Supporting Information

Ratiometric Polymer Probe for Detection of Peroxynitrite and the Application for Live-Cell Imaging

Hio Kuan Lao, Jingyun Tan, Chunfei Wang and Xuanjun Zhang*

Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China; cb52929@connect.um.edu.mo (H.K.L.); yb57620@connect.um.edu.mo (J.T.); yb67596@connect.um.edu.mo (C.W.)

* Correspondence: yb57620@connect.um.edu.mo (J.T.); xuanjunzhang@um.edu.mo (X.Z.)

Tel.: +853-8822-4928

Table of Contents
1. Absorption spectral response of the probe PB-PVA ... 2
2. Characterization of intermediates and the probe PB-PVA.. 3
1. Absorption Spectral Response of the Probe PB-PVA

![Figure S1. Probe fluorescence response to a wide range of concentration of ONOO\(^{-}\) from 0 to 80 \(\mu\)M.](image)

![Figure S2. The absorption spectrum of the probe before and after the addition of ONOO\(^{-}\) (10 \(\mu\)M) in DMSO.](image)
2. **Characterization of intermediates and the probe PB-PVA**

Compound 1 and 2 were characterized by 1H NMR (Figures S3–S4). EP was characterized by 1H NMR, 13C NMR, and MS (Figure S5A–C). P-PVA was characterized by 1H NMR (Figure S6). PB-PVA was characterized by 1H NMR (Figure S7).

![Figure S3. 1H NMR of Compound 1.](image)

![Figure S4. 1H NMR of Compound 2.](image)
Figure S5A. 1H NMR of EP.

Figure S5B. 13C NMR of EP.
Figure S5C. Q-TOF MS of EP. The molecular weight of EP is 358.46.

Figure S6. 1H NMR of P-PVA. The ratio of EP grafted to the corresponding monomer is 1:10.
Figure S7. 1H NMR of PB-PVA.