Supporting Information for

2-Unsubstituted Imidazole N-oxides as Novel Precursors of Chiral 3-Alkoxyimidazol-2-ylidenes Derived from trans-1,2-Diaminocyclohexane and Other Chiral Amino Compounds

Grzegorz Młostoń,* Małgorzata Caleda, Marcin Jasiński, Katarzyna Urbaniak, Przemysław J. Boratyński, Peter R. Schreiner and Heinz Heimgartner

* Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, PL-91-403 Łódź, Poland
\[\text{b} \] Department of Organic Chemistry, Wrocław University of Technology, Wyspiańskiego 27, PL-50-370 Wrocław, Poland.
\[\text{c} \] Justus Liebig University, Institute of Organic Chemistry, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
\[\text{d} \] Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Content:

Copies of \(^1\)H NMR and \(^{13}\)C NMR spectra of synthetized compounds S2–S42
Figure S1. 1H NMR of (R,R)-4a (CDCl$_3$, 600 MHz).

Figure S2. 13C NMR of (R,R)-4a (CDCl$_3$, 151 MHz).
Figure S3. 1H NMR of (R,R)-4b (CDCl$_3$, 600 MHz).

Figure S4. 13C NMR of (R,R)-4b (CDCl$_3$, 151 MHz).
Figure S5. Kinetics of triazine-formaldimine 4b/4'b equilibration after dissolution in CDCl$_3$ monitored by 1H NMR integration. Content of triazine is shown in red dots, and the content of monomeric formaldimine in black squares. Decay curves were fitted with $t_{1/2}$ value of 30 s.

Figure S6. Overlays of NMR spectra (600 MHz, CDCl$_3$, NS=1) of 4b/4'b taken at various intervals after dissolution and placing in the instrument and initiating measurement (accounting for approx. 15-20 s). Shown spectra bottom to top were collected after consecutive 19.3 s increments.
Figure S7. 1H NMR spectrum of 4b/4'b in benzene-d_6: triazine to monomeric formaldimine ratio is established at 1:0.6.

Figure S8. 1H NMR spectrum (600 MHz, CDCl$_3$) of a sample of formaldimine 4b following storage in the CDCl$_3$ solution for 16 days. Unidentified products account for approx. 75% of the material.
Figure S9. 1H NMR of (S,S)-4b (CDCl$_3$, 600 MHz).

Figure S10. 13C NMR of (S,S)-4b (CDCl$_3$, 151 MHz).
Figure S11. 1H NMR of (R,R)-4c (CDCl$_3$, 600 MHz).

Figure S12. 13C NMR of (R,R)-4c (CDCl$_3$, 151 MHz).
Figure S13. 1H NMR of (R,R)-4d (CDCl$_3$, 600 MHz).

Figure S14. 13C NMR of (R,R)-4d (CDCl$_3$, 151 MHz).
Figure S15. 1H NMR of 4i (CDCl$_3$, 600 MHz).

Figure S16. 13C NMR of 4i (CDCl$_3$, 151 MHz).
Figure S17. 1H NMR of 4j (CDCl$_3$, 600 MHz).

Figure S18. 13C NMR of 4j (CDCl$_3$, 151 MHz).
Figure S19. 1H NMR of (R,R)-6a (CDCl$_3$, 600 MHz).

Figure S20. 13C NMR of (R,R)-6a (CDCl$_3$, 151 MHz).
Figure S21. \(^1\)H NMR of \((R, R)\)-6b (CDCl\(_3\), 600 MHz).

Figure S22. \(^{13}\)C NMR of \((R, R)\)-6b (CDCl\(_3\), 151 MHz).
Figure S23. 1H NMR of (R,R)-6c (CDCl$_3$, 600 MHz).

Figure S24. 13C NMR of (R,R)-6c (CDCl$_3$, 151 MHz).
Figure S25. 1H NMR of (R,R)-6d (CDCl$_3$, 600 MHz).

Figure S26. 13C NMR of (R,R)-6d (CDCl$_3$, 151 MHz).
Figure S27. 1H NMR of (S,S)-6c (CDCl$_3$, 600 MHz).

Figure S28. 13C NMR of (S,S)-6c (CDCl$_3$, 151 MHz).
Figure S29. 1H NMR of (S,S)-6d (CDCl$_3$, 600 MHz).

Figure S30. 13C NMR of (S,S)-6d (CDCl$_3$, 151 MHz).
Figure S31. 1H NMR of (R,R)-6e (CDCl$_3$, 600 MHz).

Figure S32. 13C NMR of (R,R)-6e (CDCl$_3$, 151 MHz).
Figure S33. 1H NMR of (R,R)-6f (CDCl$_3$, 600 MHz).

Figure S34. 13C NMR of (R,R)-6f (CDCl$_3$, 151 MHz).

S18
Figure S35. 1H NMR of (R,R)-6g (CDCl$_3$, 600 MHz).

Figure S36. 13C NMR of (R,R)-6g (CDCl$_3$, 151 MHz).
Figure S37. 1H NMR of (R,R)-6h (CDCl$_3$, 600 MHz).

Figure S38. 13C NMR of (R,R)-6h (CDCl$_3$, 151 MHz).
Figure S39. 1H NMR of (R,R)-9a (CDCl$_3$, 600 MHz).

Figure S40. 13C NMR of (R,R)-9a (CDCl$_3$, 151 MHz).
Figure S41. 1H NMR of (R,R)-9b (CDCl$_3$, 600 MHz).

Figure S42. 13C NMR of (R,R)-9b (CDCl$_3$, 151 MHz).
Figure S43. 1H NMR of (R,R)-9c (CDCl$_3$, 600 MHz).

Figure S44. 13C NMR of (R,R)-9c (CDCl$_3$, 151 MHz).
Figure S45. 1H NMR of (S,S)-9c (CDCl$_3$, 600 MHz).

Figure S46. 13C NMR of (S,S)-9c (CDCl$_3$, 151 MHz).
Figure S47. 1H NMR of (R,R)-9d (CDCl$_3$, 600 MHz).

Figure S48. 13C NMR of (R,R)-9d (CDCl$_3$, 151 MHz).
Figure S49. 1H NMR of (S,S)-9d (CDCl$_3$, 600 MHz).

Figure S50. 13C NMR of (S,S)-9d (CDCl$_3$, 151 MHz).
Figure S51. 1H NMR of (R,R)-9e (CDCl$_3$, 600 MHz).

Figure S52. 13C NMR of (R,R)-9e (CDCl$_3$, 151 MHz).
Figure S53. 1H NMR of (R,R)-9f (CDCl$_3$, 600 MHz).

Figure S54. 13C NMR of (R,R)-9f (CDCl$_3$, 151 MHz).
Figure S55. 1H NMR of (R,R)-9g (CDCl$_3$, 600 MHz).

Figure S56. 13C NMR of (R,R)-9g (CDCl$_3$, 151 MHz).
Figure S57. 1H NMR of (R,R)-9h (CDCl$_3$, 600 MHz).

Figure S58. 13C NMR of (R,R)-9h (CDCl$_3$, 151 MHz).
Figure S59. 1H NMR of 10b (CDCl$_3$, 600 MHz).

Figure S60. 13C NMR of 10b (CDCl$_3$, 151 MHz).
Figure S61. 1H NMR of 11a (CDCl$_3$, 600 MHz).

Figure S62. 13C NMR of 11a (CDCl$_3$, 151 MHz).
Figure S63. 1H NMR of 11b (CDCl$_3$, 600 MHz).

Figure S64. 13C NMR of 11b (CDCl$_3$, 151 MHz).
Figure S65. 1H NMR of 11d (CDCl$_3$, 600 MHz).

Figure S66. 13C NMR of 11d (CDCl$_3$, 151 MHz).
Figure S67. 1H NMR of 13a (CDCl$_3$, 600 MHz).

Figure S68. 13C NMR of 13a (CDCl$_3$, 151 MHz).
Figure S69. 1H NMR of 13b (CDCl₃, 600 MHz).

Figure S70. 13C NMR of 13b (CDCl₃, 151 MHz).
Figure S71. 1H NMR of 13c (CDCl$_3$, 600 MHz).

Figure S72. 13C NMR of 13c (CDCl$_3$, 151 MHz).
Figure S73. 1H NMR of 13d (CDCl$_3$, 600 MHz).

Figure S74. 13C NMR of 13d (CDCl$_3$, 151 MHz).
Figure S75. 1H NMR of 15a (CDCl$_3$, 600 MHz).

Figure S76. 13C NMR of 15a (CDCl$_3$, 151 MHz).
Figure S77. 1H NMR of 15b (CDCl$_3$, 600 MHz).

Figure S78. 13C NMR of 15b (CDCl$_3$, 151 MHz).
Figure S79. 1H NMR of 15c (CDCl$_3$, 600 MHz).

Figure S80. 13C NMR of 15c (CDCl$_3$, 151 MHz).
Figure S81. 1H NMR of 15d (CDCl$_3$, 600 MHz).

Figure S82. 13C NMR of 15d (CDCl$_3$, 151 MHz).