Supplementary Materials:

Captions

Fig. S1. ESI-MSⁿ spectra of monohydroxyl-tetramethoxyflavones **(M0, M9-M10)** in positive ion mode.

(A)MS² spectrum of **M0**; (B) MS³ spectrum of **M0**;

(C) MS^2 spectrum of **M9**; (D) MS^2 spectrum of **M10**

Fig. S2. ESI-MSⁿ spectra of dihydroxyl-triamethoxyflavone (M5-M7) in negative ion mode.

(A)MS² spectrum of M5; (B) MS³ spectrum of M5;

(C) MS^2 spectrum of M6; (D) MS^2 spectrum of M7

Fig. S3. ESI-MSⁿ spectra of monohydroxyl-tetramethoxyflavanones (M14-M15) in positive ion.

(A)MS² spectrum of M14; (B) MS³ spectrum of M14;

(C) MS² spectrum of M15; (D) MS³ spectrum of M15

Fig. S4. ESI-MSⁿ spectra of dihydroxyl- tetramethoxychalcone (M34-M37) in positive ion mode.

(A) MS² spectrum of M34; (B) MS² spectrum of M35;

(C) MS² spectrum of **M36**; (D) MS² spectrum of **M37**

Fig. S5. ESI-MSⁿ spectra of conjugate-metablites (M72, M78) in negative ion mode.

(A) MS² spectrum of M72; (B) MS³ spectrum of M72;

(C) MS² spectrum of **M78**; (D) MS³ spectrum of **M78**

Table S1. Summary of HTF metabolites numbers of substituent groups in rats urine and plasma.

Table S2. Template for searching for these metabolites and their derivatives from metabolic reactions.

Table S3. Summary of HTF metabolites based on DMC

Fig.S1. ESI-MSⁿ spectra of monohydroxyl-tetramethoxyflavones **(M0, M9-M10)** in positive ion mode.

(A)MS² spectrum of M0; (B) MS³ spectrum of M0;(C) MS² spectrum of M9; (D) MS² spectrum of M10

Fig. S2. ESI-MSⁿ spectra of dihydroxyl-triamethoxyflavone (M5-M7) in negative ion mode.
(A)MS² spectrum of M5; (B) MS³ spectrum of M5;
(C) MS² spectrum of M6; (D) MS² spectrum of M7

Fig. S3. ESI-MSⁿ spectra of monohydroxyl-tetramethoxyflavanones (M14-M15) in positive ion (A)MS² spectrum of M14; (B) MS³ spectrum of M14;
 (C) MS² spectrum of M15; (D) MS³ spectrum of M15

Fig. S4. ESI-MSⁿ spectra of dihydroxyl- tetramethoxychalcone (M34-M37) in positive ion mode. (A) MS² spectrum of M34; (B) MS² spectrum of M35;

(C) MS² spectrum of M36; (D) MS² spectrum of M37

Fig. S5. ESI-MSⁿ spectra of conjugate-metablites (M72, M78) in negative ion mode.
(A) MS² spectrum of M72; (B) MS³ spectrum of M72;
(C) MS² spectrum of M78; (D) MS³ spectrum of M78

Peak	-OH	-OCH ₃	Urine	Plasma	Peak	-OH	-OCH3	Urine	Plasma
M0	1	4	+	+	M44	1	5	-	+
M1	3	2	+	+	M45	1	5	+	+
M2	3	2	+	-	M46	1	5	-	+
M3	3	2	+	+	M47	1	5	-	+
M4	3	2	-	+	M48	1	5	-	+
M5	2	3	+	+	M49	1	5	-	+
M6	2	3	+	+	M50	1	5	-	+
M7	2	3	+	-	M51	1	5	+	+
M 8	2	3	-	+	M52	1	5	+	+
M9	1	4	+	+	M53	1	5	+	+
M10	1	4	+	+	M54	1	5	-	+
M11	3	3	-	+	M55	1	5	+	+
M12	1	5	+	+	M56	1	5	+	+
M13	1	5	+	-	M57	1	5	+	+
M14	1	4	+	+	M58	1	5	+	+
M15	1	4	-	+	M59	1	5	+	+
M16	3	3	-	+	M60	1	5	-	+
M17	3	3	-	+	M61	1	6	+	+

Table S1. Summary of HTF metabolites numbers of substituent groups in rats urine and plasma.

M18	3	3	-	+	M62	1	6	-	+
M19	3	3	-	+	M63	1	6	+	+
M20	0	5	+	+	M64	1	6	-	+
M21	0	5	+	-	M65	1	6	-	+
M22	0	5	+	-	M66	3	4	+	+
M23	0	5	-	+	M67	3	4	+	+
M24	2	4	-	+	M68	3	4	+	+
M25	2	4	-	+	M69	0	6	+	+
M26	2	4	-	+	M70	0	6	+	+
M27	2	4	+	+	M71	0	6	+	-
M28	2	4	-	+	M72	0	4	-	+
M29	2	4	-	+	M73	0	5	+	+
M30	2	4	-	+	M74	0	5	+	+
M31	0	5	-	+	M75	0	5	+	+
M32	2	4	+	+	M76	0	5	-	+
M33	2	4	+	+	M77	1	3	-	+
M34	2	4	+	+	M78	0	4	+	+
M35	2	4	-	+	M79	0	4	+	+
M36	2	4	-	+	M80	1	4	-	+
M37	2	4	-	+	M81	1	4	-	+
M38	1	5	+	+	M82	1	4	+	+
M39	1	5	+	+	M83	0	5	+	+

_	M40	1	5	+	+	M 84	0	5	+	+
	M41	1	5	+	+	M85	0	5	+	+
	M42	1	5	+	-	M86	0	5	+	+
	M43	1	5	+	+					

Biotransformation reaction	Molecular formula change	Mass Shift
R-CH2C6H5→R-H	-C7H6	-90.0468
R- ⁷⁹ B→R-H	-Br+H	-77.9104
R-CF ₃ →R-H	-CF3+H	-67.9874
2R- ³⁵ Cl₂→R-H	$-Cl_2+H_2$	-67.9222
R- ⁷⁹ Br→R-OH	-Br+OH	-61.9156
R-C(CH ₃) ₃ →R-H	$-C_4H_8$	-56.0624
R-ONO₂→R-OH	-NO2+H	-44.9851
R-COOH→R-H	-CO2	-43.9898
R-CH(CH ₃)₂→R-H	-C ₃ H ₆	-42.0468
R-C(CH ₃) ₃ →R-OH	-C4H8+O	-40.0675
2R-F₂→R-H	-F2+H2	-35.9811
R- ³⁵ Cl→R-H	-Cl+H	-33.9611
R-CH₂OH→R-H	-CH2O	-30.0106
$R-NO_2 \rightarrow R-NH_2$	-O2+H2	-29.9742
R-CH2OCH2CH2CH3→R-COOH	-C ₃ H ₈ +O	-28.0675
R-C ₂ H₅→R-H	-C2H4	-28.0312
R-CO-R'→R-R'	-CO	-27.9949
R-CH(CH ₃)₂→R-OH	-C ₃ H ₆ +O	-26.0519
R-CH=N-OH→R-CN	-H2O	-18.0105
R-F→R-H	-F+H	-17.9906
R- ³⁵ Cl→R-OH	-Cl+OH	-17.9662
RR'S=O→R-S-R'	-0	-15.9949
R-NHNHR'C=S→R-NHNHR'C=O	-S+O	-15.9772
R-CH2OCH2CH3→R-COOH	-C2H6+O	-14.0519
R-CH₃→R-H	-CH2	-14.0157
R-C(CH ₃) ₃ →R-COOH	-C ₃ H ₈ +O ₂	-12.0726
R-CH ₂ CH ₃ →R-OH	-C2H4+O	-12.0363

Table S2. Template for searching for these metabolites and their derivatives from metabolic reactions.

$R-CH_2-CH_2-CH_2-CH_2-R' \rightarrow R-CH=CH-CH=CH-R'$	$-H_4$	-4.0314
R-F→R-OH	-F+OH	-1.9957
R-CHNH₂-R'→R-CO-R'	-NH3+O	-1.0316
R-CH2OCH3→R-COOH	-CH4+O	-0.0365
R-CH ₂ -NH ₂ →R-CH ₂ -OH	-NH+O	+0.984
R-CH(CH ₃) ₂ →R-COOH	-C2H6+O2	+1.943
R-CH₃→R-OH	-CH2+O	+1.9792
R-CO-R'→R-CHOH-R'	+H2	+2.0157
R-CH ₂ -R'→ R -C(O)-R'	-H2+O	+13.9792
$R-XH \rightarrow R-X-CH_2(X=N,O,S)$	+CH ₂	+15.9586
R-CH ₂ CH ₃ →R-COOH	-CH4+O2	+15.9949
R-CH ₂ CH ₂ →R-CH-(OH) ₂	-CH2+O2	+17.9741
R-CH=CH-R→R-CH₂-CHOH-R'	+H2O	+18.0106
R-H→R-O-CH ₃	+CH ₂ O	+30.0105
R-CH=CH-R'→R-CH(OH)-CH(OH)-R'	$+H_2O_2$	+34.0054
R-NH2→R-NHCOCH ₃	$+C_2H_2O$	+42.0106
R-COOH→R-CONHCH2COOH	+C ₂ H ₃ NO	+57.0215
R-OH→R-OSO ₃ H	+SO ₃	+79.9568
R-H→R-OSO ₃ H	+SO4	+95.9517
R-COOH→R-CONH-CH(CH2SH)-COOH	+C ₃ H ₅ NOS	+103.0092
R-COOH→R-CONH-CH2CH2SO3H	$+C_2H_5NO_2S$	+107.0041
R-CH ₂ -R'→RR'-CH-SCH ₂ CH(NH ₂)-COOH	+C3H5NO2S	+119.0041
R-COOH→R-CO-SCH2CH(NHCOCH3)COOH-CO	+C5H7NO2S	+145.0198
R-COOH→R-C ₆ H ₈ O ₆	$+C_5H_8O_5$	+148.0372
RR'-CH2→RR'-CH-SCH2CH(NHCOCH3)-COOH	+C5H7NO3S	+161.0147
R-OH→R-O-C ₆ H11O ₅	$+C_{6}H_{10}O_{5}$	+162.0528
R-OH→R-O-C ₆ H ₉ O ₆	$+C_{6}H_{8}O_{6}$	+176.0321
R-H→R-O-C ₆ H ₉ O ₆	$+C_{6}H_{8}O_{7}$	+192.0270
R-COOH→R-CO-GSH	+C10H15N3O6S	+305.6820

2 of 13

Table S3. Summary of HTF metabolites based on DMC

Metabolites Cluster	Identification/Reactions	Metabolites Number	
Prototype drug	5-hydroxy-6,7,3',4'-tetramethoxyflavone	M0	
Prototype drug isomer	5-hydroxy-6,7,3',4'-tetramethoxyflavone	M9-M10	
	Demethylation	M5-M7	
	Flavanone Formation	M14-M15	
	Sulfate-Conjugation	M72	
Primarry cluster	Methylation	M20-M23	
	Methoxylation	M38-M50	
	Glucuronide Conjugation	M78	
	Oxidation	M24-M30	
	Demethylation Oxidation	M11	
	Di-demethylation	M1-M4	
	Flavanone Formation Demethylation	M8	
	Flavanone Formation	M32-M33	
	Flavanone Formation	M67-M68	
	Flavanone Formation	M31	
Secondary cluster	Methylation		
ž	Methoxylation	M51-M53	
	Sulfate Conjugation	M73	
	Methoxylation	1417.0	
	Methylation	M69-M71	
	Methoxylation		
	Methoxylation	M12-M13	
	Decarbonylation		
	Methoxylation	M54-M60	
	Chalcone Formation		
	Chalcone Formation Di-Oxidation	M66	

	Chalcone Formation Oxidation		M34-M37	
	Glucuronid Conjugation	Oxidation	M80-M81	
	Glucuronid Conjugation Methoxylation		M83-M86	
	Glucuronide Conjugation Flavanone Formation		M79	
	Glucuronide Conjugation Demethylation		M77	
	Flavanone Formation			
	Demethylation		M16-M19	
	Oxidation			
	Flavanone Formation			
	Methoxylation		M74-M76	
Tertiary primary	Sulfate-Conjugation			
	Di-methoxylation	Di-methoxylation Decarbonylation		
	Decarbonylation			
	Glucuronide Conjugation			
	Flavanone Formation		M82	
	Oxidation			

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).