixture present at the end of oxidation of compound 3.

Figure S6. APT-NMR spectrum (in DMSO-d_6) of the total reaction mixture present at the end of oxidation of compound 3.
Figure S7. 1H-NMR spectrum (in CDCl$_3$) of the total reaction mixture present at the end of the catalytic oxidation reaction of naphthalene 5.

Figure S8. APT-NMR spectrum (in CDCl$_3$) of the total reaction mixture present at the end of the catalytic oxidation reaction of naphthalene 5.
Figure S9. GC chromatograms of indene (1) oxidation at t = 0 h and t = 2 h of reactions in the presence (a and b) and absence (c and d) of catalyst. The relevant peaks are the internal standard (i.s.) chlorobenzene observed at retention time (r.t.) ~ 2.5 min; indene (1) r.t. ~ 4.2 min and indene oxide (2) (r.t. ~ 5.7 min) observed as two peaks due to the presence of two enantiomeric centers in the molecule.