Syntheses of 1-Aryl-5-nitro-1H-indazoles and a General Sequential Route to 1-Aryl-1H-indazoles

Joel K. Annor-Gyamfi, Krishna Kumar Gnanasekaran and Richard A. Bunce*
Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA

Supplementary Information

Table S-1. Optimization of conditions for the two-step procedure to produce 1-aryl-5-nitro-1H-indazoles.

Table S-2. Optimization of conditions for the one-pot procedure to produce 1-aryl-5-nitro-1H-indazoles.

Table S-3: Optimization results for the general 1H-indazole synthesis using 2-bromobenzaldehyde.

Characterization data for hydrazone derivatives of 2'-fluoro-5'-nitroacetophenone

Phenylhydrazone 9a
(2-Methoxyphenyl)hydrazone 9b
(3-Methoxyphenyl)hydrazone 9c
(4-Methoxyphenyl)hydrazone 9d
(4-Bromophenyl)hydrazone 9e
(3-Chlorophenyl)hydrazone 9f
(4-Chlorophenyl)hydrazone 9g
(2,4-Dichlorophenyl)hydrazone 9h
(3-(Trifluoromethyl)phenyl)hydrazone 9i
(4-(Trifluoromethyl)phenyl)hydrazone 9j
(4-Cyanophenyl)hydrazone 9k
(4-Sulfonamidophenyl)hydrazone 9l
(4-Carboxyphenyl)hydrazone 9m

Characterization data for hydrazone derivatives of 2-fluoro-5-nitrobenzaldehyde

Phenylhydrazone 10a
(2-Methoxyphenyl)hydrazone 10b
(3-Methoxyphenyl)hydrazone 10c
(4-Methoxyphenyl)hydrazone 10d
(4-Bromophenyl)hydrazone 10e
(3-Chlorophenyl)hydrazone 10f
(4-Chlorophenyl)hydrazone 10g
(2,4-Dichlorophenyl)hydrazone 10h
(3-(Trifluoromethyl)phenyl)hydrazone 10i
(4-(Trifluoromethyl)phenyl)hydrazone 10j
(4-Cyanophenyl)hydrazone 10k
(4-Sulfonamidophenyl)hydrazone 10l
(4-Carboxyphenyl)hydrazone 10m
\(^1\)H and \(^{13}\)C NMR spectra for hydrazones derived from:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenylhydrazone 9a</td>
<td>13</td>
</tr>
<tr>
<td>(2-Methoxyphenyl)hydrazone 9b</td>
<td>14</td>
</tr>
<tr>
<td>(3-Methoxyphenyl)hydrazone 9c</td>
<td>15</td>
</tr>
<tr>
<td>(4-Methoxyphenyl)hydrazone 9d</td>
<td>16</td>
</tr>
<tr>
<td>(4-Bromophenyl)hydrazone 9e</td>
<td>17</td>
</tr>
<tr>
<td>(3-Chlorophenyl)hydrazone 9f</td>
<td>18</td>
</tr>
<tr>
<td>(4-Chlorophenyl)hydrazone 9g</td>
<td>19</td>
</tr>
<tr>
<td>(2,4-Dichlorophenyl)hydrazone 9h</td>
<td>20</td>
</tr>
<tr>
<td>(3-(Trifluoromethyl)phenyl)hydrazone 9i</td>
<td>21</td>
</tr>
<tr>
<td>(4-(Trifluoromethyl)phenyl)hydrazone 9j</td>
<td>22</td>
</tr>
<tr>
<td>(4-Cyanophenyl)hydrazone 9k</td>
<td>23</td>
</tr>
<tr>
<td>(4-Sulfonamidophenyl)hydrazone 9l</td>
<td>24</td>
</tr>
<tr>
<td>(4-Carboxyphenyl)hydrazone 9m</td>
<td>25</td>
</tr>
<tr>
<td>Phenylhydrazone 10a</td>
<td>26</td>
</tr>
<tr>
<td>(2-Methoxyphenyl)hydrazone 10b</td>
<td>27</td>
</tr>
<tr>
<td>(3-Methoxyphenyl)hydrazone 10c</td>
<td>28</td>
</tr>
<tr>
<td>(4-Methoxyphenyl)hydrazone 10d</td>
<td>29</td>
</tr>
<tr>
<td>(4-Bromophenyl)hydrazone 10e</td>
<td>30</td>
</tr>
<tr>
<td>(3-Chlorophenyl)hydrazone 10f</td>
<td>31</td>
</tr>
<tr>
<td>(4-Chlorophenyl)hydrazone 10g</td>
<td>32</td>
</tr>
<tr>
<td>(2,4-Dichlorophenyl)hydrazone 10h</td>
<td>33</td>
</tr>
<tr>
<td>(3-(Trifluoromethyl)phenyl)hydrazone 10i</td>
<td>34</td>
</tr>
<tr>
<td>(4-(Trifluoromethyl)phenyl)hydrazone 10j</td>
<td>35</td>
</tr>
<tr>
<td>(4-Cyanophenyl)hydrazone 10k</td>
<td>36</td>
</tr>
<tr>
<td>(4-Sulfonamidophenyl)hydrazone 10l</td>
<td>37</td>
</tr>
<tr>
<td>(4-Carboxyphenyl)hydrazone 10m</td>
<td>38</td>
</tr>
</tbody>
</table>

3-Methyl-5-nitro-1\(^H\)-indazole (7) | 39 |
5-Nitro-1\(^H\)-indazole (8) | 40 |

3-Methyl-1-phenyl-5-nitro-1\(^H\)-indazole (11a) | 41 |
1-(2-Methoxyphenyl)-3-methyl-5-nitro-1\(^H\)-indazole (11b) | 42 |
1-(3-Methoxyphenyl)-3-methyl-5-nitro-1\(^H\)-indazole (11c) | 43 |
1-(4-Methoxyphenyl)-3-methyl-5-nitro-1\(^H\)-indazole (11d) | 44 |
1-(4-Bromophenyl)-3-methyl-5-nitro-1\(^H\)-indazole (11e) | 45 |
1-(3-Chlorophenyl)-3-methyl-5-nitro-1\(^H\)-indazole (11f) | 46 |
1-(4-Chlorophenyl)-3-methyl-5-nitro-1\(^H\)-indazole (11g) | 47 |
1-(2,4-Dichlorophenyl)-3-methyl-5-nitro-1\(^H\)-indazole (11h) | 48 |
3-Methyl-5-nitro-1-(3-(trifluoromethyl)phenyl)-1\(^H\)-indazole (11i) | 49 |
3-Methyl-5-nitro-1-(4-(trifluoromethyl)phenyl)-1\(^H\)-indazole (11j) | 50 |
1-(4-Cyanophenyl)-3-methyl-5-nitro-1\(^H\)-indazole (11k) | 51 |
4-(3-Methyl-5-nitro-1\(^H\)-indazol-1-yl)benzenesulfonamide (11l) | 52 |
4-(3-Methyl-5-nitro-1\(^H\)-indazol-1-yl)benzoic acid (11m) | 53 |
\(^1\text{H}\) and \(^{13}\text{C}\) NMR spectra for:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Phenyl-5-nitro-1\text{H}-indazole (12a)</td>
<td>54</td>
</tr>
<tr>
<td>1-(3-Methoxyphenyl)-5-nitro-1\text{H}-indazole (12c)</td>
<td>55</td>
</tr>
<tr>
<td>1-(4-Methoxyphenyl)-5-nitro-1\text{H}-indazole (12d)</td>
<td>56</td>
</tr>
<tr>
<td>1-(4-Bromophenyl)-5-nitro-1\text{H}-indazole (12e)</td>
<td>57</td>
</tr>
<tr>
<td>1-(3-Chlorophenyl)-5-nitro-1\text{H}-indazole (12f)</td>
<td>58</td>
</tr>
<tr>
<td>1-(4-Chlorophenyl)-5-nitro-1\text{H}-indazole (12g)</td>
<td>59</td>
</tr>
<tr>
<td>1-(2,4-Dichlorophenyl)-5-nitro-1\text{H}-indazole (12h)</td>
<td>60</td>
</tr>
<tr>
<td>5-Nitro-1-(3-(trifluoromethyl)phenyl)-1\text{H}-indazole (12i)</td>
<td>61</td>
</tr>
<tr>
<td>5-Nitro-1-(4-(trifluoromethyl)phenyl)-1\text{H}-indazole (12j)</td>
<td>62</td>
</tr>
<tr>
<td>1-(4-Cyanophenyl)-5-nitro-1\text{H}-indazole (12k)</td>
<td>63</td>
</tr>
<tr>
<td>4-(5-Nitro-1\text{H}-indazol-1-yl)benzenesulfonamide (12l)</td>
<td>64</td>
</tr>
<tr>
<td>4-(5-Nitro-1\text{H}-indazol-1-yl)benzoic acid (12m)</td>
<td>65</td>
</tr>
<tr>
<td>3-Methyl-1-phenyl-1\text{H}-indazole (16a)</td>
<td>66</td>
</tr>
<tr>
<td>1-(4-Methoxyphenyl)-3-methyl-1\text{H}-indazole (16d)</td>
<td>67</td>
</tr>
<tr>
<td>4-(3-Methyl-1\text{H}-indazol-1-yl)benzonitrile (16k)</td>
<td>68</td>
</tr>
<tr>
<td>1-Phenyl-1\text{H}-indazole (17a)</td>
<td>69</td>
</tr>
<tr>
<td>1-(4-Methoxyphenyl)-1\text{H}-indazole (17d)</td>
<td>70</td>
</tr>
<tr>
<td>4-(1\text{H}-Indazol-1-yl)benzonitrile (17k)</td>
<td>71</td>
</tr>
<tr>
<td>1-Phenyl-1\text{H}-pyrazolo[3,4-\text{b}]pyridine (18a)</td>
<td>72</td>
</tr>
<tr>
<td>1-(4-Methoxyphenyl)-1\text{H}-pyrazolo[3,4-\text{b}]pyridine (18d)</td>
<td>73</td>
</tr>
<tr>
<td>4-(1\text{H}-Pyrazolo[3,4-\text{b}]pyridin-1-yl)benzonitrile (18k)</td>
<td>74</td>
</tr>
</tbody>
</table>
Table S-1. Optimization of conditions for the two-step procedure to produce 1-aryl-5-nitro-1H-indazoles.

The optimum conditions for hydrazone formation involved the use of 3.0 mmol of ArNHNH$_2$·HCl with the ketone substrate, 2.0 mmol with the aldehyde substrate. Ring closure was best effected through the use of 3.0 mmol of K$_2$CO$_3$ at 90 °C.
Table S-2. Optimization of conditions for the one-pot procedure to produce 1-aryl-5-nitro-1\textit{H}-indazoles.

![Chemical structures](image)

The one-step procedure to make 5-nitro-1-aryl-1\textit{H}-indazoles was successful for the acetophenone substrate 1. Benzaldehyde 2 gave higher yields when the reagents were added sequentially to first produce the hydrazone, followed by ring closure with base. The optimum conditions used 30 wt\% of 4Å molecular sieves (to scavenge water) and DMPU as the solvent at 90 °C.
Table S-3: Optimization results for the general indazole synthesis using 2-bromobenzaldehyde.

![Optimization results diagram]

<table>
<thead>
<tr>
<th>Expt No</th>
<th>Equiv PhNHNH₂·HCl</th>
<th>Base</th>
<th>Equiv Base</th>
<th>Solvent</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0</td>
<td>K₂CO₃</td>
<td>3.5</td>
<td>DMF</td>
<td>< 5</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>K₂CO₃</td>
<td>2.5</td>
<td>DMF</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>K₂CO₃</td>
<td>2.5</td>
<td>DMF</td>
<td>48ᵃ</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>K₂CO₃</td>
<td>2.5</td>
<td>DMPU</td>
<td>77ᵇ</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>K₂CO₃</td>
<td>2.5</td>
<td>1,4-dioxane</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>Na₂CO₃</td>
<td>2.5</td>
<td>DMPU</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>DBU</td>
<td>2.5</td>
<td>DMPU</td>
<td>36</td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td>TMG</td>
<td>2.5</td>
<td>DMPU</td>
<td>51</td>
</tr>
</tbody>
</table>

ᵃAll reagents were added and then gradually heated to 90-100 °C; ᵇSubstrate 14, PhNHNH₂·HCl and 30 wt% of powdered 4Å molecular sieves were added and immersed into a pre-heated oil bath at 90 °C, stirred for 1.5 h, and then 20 mol% CuI and base were added. ᶜTetramethylguanidine.

Optimum conditions for the general synthesis of 1-aryl-1H-indazoles involved mixing 1.5 equiv of the ArNHNH₂·HCl, 2.5 equiv of K₂CO₃ and 30 wt% of powdered 4Å molecular sieves in 5 mL of DMPU and heating at 90 °C (pre-heated oil bath). After 1.5 h, 20 mol% of CuI and 2.5 equiv of K₂CO₃ were added and heating was resumed at 90 °C for ca 16 h. Filtration, aqueous work-up and silica gel chromatography afforded the final product in pure form.
Characterization of arylhydrazones from 2'-fluoro-5'-nitroacetophenone.

Phenylhydrazone (9a): Yield: 259 mg (0.95 mmol, 95%) as an orange solid, mp 136-138 °C. IR (nujol): 3297, 1531, 1347 cm⁻¹: ¹H NMR (400 MHz, DMSO-d₆): δ 9.61 (s, 1H), 8.46 (dd, J = 6.7, 3.0 Hz, 1H), 8.22 (dt, J = 9.0, 3.6 Hz, 1H), 7.54 (t, J = 9.9 Hz, 1H), 7.29-7.20 (complex, 4H), 6.81 (m, 1H), 2.31 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 162.4 (d, J = 256.4 Hz), 144.7, 143.4, 135.1, 128.6, 128.5 (d, J = 13.3 Hz), 128.4, 124.0 (d, J = 7.9 Hz), 119.1, 117.5 (d, J = 25.7 Hz), 112.4, 15.1.

(2-Methoxyphenyl)hydrazone (9b): Yield: 248 mg (0.82 mmol, 82%) as a brown solid, mp 120-121 °C. IR (nujol): 3299, 1531, 1338 cm⁻¹: ¹H NMR (400 MHz, DMSO-d₆): δ 8.46 (dd, J = 6.6, 3.0 Hz, 1H), 8.33 (s, 1H), 8.25 (dt, J = 9.0, 3.7 Hz, 1H), 7.37 (d, J = 7.7 Hz), 7.01 (d, J = 7.9 Hz, 1H), 6.93 (s, J = 7.5 Hz, 1H), 6.85 (t, J = 7.6 Hz, 1H), 3.88 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 163.4 (d, J = 257.2 Hz), 146.2, 144.5, 138.5, 134.2, 129.3 (d, J = 13.8 Hz), 125.4 (d, J = 10.8 Hz), 125.1 (d, J = 5.8 Hz), 121.6, 120.6, 118.5 (d, J = 25.6 Hz), 112.9, 111.3, 56.1, 15.4.

(3-Methoxyphenyl)hydrazone (9c): Yield: 251 mg (0.83 mmol, 83%) as an orange solid, mp 120-121 °C. IR (nujol): 3295, 1528, 1341 cm⁻¹: ¹H NMR (400 MHz, DMSO-d₆): δ 9.60 (s, 1H), 8.46 (dd, J = 6.2, 3.0 Hz, 1H), 8.22 (dt, J = 9.3, 3.7 Hz, 1H), 7.53 (t, J = 9.8 Hz, 1H), 7.13 (d, J = 8.3 Hz, 1H), 6.82 (m, 2H), 6.40 (d, J = 8.0 Hz, 1H), 3.73 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 163.4 (d, J = 257.7 Hz), 160.6, 147.1, 144.5, 136.2, 130.3, 129.5 (d, J = 13.3 Hz), 125.1, 125.0 (d, J = 4.4 Hz), 118.5 (d, J = 25.9 Hz), 106.2, 105.6, 99.3, 55.3, 16.1.

(4-Methoxyphenyl)hydrazone (9d): Yield: 273 mg (0.90 mmol, 90%) as a dark red solid, mp 112-114 °C. IR (nujol): 3302, 1531, 1350 cm⁻¹: ¹H NMR (400 MHz, DMSO-d₆): δ 9.42 (s, 1H), 8.44 (dd, J = 6.7, 3.0 Hz, 1H), 8.19 (dt, J = 9.0, 3.6 Hz, 1H), 7.52 (dd, J = 10.8, 9.0 Hz, 1H), 7.17 (d, J = 9.0 Hz, 2H), 6.87 (d, J = 9.0 Hz, 2H), 3.85 (s, 3H), 2.28 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 163.6 (d, J = 257.0 Hz), 153.7, 144.5, 142.0, 141.3, 139.8, 129.7 (d, J = 13.3 Hz), 124.9 (d, J = 6.6 Hz), 118.4 (d, J = 25.8 Hz), 115.3, 114.9, 55.7, 16.0.

(4-Bromophenyl)hydrazone (9e): Yield: 333 mg (0.95 mmol, 95%) as an orange solid, mp 183-185 °C. IR (nujol): 3287, 1529, 1343 cm⁻¹: ¹H NMR (400 MHz, DMSO-d₆): δ 9.76 (s, 1H), 8.44 (dd, J = 6.8, 3.1 Hz, 1H), 8.24 (dt, J = 9.0, 3.7 Hz, 1H), 7.57 (t, J = 9.8 Hz, 1H), 7.41 (d, J = 8.6 Hz, 2H), 7.18 (d, J = 8.6 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 161.3 (d, J =
256.8 Hz), 144.1, 143.4, 136.2, 131.1, 128.4 (d, J = 13.5 Hz), 124.3 (d, J = 10.9 Hz), 124.1 (d, J = 5.9 Hz), 117.4 (d, J = 25.7 Hz), 114.3, 110.1, 15.3.

(3-Chlorophenyl)hydrazone (9f): Yield: 261 mg (0.85 mmol, 85%) as an orange solid, mp 143-144 °C. IR (nujol): 3286, 1535, 1337 cm⁻¹: ¹H NMR (400 MHz, DMSO-d₆): δ 9.78 (s, 1H), 8.44 (dd, J = 6.3, 3.0 Hz, 1H), 8.23 (dt, J = 9.0, 3.7 Hz, 1H), 7.55 (t, J = 9.9 Hz, 1H), 7.26 (t, J = 8.0 Hz, 1H), 7.24 (s, 1H), 7.16 (d, J = 8.0 Hz, 1H), 6.83 (d, J = 7.6 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 163.5 (d, J = 257.8 Hz), 147.3, 144.5, 137.9, 134.1, 131.1, 129.3 (d, J = 13.5 Hz), 125.4 (d, J = 10.9 Hz), 125.2 (d, J = 6.2 Hz), 119.5, 118.5 (d, J = 25.7 Hz), 112.8, 112.1, 16.4.

(4-Chlorophenyl)hydrazone (9g): Yield: 301 mg (0.98 mmol, 98%) as an orange solid, mp 159-161 °C. IR (nujol): 3285, 1528, 1343 cm⁻¹: ¹H NMR (400 MHz, DMSO-d₆): δ 9.75 (s, 1H), 8.44 (dd, J = 6.6, 3.0 Hz, 1H), 8.24 (dt, J = 9.0, 3.7 Hz, 1H), 7.55 (t, J = 9.9 Hz, 1H), 7.29 (d, J = 8.8 Hz, 2H), 7.22 (d, J = 8.8 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 163.5 (d, J = 256.8 Hz), 144.8, 144.5, 137.2, 129.4 (d, J = 13.6 Hz), 129.3, 125.3 (d, J = 10.9 Hz), 125.2 (d, J = 5.9 Hz), 123.5, 118.5 (d, J = 25.8 Hz), 114.9, 16.4.

(2,4-Dichlorophenyl)hydrazone (9h): Yield: 289 mg (0.92 mmol, 92%) as a pale orange solid, mp 138-139 °C. IR (nujol): 3315, 1535, 1347 cm⁻¹: ¹H NMR (400 MHz, DMSO-d₆): δ 8.60 (s, 1H), 8.45 (dd, J = 6.6, 3.0 Hz, 1H), 8.29 (dt, J = 9.0, 3.8 Hz, 1H), 7.58 (t, J = 9.9 Hz, 1H), 7.58 (d, J = 2.3 Hz, 1H), 7.52 (d, J = 8.8 Hz, 1H), 7.38 (dd, J = 8.9, 2.4 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 160.5 (d, J = 256.4 Hz), 144.5, 142.1, 140.7, 129.2, 128.9 (d, J = 13.8 Hz), 128.7, 126.0 (d, J = 10.9 Hz), 125.4 (d, J = 5.7 Hz), 124.4, 119.1, 118.6 (d, J = 25.2 Hz), 116.6, 16.1.

(3-(Trifluoromethyl)phenyl)hydrazone (9i): Yield: 270 mg (0.84 mmol, 84%) as a yellow solid, mp 122-123 °C. IR (nujol): 3294, 1533, 1342 cm⁻¹: ¹H NMR (400 MHz, DMSO-d₆): δ 9.93 (s, 1H), 8.46 (dd, J = 6.3, 3.0 Hz, 1H), 8.25 (dt, J = 8.9, 3.6 Hz, 1H), 7.56 (t, J = 9.8 Hz, 1H), 7.52-7.45 (complex, 3H), 7.13 (d, J = 6.1 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 163.5 (d, J = 257.1 Hz), 146.2, 144.5, 138.3, 130.6, 130.3 (q, J = 31.3 Hz), 129.2 (d, J = 13.2 Hz), 125.9 (d, J = 10.7 Hz), 125.2 (d, J = 4.8 Hz), 124.8 (q, J = 271.9 Hz), 118.5 (d, J = 25.6 Hz), 116.9, 1160 (q, J = 3.7 Hz), 109.5 (q, J = 3.9 Hz), 16.4.

(4-(Trifluoromethyl)phenyl)hydrazone (9j): Yield: 303 mg (0.94 mmol, 94%) as a yellow solid, mp 185-186 °C. IR (nujol): 3292, 1544, 1346 cm⁻¹: ¹H NMR (400 MHz, DMSO-d₆): δ 10.0 (s,
1H), 8.45 (dd, J = 6.7, 3.0 Hz, 1H), 8.26 (dt, J = 9.0, 3.7 Hz, 1H), 7.59 (d, J = 8.4 Hz, 2H), 7.56 (t, J = 9.8 Hz, 1H), 7.36 (d, J = 8.4 Hz, 2H), 2.34 (s, 3H); 13C NMR (100 MHz, DMSO-d_6): δ 163.5 (d, J = 256.8 Hz), 148.5, 144.5, 139.0, 129.3 (d, J = 13.4 Hz), 126.8 (q, J = 9.1 Hz), 125.6 (d, J = 11.0 Hz), 125.4 (q, J = 270.1 Hz), 125.3 (d, J = 5.6 Hz), 119.9 (q, J = 24.9 Hz), 118.5 (d, J = 25.5 Hz), 113.2, 16.5.

(4-Cyanophenyl)hydrazone (9k): Yield: 292 mg (0.98 mmol, 98%) as a pale orange solid, mp 206-208 °C. IR (nujol): 2215, 1532, 1350 cm$^{-1}$. 1H NMR (400 MHz, DMSO-d_6): δ 10.2 (s, 1H), 8.45 (d, J = 6.5, 3.0 Hz, 1H), 8.27 (m, 1H), 7.68 (d, J = 8.4 Hz, 2H), 7.57 (t, J = 9.8 Hz, 1H), 7.32 (d, J = 8.4 Hz, 2H), 2.35 (s, 3H); 13C NMR (100 MHz, DMSO-d_6): δ 163.5 (d, J = 256.8 Hz), 149.3, 144.5, 140.2, 134.1, 129.1 (d, J = 13.7 Hz), 125.8 (d, J = 11.0 Hz), 125.4, 120.4, 118.6 (d, J = 25.5 Hz), 113.6, 100.9, 16.6.

(4-Sulfonamidophenyl)hydrazone (9l): Yield: 320 mg (0.91 mmol, 91%) as a yellow solid, mp 217-219 °C. IR (nujol): 3344, 3289, 3247, 1534, 1346, 1327, 1146 cm$^{-1}$. 1H NMR (400 MHz, DMSO-d_6): δ 10.0 (s, 1H), 8.46 (dd, J = 6.7, 3.0 Hz, 1H), 8.26 (dt, J = 9.0, 3.7 Hz, 1H), 7.70 (d, J = 8.5 Hz, 2H), 7.57 (dd, J = 9.8, 9.0 Hz, 1H), 7.31 (d, J = 8.6 Hz, 2H), 7.11 (s, 2H), 2.35 (s, 3H); 13C NMR (100 MHz, DMSO-d_6): δ 163.5 (d, J = 259.0 Hz), 148.3, 144.5, 139.0, 135.0, 129.3 (d, J = 13.7 Hz), 127.7, 125.4 (d, J = 10.8 Hz), 125.3 (d, J = 5.6 Hz), 118.5 (d, J = 25.0 Hz), 112.7, 16.6.

4-(Carboxyphenyl)hydrazone (9m): Yield: 285 mg (0.90 mmol, 90%) as a pale orange solid, mp 328-330 °C (dec). IR (nujol): 3451-2478, 3270, 1530, 1344 cm$^{-1}$. 1H NMR (400 MHz, DMSO-d_6): δ 12.3 (br s, 1H), 10.0 (s, 1H), 8.46 (dd, J = 6.7, 3.0 Hz, 1H), 8.26 (dt, J = 9.0, 3.6 Hz, 1H), 7.85 (d, J = 8.5 Hz, 2H), 7.56 (t, J = 9.8 Hz, 1H), 7.27 (d, J = 8.5 Hz, 2H), 2.35 (s, 3H); 13C NMR (100 MHz, DMSO-d_6): δ 167.7, 163.5 (d, J = 257.5 Hz), 149.4, 144.5, 138.9, 131.5, 129.3 (d, J = 13.7 Hz), 125.5 (d, J = 10.7 Hz), 125.3 (d, J = 5.7 Hz), 121.8, 118.5 (d, J = 25.6 Hz), 112.7, 16.5.

Characterization of arylhydrazones from 2-fluoro-5-nitrobenzaldehyde.

Phenylhydrazone (10a): Yield: 246 mg (0.95 mmol, 95%) as an orange solid, mp 167-169 °C. IR (nujol): 3338, 1531, 1336 cm$^{-1}$. 1H NMR (400 MHz, DMSO-d_6): δ 10.9 (s, 1H), 8.64 (dd, J = 6.6, 3.0 Hz, 1H), 8.15 (dt, J = 9.2, 3.7 Hz, 1H), 8.01 (s, 1H), 7.52 (t, J = 9.6 Hz, 1H), 7.29 (t, J = 7.7 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 6.84 (t, J = 7.3 Hz, 1H; 13C NMR (100 MHz, DMSO-d_6): δ 162.9 (d, J = 256.9 Hz), 144.9, 144.8, 129.7, 126.8 (d, J = 3.7 Hz), 125.4 (d, J = 12.8 Hz), 124.4 (d, J = 10.2 Hz), 120.8, 120.4, 117.9 (d, J = 23.9 Hz), 112.8.
(2-Methoxyphenyl)hydrazone (10b): Yield: 231 mg (0.80 mmol, 80%) as an orange solid, mp 194-196 °C. IR (nujol): 3300, 1527, 1344 cm⁻¹: ¹H NMR (400 MHz, DMSO-⁶d): δ 10.4 (s, 1H), 8.66 (dd, J = 6.3, 2.0 Hz), 8.37 (s, 1H), 8.16 (dt, J = 8.7, 3.5 Hz, 1H), 7.52 (t, J = 9.5 Hz, 1H), 7.43 (d, J = 7.9 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.95 (t, J = 7.8 Hz, 1H), 6.63 (t, J = 7.7 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, DMSO-⁶d): δ 162.8 (d, J = 257.7 Hz), 145.9, 145.0, 134.0, 128.4 (d, J = 4.0 Hz), 125.7 (d, J = 12.9 Hz), 124.5 (d, J = 10.4 Hz), 121.8, 120.8 (d, J = 6.0 Hz), 120.3, 117.9 (d, J = 23.9 Hz), 112.5, 111.6, 56.1.

(3-Methoxyphenyl)hydrazone (10c): Yield: 237 mg (0.82 mmol, 82%) as an orange solid, mp 196-198 °C. IR (nujol): 3294, 1519, 1345 cm⁻¹: ¹H NMR (400 MHz, DMSO-⁶d): δ 10.9 (s, 1H), 8.65 (dd, J = 6.3, 3.0 Hz, 1H), 8.16 (dd, J = 8.9, 4.3, 1.8 Hz, 1H), 8.00 (s, 1H), 7.53 (t, J = 9.5 Hz, 1H), 7.18 (t, J = 8.0 Hz, 1H), 6.71-6.65 (complex, 3H), 6.44 (dd, J = 8.1, 2.5 Hz, 1H), 3.76 (s, 3H); ¹³C NMR (100 MHz, DMSO-⁶d): δ 162.7 (d, J = 257.9 Hz), 160.8, 146.1, 145.0, 130.7, 127.0 (d, J = 3.7 Hz), 125.4 (d, J = 12.7 Hz), 124.6 (d, J = 10.5 Hz), 121.0 (d, J = 6.0 Hz), 118.0 (d, J = 23.8 Hz), 105.8, 105.7, 98.7, 55.4.

(4-Methoxyphenyl)hydrazone (10d): Yield: 260 mg (0.90 mmol, 90%) as an orange solid, mp 154-155 °C. IR (nujol): 3301, 1524, 1344 cm⁻¹: ¹H NMR (400 MHz, DMSO-⁶d): δ 10.8 (s, 1H), 8.63 (dd, J = 6.2, 3.0 Hz), 8.12 (dt, J = 9.3, 3.7 Hz, 1H), 7.93 (s, 1H), 7.51 (t, J = 9.6 Hz, 1H), 7.06 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.5 Hz, 2H), 3.71 (s, 3H); ¹³C NMR (100 MHz, DMSO-⁶d): δ 161.3 (d, J = 256.7 Hz), 153.9, 145.0, 138.7, 125.7 (d, J = 12.7 Hz), 125.3, 123.9 (d, J = 10.3 Hz), 120.6 (d, J = 6.0 Hz), 117.8 (d, J = 24.0 Hz), 115.2, 113.9, 55.7.

(4-Bromophenyl)hydrazone (10e): Yield: 317 mg (0.94 mmol, 94%) as an orange solid, mp 184-186 °C: IR (nujol): 3327, 1532, 1339 cm⁻¹: ¹H NMR (400 MHz, DMSO-⁶d): δ 11.0 (s, 1H), 8.64 (dd, J = 6.3, 2.9 Hz, 1H), 8.18 (dt, J = 9.1, 3.8 Hz, 1H), 8.01 (s, 1H), 7.53 (t, J = 9.5 Hz, 1H), 7.43 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, DMSO-⁶d): δ 162.8 (d, J = 257.4 Hz), 144.9, 144.1, 132.4, 127.9, 125.1 (d, J = 12.4 Hz), 124.8 (d, J = 10.3 Hz), 121.0 (d, J = 5.7 Hz), 118.0 (d, J = 23.9 Hz), 114.8, 111.3.

(3-Chlorophenyl)hydrazone (10f): Yield: 264 mg (0.90 mmol, 90%) as an orange solid, mp 197-199 °C. IR (nujol): 3288, 1523, 1343 cm⁻¹: ¹H NMR (400 MHz, DMSO-⁶d): δ 11.0 (s, 1H), 8.65 (dd, J = 6.2, 3.0 Hz, 1H), 8.18 (dt, J = 9.2, 3.5 Hz, 1H), 8.02 (s, 1H), 7.53 (t, J = 9.5 Hz, 1H), 7.28 (t, J = 8.0 Hz, 1H), 7.12 (s, 1H), 7.02 (d, J = 8.1 Hz, 1H), 6.66 (d, J = 7.3 Hz, 1H); ¹³C NMR (100 MHz, DMSO-⁶d): δ 161.8 (d, J = 258.5 Hz), 145.2, 143.9, 133.3, 130.3, 127.5 (d, J = 3.4
Hz), 124.0 (d, J = 10.5 Hz), 123.9 (d, J = 12.7 Hz), 120.2 (d, J = 5.7 Hz), 118.7, 116.9 (d, J = 24.0 Hz), 111.1, 110.5.

(4-Chlorophenyl)hydrazone (10g): Yield: 270 mg (0.92 mmol, 92%) as an orange solid, mp 189-191 °C. IR (nujol): 3325, 1533, 1335 cm⁻¹: ¹H NMR (400 MHz, DMSO-d₆): δ 11.0 (s, 1H), 8.64 (dd, J = 6.3, 3.1 Hz, 1H), 8.17 (dt, J = 9.0, 3.8 Hz, 1H), 8.00 (s, 1H), 7.53 (t, J = 9.5 Hz, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 162.8 (d, J = 257.0 Hz), 145.0, 143.7, 129.6, 127.8 (d, J = 3.6 Hz), 125.1 (d, J = 12.7 Hz), 124.8 (d, J = 11.2 Hz), 123.7, 121.0 (d, J = 5.7 Hz), 118.0 (d, J = 23.9 Hz).

(2,4-Dichlorophenyl)hydrazone (10h): Yield: 307 mg (0.94 mmol, 94%) as a yellow solid, mp 198-200 °C. IR (nujol): 3297, 1530, 1343 cm⁻¹: ¹H NMR (400 MHz, DMSO-d₆): δ 10.6 (s, 1H), 8.66 (dd, J = 6.3, 3.0 Hz, 1H), 8.53 (s, 1H), 8.22 (dt, J = 9.1, 3.7 Hz, 1H), 7.58 (d, J = 8.9 Hz, 1H), 7.56 (t, J = 9.5 Hz, 1H), 7.50 (d, J = 2.4 Hz, 1H), 7.38 (dd, J = 8.9, 2.4 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 163.2 (d, J = 258.2 Hz), 145.0, 140.3, 131.8 (d, J = 4.1 Hz), 129.2, 128.8, 125.5 (d, J = 10.5 Hz), 14.8 (d, J = 12.6 Hz), 123.8, 121.2 (d, J = 5.5 Hz), 118 (d, J = 23.9 Hz), 117.6, 115.9.

(3-(Trifluoromethyl)phenyl)hydrazone (10i): Yield: 286 mg (0.93 mmol, 93%) as a yellow solid, mp 182-183 °C. IR (nujol): 3299, 1530, 1347 cm⁻¹: ¹H NMR (400 MHz, DMSO-d₆): δ 11.2 (s, 1H), 8.66 (dd, J = 6.3, 2.9 Hz, 1H), 8.20 (ddd, J = 9.1, 4.4, 2.9 Hz, 1H), 8.06 (s, 1H), 7.55 (t, J = 9.9 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.34 (s, 1H), 7.15 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 162.9 (d, J = 258.7 Hz), 145.5, 145.0, 131.0, 130.5 (q, J = 31.2 Hz), 129.1 (d, J = 3.4 Hz), 125.9 (d, J = 10.2 Hz), 124.9 (d, J = 12.6 Hz), 124.7 (q, J = 272.3 Hz), 121.4 (d, J = 5.6 Hz), 117.9 (d, J = 24.0 Hz), 116.5, 116.2 (q, J = 3.8 Hz), 108.6 (q, J = 3.8 Hz).

(4-(Trifluoromethyl)phenyl)hydrazone (10j): Yield: 286 mg (0.93 mmol, 93%) as a yellow solid, mp 203-204 °C. IR (nujol): 3290, 1517, 1342 cm⁻¹: ¹H NMR (400 MHz, DMSO-d₆): δ 11.3 (s, 1H), 8.67 (dd, J = 6.2, 3.0 Hz, 1H), 8.21 (dt, J = 9.1, 3.8 Hz, 1H), 8.10 (s, 1H), 7.61 (d, J = 8.4 Hz, 2H), 7.56 (t, J = 9.5 Hz, 1H), 7.24 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 163.0 (d, J = 258.4 Hz), 147.9, 145.0, 129.7 (d, J = 3.4 Hz), 127.2 (q, J = 3.9 Hz), 125.3 (d, J = 10.3 Hz), 125.3 (q, J = 270.6 Hz), 124.8 (d, J = 12.7 Hz), 121.3 (d, J = 5.5 Hz), 120.1 (q, J = 32.0 Hz), 118.1 (d, J = 23.9 Hz), 112.7.

(4-Cyanophenyl)hydrazone (10k): Yield: 261 mg (0.92 mmol, 92%) as a yellow solid, mp 223-
225 °C. IR (nujol): 3283, 2209, 1519, 1345 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 11.4 (s, 1H), 8.67 (dd, J = 6.3, 3.0 Hz, 1H), 8.28 (dt, J = 9.2, 3.7 Hz, 1H), 8.12 (s, 1H), 7.69 (d, J = 8.4 Hz, 2H), 7.57 (t, J = 9.5 Hz, 1H), 7.21 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 163.1 (d, J = 258.5 Hz), 148.2, 144.9, 134.2, 130.7, 125.6 (d, J = 10.5 Hz), 124.6 (d, J = 12.5 Hz), 121.4 (d, J = 5.5 Hz), 120.3, 118.1 (d, J = 24.0 Hz), 113.0, 101.1.

(4-Sulfonamidophenyl)hydrazone (10l): Yield: 306 mg (0.90 mmol, 90%) as a yellow solid, mp 279-280 °C. IR (nujol): 3350, 3344, 3250, 1518, 1346, 1320, 1145 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 11.3 (s, 1H), 8.69 (dd, J = 6.2, 3.0 Hz, 1H), 8.22 (dt, J = 9.1, 3.8 Hz, 1H), 8.11 (s, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.57 (t, J = 9.5 Hz, 1H), 7.21 (d, J = 8.4 Hz, 2H), 7.14 (s, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 163.0 (d, J = 258.4 Hz), 147.3, 145.0, 135.2, 129.8, 128.1, 125.4 (d, J = 10.2 Hz), 124.8 (d, J = 12.6 Hz), 121.1 (d, J = 5.7 Hz), 118.1 (d, J = 24.1 Hz), 112.2.

4-(Carboxyphenyl)hydrazone (10m): Yield: 297 mg (0.98 mmol, 98%) as a yellow solid, mp 284-285 °C (dec). IR (nujol): 3458-2294, 3367, 1683, 1535, 1347 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 12.4 (br s, 1H), 11.3 (s, 1H), 8.68 (dd, J = 6.2, 3.0 Hz, 1H), 8.21 (dt, J = 9.1, 3.8 Hz, 1H), 8.11 (s, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.56 (t, J = 9.5 Hz, 1H), 7.16 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 167.6, 163.0 (d, J = 258.6 Hz), 148.4, 145.0, 131.8, 129.7, 125.3 (d, J = 10.6 Hz), 124.9 (d, J = 12.6 Hz), 122.0, 121.3 (d, J = 5.6 Hz), 118.1 (d, J = 24.1 Hz), 112.2.
1H Spectrum of phenylhydrazone 9a

13C Spectrum of phenylhydrazone 9a
1H Spectrum of (2-methoxyphenyl)hydrazone 9b

13C Spectrum of (2-methoxyphenyl)hydrazone 9b
13C Spectrum of (3-methoxyphenyl)hydrazone $9c$
13C Spectrum of (4-methoxyphenyl)hydrazone 9d (E and Z)

13C Spectrum of (4-methoxyphenyl)hydrazone 9d (E and Z)
1H Spectrum of (4-bromophenyl)hydrazone 9e

13C Spectrum of (4-bromophenyl)hydrazone 9e
1H Spectrum of (3-chlorophenyl)hydrazone 9f

13C Spectrum of (3-chlorophenyl)hydrazone 9f
1H Spectrum of (4-chlorophenyl)hydrazone 9g

13C Spectrum of (4-chlorophenyl)hydrazone 9g
1H Spectrum of (2,4-dichlorophenyl)hydrazone 9h

13C Spectrum of (2,4-dichlorophenyl)hydrazone 9h
1H Spectrum of (3-(trifluoromethyl)phenyl)hydrazone 9i

13C Spectrum of (3-(trifluoromethyl)phenyl)hydrazone 9i
1H Spectrum of (4-(trifluoromethyl)phenyl)hydrazone $9j$

13C Spectrum of (4-(trifluoromethyl)phenyl)hydrazone $9j$
\(^1 \text{H} \) Spectrum of (4-cyanophenyl)hydrazone 9k

\(^{13} \text{C} \) Spectrum of (4-cyanophenyl)hydrazone 9k
13C Spectrum of (4-sulfonamidophenyl)hydrazone 9l
13C Spectrum of (4-carboxyphenyl)hydrazone 9m

13C Spectrum of (4-carboxyphenyl)hydrazone 9m
1H Spectra of phenylhydrazone 10a

13C Spectra of phenylhydrazone 10a
13C Spectrum of (2-methoxyphenyl)hydrazone 10b
1H Spectrum of (3-methoxyphenyl)hydrazone 10c

13C Spectrum of (3-methoxyphenyl)hydrazone 10c
1H Spectrum of (4-methoxyphenyl)hydrazone 10d

13C Spectrum of (4-methoxyphenyl)hydrazone 10d
1H Spectrum of (4-bromophenyl)hydrazone 10e

13C Spectrum of (4-bromophenyl)hydrazone 10e
1H Spectrum of (3-chlorophenyl)hydrazone 10f

13C Spectrum of (3-chlorophenyl)hydrazone 10f
1H Spectrum of (4-chlorophenyl)hydrazone 10g

13C Spectrum of (4-chlorophenyl)hydrazone 10g
1H Spectrum of (2,4-dichlorophenyl)hydrazone 10h

13C Spectrum of (2,4-dichlorophenyl)hydrazone 10h
1H Spectrum of (4-(trifluoromethyl)phenyl)hydrazone 10i

13C Spectrum of (3-(trifluoromethyl)phenyl)hydrazone 10i
1H Spectrum of (4-(trifluoromethyl)phenyl)hydrazone $10j$

13C Spectrum of (4-(trifluoromethyl)phenyl)hydrazone $10j$
1H Spectrum of (4-cyanophenyl)hydrazone 10k

13C Spectrum of (4-cyanophenyl)hydrazone 10k
1H Spectrum of (4-sulfonamidophenyl)hydrazone 10l

13C Spectrum of (4-sulfonamidophenyl)hydrazone 10l
\(^1\)H Spectrum of (4-carboxyphenyl)hydrazone 10m

\(^{13}\)C Spectrum of (4-carboxyphenyl)hydrazone 10m
1H Spectrum of 3-methyl-5-nitro-$1H$-indazole (7)

13C Spectrum of 3-methyl-5-nitro-$1H$-indazole (7)
1H Spectrum of 5-nitro-$1H$-indazole (8)

13C Spectrum of 5-nitro-$1H$-indazole (8)
1H Spectrum of 3-methyl-1-phenyl-5-nitro-1^H-indazole (11a)

13C Spectrum of 3-methyl-1-phenyl-5-nitro-1^H-indazole (11a)
1H Spectrum of 1-(2-methoxyphenyl)-3-methyl-5-nitro-1H-indazole (11b)

13C Spectrum of 1-(2-methoxyphenyl)-3-methyl-5-nitro-1H-indazole (11b)
1H Spectrum of 1-(3-methoxyphenyl)-3-methyl-5-nitro-1H-indazole (11c)

13C Spectrum of 1-(3-methoxyphenyl)-3-methyl-5-nitro-1H-indazole (11c)
1H Spectra of 1-(4-methoxyphenyl)-3-methyl-5-nitro-$1H$-indazole (**11d**)

13C Spectrum of 1-(4-methoxyphenyl)-3-methyl-5-nitro-$1H$-indazole (**11d**)
1H Spectrum of 1-(4-bromophenyl)-3-methyl-5-nitro-$1H$-indazole (11e)

13C Spectrum of 1-(4-bromophenyl)-3-methyl-5-nitro-$1H$-indazole (11e)
1H Spectrum of 1-(3-chlorophenyl)-3-methyl-5-nitro-1H-indazole (11f)

13C Spectrum of 1-(3-chlorophenyl)-3-methyl-5-nitro-1H-indazole (11f)
1H Spectrum of 1-(4-chlorophenyl)-3-methyl-5-nitro-$1H$-indazole (11g)

13C Spectrum of 1-(4-chlorophenyl)-3-methyl-5-nitro-$1H$-indazole (11g)
1H Spectrum of 1-(2,4-dichlorophenyl)-3-methyl-5-nitro-1^H-indazole (11h)

13C Spectrum of 1-(2,4-dichlorophenyl)-3-methyl-5-nitro-1^H-indazole (11h)
1H Spectrum of 3-methyl-5-nitro-1-(3-(trifluoromethyl)phenyl)-1H-indazole (11i)

13C Spectrum of 3-methyl-5-nitro-1-(3-(trifluoromethyl)phenyl)-1H-indazole (11i)
1H Spectra of 3-methyl-5-nitro-1-(4-(trifluoromethyl)phenyl)-1H-indazole (11j)

13C Spectra of 3-methyl-5-nitro-1-(4-(trifluoromethyl)phenyl)-1H-indazole (11j)
1H Spectrum of 1-(4-cyanophenyl)-3-methyl-5-nitro-$1H$-indazole (11k)

13C Spectrum of 1-(4-cyanophenyl)-3-methyl-5-nitro-$1H$-indazole (11k)
1H Spectrum of 4-(3-methyl-5-nitro-1H-indazol-1-yl)benzenesulfonamide (111)

13C Spectrum of 4-(3-methyl-5-nitro-1H-indazol-1-yl)benzenesulfonamide (111)
1H Spectrum of 4-(3-methyl-5-nitro-$1H$-indazol-1-yl)benzoic acid (11m)

13C Spectrum of 4-(3-methyl-5-nitro-$1H$-indazol-1-yl)benzoic acid (11m)
1H Spectrum of 1-phenyl-5-nitro-$1H$-indazole (12a)

13C Spectrum of 1-phenyl-5-nitro-$1H$-indazole (12a)
1H Spectra of 1-(3-methoxyphenyl)-5-nitro-$1H$-indazole (12c)

13C Spectra of 1-(3-methoxyphenyl)-5-nitro-$1H$-indazole (12c)
1H Spectrum of 1-(4-methoxyphenyl)-5-nitro-1H-indazole (12d)

13C Spectrum of 1-(4-methoxyphenyl)-5-nitro-1H-indazole (12d)
1H Spectrum of 1-(4-bromophenyl)-5-nitro-$1H$-indazole (12e)

13C Spectrum of 1-(4-bromophenyl)-5-nitro-$1H$-indazole (12e)
1H Spectrum of 1-(3-chlorophenyl)-5-nitro-$1H$-indazole (12f)

13C Spectrum of 1-(3-chlorophenyl)-5-nitro-$1H$-indazole (12f)
1H Spectrum of 1-(4-chlorophenyl)-5-nitro-$1H$-indazole (12g)

13C Spectra of -(4-chlorophenyl)-5-nitro-$1H$-indazole (12g)
1H Spectrum of 1-(2,4-dichlorophenyl)-5-nitro-1H-indazole (12h)

13C Spectrum of 1-(2,4-dichlorophenyl)-5-nitro-1H-indazole (12h)
1H Spectrum of 1-(3-(trifluoromethyl)phenyl)-5-nitro-1H-indazole (12i)

13C Spectrum of 1-(3-(trifluoromethyl)phenyl)-5-nitro-1H-indazole (12i)
1H Spectrum of 1-(4-(trifluoromethyl)phenyl)-5-nitro-1H-indazole (12j)

13C Spectrum of 1-(4-(trifluoromethyl)phenyl)-5-nitro-1H-indazole (12j)
1H Spectrum of 1-(4-cyanophenyl)-5-nitro-1H-indazole (12k)

13C Spectrum of 1-(4-cyanophenyl)-5-nitro-1H-indazole (12k)
1H Spectrum of 4-(5-nitro-1H-indazol-1-yl)benzenesulfonamide (12I)

13C Spectrum of 4-(5-nitro-1H-indazol-1-yl)benzenesulfonamide (12I)
1H Spectrum of 4-(5-nitro-1H-indazol-1-yl)benzoic acid (12m)

13C Spectrum of 4-(5-nitro-1H-indazol-1-yl)benzoic acid (12m)
\(^1\)H Spectrum of 3-methyl-1-phenyl-1\(H\)-indazole (16a)

\(^{13}\)C Spectrum of 3-methyl-1-phenyl-1\(H\)-indazole (16a)
1H Spectrum of 1-(4-methoxyphenyl)-3-methyl-1H-indazole (16d)

13C Spectrum of 1-(4-methoxyphenyl)-3-methyl-1H-indazole (16d)
1H Spectrum of 4-(3-methyl-1H-indazol-1-yl)benzonitrile (16k)

13C Spectrum of 4-(3-methyl-1H-indazol-1-yl)benzonitrile (16k)
1H Spectrum of 1-phenyl-1H-indazole (17a)

13C Spectrum of 1-phenyl-1H-indazole (17a)
1H Spectrum of 1-(4-methoxyphenyl)-1H-indazole (17d)

13C Spectra of 1-(4-methoxyphenyl)-1H-indazole (17d)
1H Spectrum of 4-(1H-indazol-1-yl)benzonitrile (17k)

13C Spectrum of 4-(1H-indazol-1-yl)benzonitrile (17k)
1H Spectrum of 1-phenyl-1H-pyrazolo[3,4-b]pyridine (18a)

13C Spectrum of 1-phenyl-1H-pyrazolo[3,4-b]pyridine (18a)
1H Spectrum of 1-(4-methoxyphenyl)-1H-pyrazolo[3,4-b]pyridine (18d)

13C Spectrum of 1-(4-methoxyphenyl)-1H-pyrazolo[3,4-b]pyridine (18d)
1H Spectrum of 4-(1H-pyrazolo[3,4-b]pyridin-1-yl)benzonitrile (18k)

13C Spectrum of 4-(1H-pyrazolo[3,4-b]pyridin-1-yl)benzonitrile (18k)