Platycodigenin as Potential Drug Candidate for Alzheimer’s Disease via Modulating Microglial Polarization and Neurite Regeneration

Zhiyou Yang 1,2*, Baiping Liu 1, Long-en Yang 1 and Cai Zhang 1

1 College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of nutrition and marine drugs, Guangdong Ocean University, Zhanjiang 524088, China; 15602575661@163.com (B.L.); yanglongen123@163.com (L.Y.); zhangcai910206@163.com (C.Z.)
2 Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
* Correspondence: yang_zhiyou@sina.com; Tel.: +86-075-9239-6046
Figure S1. Effects of LPS on cell viability and NO production in BV2 microglia. BV2 microglia (2000 cells/well) were seeded in 96-well plates for 24 h, followed by treatment with LPS for 24 h and the cell viability was assayed. BV2 microglia (2 × 10^5 cells/mL) were seeded in 96-well plates for 24 h, followed by treatment with LPS for 24 h. NO release was detected by Griess reagent method.