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Abstract: Soon after they were first described in 1990, aptamers were largely recognized as a new
class of biological ligands that can rival antibodies in various analytical, diagnostic, and therapeutic
applications. Aptamers are short single-stranded RNA or DNA oligonucleotides capable of folding
into complex 3D structures, enabling them to bind to a large variety of targets ranging from small ions
to an entire organism. Their high binding specificity and affinity make them comparable to antibodies,
but they are superior regarding a longer shelf life, simple production and chemical modification, in
addition to low toxicity and immunogenicity. In the past three decades, aptamers have been used in a
plethora of therapeutics and drug delivery systems that involve innovative delivery mechanisms
and carrying various types of drug cargos. However, the successful translation of aptamer research
from bench to bedside has been challenged by several limitations that slow down the realization of
promising aptamer applications as therapeutics at the clinical level. The main limitations include the
susceptibility to degradation by nucleases, fast renal clearance, low thermal stability, and the limited
functional group diversity. The solution to overcome such limitations lies in the chemistry of aptamers.
The current review will focus on the recent arts of aptamer chemistry that have been evolved to refine
the pharmacological properties of aptamers. Moreover, this review will analyze the advantages and
disadvantages of such chemical modifications and how they impact the pharmacological properties of
aptamers. Finally, this review will summarize the conjugation strategies of aptamers to nanocarriers
for developing targeted drug delivery systems.

Keywords: aptamers; drug delivery; nanocarriers; chemical modifications; conjugation

1. Introduction

Aptamers are single-stranded RNA or DNA oligonucleotides that fold up into a distinctive 3D
structure capable of binding with high affinity and specificity to small molecules up to entire organisms,
with nanomolar range dissociation constants. Nucleic acid-based aptamers were first described
in 1990, where the first aptamers were in vitro selected using a random library of single-stranded
oligonucleotides sequences [1] by a selection procedure known as systematic evolution of ligands by
exponential enrichment (SELEX). The first oligonucleotide aptamer was isolated to bind with small

Molecules 2020, 25, 3; doi:10.3390/molecules25010003 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0001-5916-5879
https://orcid.org/0000-0003-2946-7328
https://orcid.org/0000-0003-2131-1791
http://dx.doi.org/10.3390/molecules25010003
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/25/1/3?type=check_update&version=2


Molecules 2020, 25, 3 2 of 51

molecules [2]. Nowadays, the aptamer field covers various biomedical applications, including [3],
therapeutic [4–6], aptasensors [7], biosensors [8,9], diagnostic [10,11], and imaging systems [12].

Aptamers need to be stabilized for in vivo use against nuclease degradation, and their small
size makes them susceptible to renal filtration. Aptamers’ stabilization can be attained by chemically
modifying them using different approaches. Moreover, introducing chemical modifications into nucleic
acid libraries increases the interaction capabilities of aptamers and thereby their target spectrum [12].
Modified aptamers may show improved chemical diversity relative to aptamers composed entirely
of natural DNA or RNA nucleotides and expand their applications in diagnostics, therapeutics, and
nanotechnology [1].

Chemical modifications of aptamer oligonucleotides are needed mainly to enhance their resistance
to nuclease degradation and lowering their renal filtration. Additionally, chemical modifications, in
some cases, may increase the aptamer-binding affinity [13]. Many approaches have been introduced to
promote the stability of aptamers without altering their binding affinity and specificity against their
targets. These approaches include chemical modification of the phosphate backbone [14,15], oxygen
replacement with sulfur on the ribose unit and into phosphodiester linkage, end capping at the 3′

and/or 5′ terminals [16,17], locked nucleic acids [18,19], and circular [20], multivalent, and dimerization
of aptamers [21,22]. Modification of the 2′-position of the ribose sugar is the most common [23,24].

Other aptamer chemical modification strategies were also required for conjugating aptamers
to different drug molecules [25] or for active targeting nanoparticles [26]. These strategies, usually,
introduce an active functionality either at the 3′ or 5′ terminals of the oligonucleotide to interact with
their coupling partner on the surface of nanoparticles. Several coupling chemistry methods have
been applied for aptamer conjugation, including thiol-maleimide [27], carbodiimide [28], oxidative
coupling [29], thiol–gold coordination [30], avidin–biotin coupling [31], and click chemistry [32].

2. Aptamers and Selection Methods

Aptamer target-binding specificity and affinity are obtained using a Darwinian evolution screening
technology called systematic evolution of ligands by exponential enrichment (SELEX). The SELEX
methodology is quite similar for both DNA and RNA aptamers. However, RNA aptamers require
an additional step of reverse transcription before amplification. Targets on which aptamer selection
is conducted against are diverse, ranging from ions to whole living cells. SELEX starts by chemical
synthesis of a library of random sequences of double-stranded DNA (dsDNA). The dsDNA library is
either used to synthesize a single-stranded DNA (ssDNA) library or undergoes in vitro transcription
to produce an ssRNA library. The resulting library sequences have the ability to fold, forming unique
3D structures. Conditions of selection, such as temperature, pH, and ionic strength, can be controlled
to be compatible with the application of interest. Conventional SELEX generates aptamers by first
incubating a library composed of 1013 to 1015 different folded oligonucleotide sequences with the target
of choice. This library is composed of random sequences in the middle and constant regions at the 5′-
and -3′ ends, which are used for primer annealing and amplification. After incubation, the bound
sequences can be separated from the remaining unbound sequences, retained, and then amplified to be
reintroduced in iterative selection cycles. Conditions can be changed through each cycle to achieve
optimal aptamer target-binding affinity. Rounds of selection are repeated until optimal enrichment
for the highest affinity and specificity aptamers are achieved. Approximately 20 rounds of selection
would yield high target affinity aptamers [33].

Since the discovery of aptamers, a number of SELEX methods have been developed, as
demonstrated in Table 1. One important variant of SELEX is the cell-based selection methodology
(cell-SELEX). Cell-SELEX proved effective in developing aptamers for targets in their native status,
biomarker discovery, and pathogen-infected cells. Cell-SELEX also gives an added benefit of selecting
aptamers against targets existing in their original cells, which increases the specificity of selected
aptamers. In cell-SELEX, the bound sequences are detached from target cells, amplified, and
reintroduced to target cells in subsequent rounds of enrichment while unbound sequences are



Molecules 2020, 25, 3 3 of 51

washed out. Specificity against target cells can be achieved through an extra step of counter selection,
where the library is tested against control cells that are related to the target cells.

Table 1. Different SELEX methods that have been developed since aptamer discovery.

SELEX Type Description Ref.

Metal-Dependant Aptamers Enrichment of oligonucleotide library with and without ion salts to generate
aptamers that only function in the presence of metal ion salts. [34]

Crossover-SELEX
First, oligonucleotides are enriched using cell-SELEX. The product of cell-SELEX is

then enriched against its purified protein to yield a higher binding affinity.
Crossover-SELEX is useful for targets that are rare in their original environment.

[35]

Subtractive SELEX

Selection of aptamers that have the ability to differentiate between two closely
related targets (e.g., distinguishing between a normal cell structure and another

disease-related one). This is obtained by adding rounds of negative selection
against normal cells.

[36]

Conditional SELEX

Selection of aptamers that are affected by the presence of regulatory molecules;
aptamer selection is performed in two stages here: The first stage in the presence of
regulatory molecules and the second in the absence of regulatory molecules. Only
the sequences that successfully bind to the target in either one of the stages but not

the other is selected, depending on whether the aptamer is to be used in the
presence or absence of regulatory molecules.

[37]

On-chip selection

This is similar to the microarray method. Single and double base variations are
introduced using in silico methods to a pre-selected sequence with the highest

affinity to its target and then embedded on a surface plasmon resonance (SPR) chip.
On-chip selection is useful for aptamer selection against a large number of targets.

[38]

Immobilization-free SELEX or
GO-SELEX

First, the library is incubated with the target, and graphene oxide (GO) is then
added to the mix in order to bind the unbound sequences via p–p stacking. [39]

Tissue slide-based SELEX

Selection of aptamers against clinical samples. Cancerous tissue is used in the first
stage as a target. Then, the tissue is scraped from the slide with the bound

sequences. These sequences are then eluted, and counter selection against normal
tissue is performed to eliminate shared aptamers.

[40]

Capillary Electrophoresis SELEX
(CE-SELEX)

CE-SELEX separates the target bounded from unbounded sequences by the
difference in electrophoretic mobility, which is a highly efficient separation method.
This method enables the selection of aptamer candidates with high affinity while

reducing the selection rounds to 1 to 4 from nearly 20 in conventional SELEX

[41,42]

Microfluidic SELEX (M-SELEX)
Combining traditional SELEX with a microfluidic system. This system contains

reagent-loaded micro-lines, a pressurized reagent reservoir manifold, a PCR
thermocycler, and actuatable valves for selection and sample routing.

[43]

High-Throughput Sequencing
SELEX (HTS-SELEX)

Aptamers are identified through an iterative process of evolutionary selection
starting from a random pool containing billions of sequences. The most

predominant characteristic of HTS-SELEX is that it firstly allows for sequencing of
the library across all the selection rounds. Thus, enriched sequences are visible at a
much earlier round, which is more time efficient. Fewer selection rounds also avoid

the potential PCR bias caused by over selection.

[44]

Another SELEX variant is in vivo SELEX. This method generates aptamers against targets in
living organisms instead of using isolated pure targets or individual cells. This method is useful in
overcoming some of the challenges facing aptamers selected by in vitro SELEX methods. The principle
here is similar to that of conventional SELEX and cell SELEX. However, the library of aptamers can be
injected into the peripheral vasculature of the living organism followed by tracking and isolation of
specific aptamers homed into target tissues. In Vivo SELEX has been successfully applied for different
diseases, including cancers and viral-infected cells [45–47].

Aptamers have many superior advantages over antibodies as the targeting ligand, including
shorter production time, lower synthesis costs, better thermal stability, and a wider spectrum of targets.
Additional main comparisons and differences are summarized in Table 2.
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Table 2. Comparison of the major differences between aptamers and antibodies [5,48–51].

Aptamers Antibodies

Synthesis Chemically synthesized and easy
to produce

High cost and complexity of
production

Size Small compared to antibodies Large

Stability Prone to nuclease degradation Short biological half-life

Targets Wide range of targets, starting
from ions to whole living cells

Produced only against
immunogenic molecules, which

limits the range of targets

Toxicity and Immunogenicity Low toxicity and
non-immunogenic Immunogenic

Binding Specificity High binding specificity High binding specificity

Binding Affinity High binding affinity High binding affinity

Clearance Rate Rapid circulation clearance Low clearance rate

Chemical Conjugation Easy to conjugate to nanoparticles
and drugs More difficult to conjugate

Chemical modification
Tolerant to chemical modifications

to enhance structural and
functional propertie

Modifications often lead to
reduced activity

3. Chemical Modifications of Aptamers and Their Impact on Pharmacological Properties

Despite the numerous encouraging characteristics of aptamers, they bear several drawbacks [52],
such as (i) decreased biostability mainly due to rapid renal excretion and nuclease hydrolysis, (ii) nucleic
acids lack functional groups that could enhance the binding affinity through extra potential interactions,
and the (iii) intra-nucleotide chemical modification of aptamers dramatically affects the binding affinity.

In order to overcome these problems, modifications located at the sugar unit, the nucleobase,
or the backbone of the constituting nucleotides can be introduced to enhance aptamer biostability
and binding affinity [53]. Aptamer modification can be achieved either into the scaffold of selected
aptamers through standard solid-phase synthesis (post-selection modification) or by using modified
nucleoside triphosphates (NTPs) directly in the selection process [54–56]. The common chemical
modification approaches of nucleic acid aptamers for the development of clinical therapeutics are
discussed in the following sections.

3.1. Modifications on Nucleic Acids Terminals

3.1.1. Terminal 3′–3′ and/or 5′–5′ Internucleotide, 3′ and 5′-Biotin Conjugates

Capping the 3′-end is one of the generally used strategies to block 3′ to 5′ exonuclease attack.
Capping the 3′-end with inverted deoxy-thymidine modification is usually used to increase the stability
and resistance of aptamers against 3′-exonuclease in human serum [57]. This modification needs a
modified control pore glass (CPG) with the 5′-hydroxyl of the first nucleoside attached, followed by
chain elongation using the classic solid-phase phosphoramidite process [58].

The 3′-biotin aptamer modification is also reported to enhance stability against 3′-exonuclease
(Figure 1) [57]. The 3′-biotin-streptavidin attached to thrombin aptamer was investigated against
3′-exonuclease activity in the blood of rodents. The results showed that 3′-biotin modification
significantly enhances 3′-exonuclease resistance and decreases the clearance rate of aptamers in the
blood circulation in vivo (10- to 20-fold) [16]. The 3′-biotin modified-DNA aptamer targeting severe
acute respiratory syndrome (SARS) coronavirus helicase was sustained in fetal bovine serum (FBS) in
double the time compared to unmodified aptamer [57].
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Moreover, the stability of selected non G-quadruplex aptamer (NG8) that was modified with
3′-biotin or 3′-inverted thymidine was increased. The 3′-biotin and 3′-inverted thymidine NG8 aptamer
was strongly resistant to nuclease attack in serum compared to the unmodified NG8 aptamer. The
3′-inverted thymidine aptamer remained intact for up to 72 and 31 h in 5% and 10% FBS, respectively.
The 3′-inverted thymidine modification showed higher stability than the 3′-biotin modification, but
both modifications were significantly more stable than the unmodified aptamer [57].

Riccardi et al. synthesized and characterized a dansyl-fluorescent thrombin-binding aptamer (TBA)
analog, named tris-mTBA, functionalized with a 5′-biotin tag, for incorporation onto streptavidin-coated
silica NPs. The results showed that tris-mTBAwas able to form an antiparallel G-quadruplex structure
and retain the ability to form a duplex structure with its complementary strand (cTBA), which acts as an
antidote to reverse the anticoagulation activity of TBA. Moreover, they proved that tris-mTBA inhibits
the human thrombin activity 10-fold more efficiently than unmodified TBA and biotin-TBA and in
a reversible manner. In addition, TBA analogs showed higher resistance to enzymatic degradation
compared to the unmodified TBA due to a protective effect of the conjugating groups [59].

Ortigao et al. found that a minor structural change of an oligonucleotide at the two terminal
internucleotide bonds, a 3′,3′ and a 5′,5′ linkage, is sufficient to stabilize these end-inverted (INV)
oligonucleotides against nuclease degradation. INV oligonucleotides are degraded very slowly in
biological systems, in human serum with a half-life of ~36 h, and in Xenopuslaevis oocytes with a
half-life of ~10 h, whereas control "normal" oligonucleotides are completely degraded in less than
30 min in both systems [60].

3.1.2. 5′-End with Cholesterol and Other Lipid Moieties

Small aptamers are cleared and excreted rapidly by renal glomerular filtration. To overcome renal
filtration and extend the circulation period, aptamer modifications with hydrophobic and/or bulky
moiety are required [61,62]. Cholesterol was conjugated at the 5′-end of a 16-mer oligonucleotide
(ODN) through a phosphate spacer, then incubated with low-density lipoprotein (LDL), leading to the
formation of a cholODN-LDL. The plasma half-life of the cholODN-LDL aptamer was nearly 10 times
better than the plasma half-life of the unmodified aptamer. Furthermore, the modified cholODN-LDL
version showed high stability against rat serum nucleases [17].

Recently, a cholesterol-conjugated and 2′-F pyrimidine-modified RNA aptamer targeting the
hepatitis C virus (HCV) NS5B protein was modified by Lee et al. This aptamer modification extended
the aptamer plasma circulation time nine-fold compared to the unmodified version and enhanced
the aptamer exposure to its target [63]. In another case, a 5′-cholesterol-modified oligonucleotide
(ARC155) showed more rapid plasma clearance relative to the unconjugated aptamer, which was
explained by the inability of the ARC155 folded structure to bind with plasma lipoproteins as other
cholesterol-attached aptamers [61].
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A diacylglycerol (DAG) lipid anchor was conjugated to the 5′-end of vascular endothelial growth
factor (VEGF) aptamer (Figure 2). This 5′-end DAG-modified VEGF aptamer was incorporated into
the bilayers of liposomes, which resulted in aptamers with improved inhibitory activity toward
VEGF-induced endothelial cell proliferation in vitro and increased vascular permeability in vivo.
Moreover, the residence time in plasma was considerably improved when compared to that of free
aptamers [64].
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Figure 2. Synthesis of the diacylglycerol (DAG)-modified VEGF aptamer.

A set of lipids conjugated to 5′-AS1411 aptamer (stearyl- or cholesteryl-based tails) (Figure 3) were
selected and investigated for their conformational behavior and aggregation tendency in comparison
with unmodified AS1411. The 5′-lipidated AS1411 derivatives folded into stable unimolecular
G-quadruplex structures, forming large aggregates at a concentration of higher than 10 µM, and they
maintained a similar biological behavior as unmodified aptamer with less cytotoxicity on the selected
three different cancer cell lines [65].
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3.1.3. 5′-End PEGylation

The conjugation of polyethylene glycol (PEG) to drugs has been shown to increase the residence
time of the drug in the body and decrease degradation by metabolic enzymes. PEG is non-toxic and
nonimmunogenic and is approved by the Food and Drug Administration (FDA) [66].

An amino-modified spiegelmer NOX-E36 oligonucleotide was conjugated with (NHS)-ester-
activated polyethylene glycol via carbodiimide coupling. This combination formula with high
molecular weight PEG had the advantages of both nuclease resistance and decreased renal excretion [67].
MP7 is a DNA aptamer that binds to the murine extracellular domain of PD-1 (programmed death
protein 1). Conjugation of MP7 DNA aptamers with large PEG molecules at the 5′ terminal via
carbodiimide chemistry (Figure 4) could limit the rate of filtration and extend the half-life of this small
molecule up to 24 to 48 h [62].
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5′ terminal.

An interesting new PEGylation method, sbC-PEGylation, was introduced recently for RNA
aptamers acting against interleukin-17A (IL-17A) in mice and monkeys. These sbC-PEGylated aptamers
were synthesized by coupling the symmetrical branching molecule 2-cyanoethyl-N,N-diisopropyl
phosphoramidite to the 5′ end of the aptamer, before conjugating two PEG molecules to the aptamer.
The sbC-PEGylated aptamers had improved pharmacokinetic properties and showed excellent stability
in the blood circulation. Moreover, one of the sbC-PEGylated aptamers, 17M-382, inhibited interleukin-6
(IL-6) in a concentration-dependent manner, with the IC50 of 17M-382 two times lower than that of
non-PEGylated 17M-382 [68].

The bifunctionalized anti-MUC1 aptamer (NH(2)-AptA-SR) was conjugated with different PEG
types (either a conventional branched PEG or the comb-shaped polyPEG) to enhance its biodistribution
properties against MCF-7 cell lines. The body clearance data showed that more than 60% of the
un-PEGylated aptamer was excreted after 5 h compared to 43% to 51% in the case of the newly modified
aptamers [69].

The PEGylation of doxorubicin-attached anti-MUC1 aptamer (PEG-APT-DOX) increases the
targeting efficacy of the aptamer by reducing the non-specific uptake of doxorubicin by RAW 264.7
macrophages. PEG-APT-DOX kept more than 80% of the RAW cells viable while killing more than
60% of the MCF7 cells. This proves the desirable cytotoxic effect of doxorubicin to MCF7 cells was not
hindered by the modification [70].
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3.2. Modifications on the Sugar Ring

3.2.1. 2′-Substitutions

Modifications on the 2′ position of the sugars were effective at improving the aptamer serum
half-life. The 2′-Fluoro (2′-F), 2′-amino (2′-NH2) and 2′-O-methyl (2′-OMe) are the most common
2′-substitute modifications on the ribose unit. Usually, it is used to increase nuclease resistance and
optimize aptamer affinity (Figure 5) [23,24,71].
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aptamers with enhanced pharmacokinetic properties.

For example, two 2′-F-modified thrombin-binding aptamers (PG13 and PG14) showed
approximately a four-fold increased binding affinity to thrombin and up to seven-fold higher
nuclease resistance. The G-quadruplex stability of the modified aptamer was increased up to
48-fold in 10% FBS [13]. Lin et al. developed a 2′-NH2 group-modified RNA aptamer against
human neutrophil elastase (HNE). This modified aptamer showed a good binding affinity and
10-fold enhanced stability in human serum and urine compared to unmodified aptamer [72].
High-affinity 2′-amino-2′-deoxypyrimidine-modified RNA ligands have been reported to be potent
inhibitors of basic fibroblast growth factor (bFGF). Compared to unmodified RNA with the same
sequence, 2′-aminopyrimidine ligands are at least 1000-fold more stable in 90% human serum [55].
2′-Amino-modified RNA and DNA aptamers that bind to vascular permeability factor/vascular
endothelial growth factor (VPF/VEGF) have been investigated by Green et al. They showed nuclease
resistant properties with high binding affinity [73].

Pagratis et al. demonstrated, by in vitro selection-amplification from random libraries of RNA
molecules containing 2′-NH2 or 2′-F-2′-deoxypyrimidines, that 2′-F RNA ligands have higher binding
affinities (KD ranging between 0.3 and 3 pM) for 2′-F compared to 400 pM for 2′-NH2, and bioactivities
with extreme thermo-stabilities compared to 2′-NH2 ligands [74]. Pegaptanib is a 2′-multimodified
RNA aptamer, and it binds with very high affinity to the human vascular endothelial growth factor
for the treatment of neovascular age-related macular degeneration (AMD). It is an example of an
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aptamer-based drug currently approved by the FDA [75]. Maio et al. designed a 2′-O-methyl RNA
analog to a DNA aptamer, resulting in increased aptamer stability towards nucleases for up to 24 h
without affecting affinity against myeloid leukemia [24]. In addition, anti-VEGF combined the use of
2′-fluoro and 2′-methyl pyrimidine NTPs and wild-type purine NTPs followed by the post-selection
modification of the unmodified ribonucleotides with 2′-methoxy modifications. These aptamers bind
equally well to murine VEGF164, do not bind to VEGF121 or the smaller isoform of placenta growth
factor (PlGF129), and show a reduced but significant affinity for the VEGF165/PlGF129 heterodimer
modifications [71].

Li et al. selected and isolated a nuclease-stable 2′-fluoropyrimidine-modified anti-EGFR aptamer
to target four members of the epidermal growth factor receptor (EGFR) family. A promising aptamer
(E07) had a strong binding affinity (KD = 2.4 nM) for the wild-type receptor, leading to cell proliferation
inhibition [76]. Esposito et al. isolated 2′-fluoropyrimidine-modified anti-EGFR that showed a high
binding affinity to the lung cancer cell line, A549 [77]. A 2′-fluoro-modified RNA aptamer (S2) was
generated against the prostate-specific antigen (PSA). The modified aptamer, being highly stable in
human serum, showed a modest affinity (KD = 630 nM) to PSA [78]. In addition, other 2′-F-RNA
aptamers (A10) had been isolated and tested for their potential treatment of human prostate cancer cells
via the prostate-specific membrane antigen with a KD of 11.9 nM [79]. Other interesting aptamer is A15
aptamer, a 2′-fluoropyrimidine modified RNA aptamer, this aptamer was isolated from the brain of
mice by in vivo SELEX after mice tail injection with 2′-fluoro-modified RNA library. The isolated A15
aptamer was further modified with 2′-methoxy residues to increase the nuclease resistance and tested
for brain penetration. The biodistribution of the A15 aptamer verified positive signals in different brain
regions [47].

Recently, Thirunavukarasu et al. reported the selection of two types of 2′-F purine aptamers
(2fHNE-1 and 2fHNE-2) that bind human neutrophil elastase (HNE). They bind HNE with reasonable
affinity and the 2′-F purines substituent enhanced nuclease resistance [80].

Despite 2′-methoxy modification being one of the post-selection procedures, due to bulky
2′-OMe-NTPs [81], a combination of three 2′-OMe-NTPs was used in a SELEX experiment to generate
an aptamer that binds to the polypeptide tissue factor pathway inhibitor (TFPI). This modified aptamer
showed high selectivity and binding affinity to correct thrombin generation hemophilia A and B [82].

These 2′-modified aptamers can be easily conjugated, as unmodified aptamers, to different
nanocarriers loaded with certain chemotherapeutic agents. For example, 2′-OMe-modified aptamers
conjugated to a polymeric nanoparticles loaded with docetaxel, an anticancer agent, showed a high
specificity as well as a targeted toxicity improvement [83].

A 2′-deoxy-2′-fluoro-modified arabinonucleotide (2′F-ANA) was investigated based on a thrombin-
binding DNA aptamer d(GGTTGGTGTGGTTGG), an anti-HIV phosphorothioate PS-d(TTGGGGTT),
and a DNA telomeric sequence d(GGGGTTTTGGGG) by UV thermal denaturation (Tm) and circular
dichroism (CD) experiments. The results showed that the replacement of deoxyguanosines that
adopt the anti-conformation (antiguanines) with 2′F-arabino guanosines can stabilize G-quartets and
maintain the quadruplex conformation while replacement of syn-guanines with 2′F-arabino guanosines
is not favored and results in a dramatic switch to an alternative quadruplex conformation. In addition,
the data showed that the appropriate incorporation of 2′F-ANA residues into G-quadruplexes leads to
an increase in the melting temperature of the complex formed. Moreover, the nuclease resistance of
2′F-ANA-modified thrombin-binding aptamers was increased up to 48-fold in 10% FBS, with a 4- to
5-fold enhancement in binding affinity to thrombin [13]. Similarly, Wilds and Damha used UV thermal
melting and CD experiments to discover the thermodynamic stability and helical conformation of
2′F-ANA/RNA and 2′F-ANA/DNA hybrids. They showed that 2′F-ANA had enhanced RNA affinity
to RNase H enzyme relative to that of DNA and phosphorothioate DNA. The 2′F-ANA modification
also showed favorable pairing to single-stranded DNA [84].

The stability of 2′-deoxy-2′-fluoroarabinonucleic acid (2′F-ANA) to hydrolysis has been
investigated under acidic and basic conditions. 2′F-ANA was found to have increased stability
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compared to both DNA and RNA in enzyme-free simulated gastric fluid (pH ~1.2). Under basic
conditions, 2′F-ANA also showed good stability. Furthermore, phosphorothioate-2′F-ANA linkage
was found to be much more susceptible to enzymatic cleavage than the phosphorothioate-DNA [85].

The differential stability of 20 F-ANA RNA and ANA RNA hybrid duplexes was evaluated by
NMR and theoretical calculations. An increased binding affinity of 2′ F-ANA was observed due to a
favorable pseudo hydrogen bond (2′ F–purine H8), which contrasts with unfavorable 2′-OH–nucleobase
steric interactions in the case of ANA. The 2′ F-ANA strand′s structure was more compatible with the
A-like structure of a hybrid duplex and more suitably reorganized for duplex formation [86].

3.2.2. 4′-Oxygen Replacement

Replacing the 4′-oxygen atom of the sugar unit with a sulfur atom is rarely utilized in selection
experiments of aptamer isolation (Figure 6) [87]. Synthesized 4′-thiouridine (4′-thio-UTP) and
4′-thiocytidine (4′-thio-CTP) triphosphates were used in the in vitro selection of anti-thrombin thioRNA
aptamers. The 4′-thio-modified aptamer showed a high affinity (KD = 4.7 nM), with a 50-fold increase
in resistance to RNase A [88]. Minakawa et al. isolated fully modified 4′-thioRNA aptamers against
human alpha-thrombin using four types of 4′-thioribonucleoside triphosphates (4′-thioNTPs). The
modified aptamer displayed a similar binding affinity to thrombin as the partially modified aptamer
(KD = 7.2 nM) [87].
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3.2.3. Locked and Unlocked Nucleic Acid

A methylene linkage between 2′-O and 4′-C of the sugar ring produces an analog of ribonucleotide
called locked nucleic acid (LNA) (Figure 7). This modification showed a better thermostability and
vastly enhanced nuclease resistance [18,19].
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LNA/DNA chimera LNA5, forming a stable complex against HIV-1 trans-activating response (TAR)
RNA, was synthesized from a shortened and stable version of the hairpin RNA aptamer identified by
in vitro selection against TAR. The results indicated that these modifications provide good protection
towards nuclease digestion in bovine serum and keep the same binding affinity of the unmodified RNA
aptamer [89]. Shi et al. developed another LNA/DNA chimeric aptamer probe through proper LNA
incorporation and 3′-3′-thymidine (3′-3′-T) capping (Figure 8). The serum stability of the modified
TD05 aptamer, a DNA aptamer against lymphoma Ramos cells, was gradually enhanced by 10-fold,
with maintained affinity and specificity to Ramos cells [90].
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A Tenascin-C-binding aptamer was modified with LNA nucleotides (TTA1) that exhibited
improved plasma stability and maintained strong binding to Tenascin-C [91]. Moreover, an
avidin-binding DNA aptamer was modified systematically with LNA and a 2′-amino derivative
as demonstrated in Figure 9. At certain positions, the modified aptamer actually showed improved
binding affinity (KD value of 4.20 nM) [92].
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Unlocked nucleic acid (UNA) is another modification in the ribose unit, achieved by eliminating
the single bond between C2′ and C3′ of the sugar. Such a modification makes the aptamer more
flexible. This structure flexibility may ease the strain in tight aptamer loops (Figure 10) [12]. The 15-mer
thrombin-targeted DNA that underwent UNA modifications on the loop regions showed increased
thermodynamic stability, with significant aptamer affinity and anticoagulant efficiency [93].
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A thrombin-binding quadruplex aptamer with a UNA-modified thrombin-binding aptamer
(UNA-modified TBA) was developed. It was found that UNA substitution in the loops of the
quadruplex could increase the binding affinity and clotting time in blood samples. The UNA monomer
is allowed in many positions of the aptamer without significantly changing the thrombin-binding
properties [93].

Aptamers could be selected with LNA or UNA in their structure, which may give better results.
Three different LNA-nucleoside triphosphates, LNA-TTP, LNA-ATP, and LNA-5-methyl-CTP, were
tested as substrates for KOD DNA polymerase. The results showed that KOD DNA polymerase is
good for the synthesis of DNA oligonucleotide duplexes containing LNA nucleotides [94].

The effect of the presence of nucleosides in unlocked nucleic acid (UNA), locked nucleic acid
(LNA), or β-l-RNA series, as analogs to RE31-DNA aptamer for effective prolonging of the thrombin
time, was evaluated by Kotkowiak et al. They showed that all modified residues can influence the
thermal and biological stabilities of G-quadruplex in a position-dependent manner. The aptamers
modified simultaneously with UNA and LNAs possess a two-fold higher anticoagulant effect. RE31
variants modified with nucleosides in UNA, LNA, orβ-l-RNA series exhibited prolongation of aptamer
stability in human serum [95].

3.3. Modifications on the Phosphodiester Linkage

3.3.1. Methylphosphonate or Phosphorothioate

One of the common aptamer modifications can be achieved by replacing the phosphodiester
linkage with methylphosphonate or phosphorothioate on the α-phosphorous (Figure 11) [14,52].

The phosphorothioate modification might influence the thermal stability of the quadruplex
structure in different G-quadruplex-forming oligonucleotides, and the phosphorothioate backbone is
considered to be responsible for strongly binding and inhibiting the gp120 envelope protein of the
HIV [14]. Partial thiophosphorylated substitutions with maximum thermal stability were selected for
evaluating their stabilities under conditions of nuclease RQ1 DNAse hydrolysis and their antithrombin
activities in blood plasma. A promising modified oligonucleotide (GGTTGGTGTGGTTGG), with the
structure modified only in TT loops (LL11), retained thrombin-binding aptamer properties with high
resistance to biodegradation [96]. A thrombin-binding aptamer, d(GGSTSTSGGTGTGGSTSTSGG),
with thio-substitutions in both TT loops exhibited a similar antithrombin efficiency compared to the
unmodified one, with better resistance to DNA nuclease in blood serum [15]. Abeydeera et al. reported
that phosphorodithioate (PS2) substitution on a single nucleotide of RNA aptamers improved the
target binding affinity by 1000-fold by stabilizing the phosphate backbone [97].
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Post-SELEX modifications by the addition of short phosphorothioate caps to the 3′- and 5′-ends
of the 2′-amino-modified RNA and DNA aptamers against VPF/VEGF showed high binding affinity
and increased nuclease resistance [73].

Mann et al. developed a two-step selection protocol for identifying a thiophosphate-modified
aptamer against E-selectin (ESTA-1). The isolated ESTA-1 aptamer showed nuclease resistance and
specifically bound to E-selectin with high affinity (KD = 47 nM) without recognizing the other members
of the selectin protein family. ESTA-1 aptamer bound specifically to the inflamed tumor-associated
vasculature of human carcinomas derived from breast, ovary, and skin without affecting normal
organs [98].

Different types of phosphorothioate aptamers have been isolated via in vitro combinatorial
selection. For example, King et al. selected purified recombinant human NF-kappa B proteins,
RelA(p65) and p50, duplex thioaptamers. These phosphorothioate aptamers showed high affinity
besides competitive binding with the duplex 22-mer-binding site, Ig kappa B [99].
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Somasunderam et al. utilized the same protocol to isolate phosphorothioate aptamers acting as
inhibitors of the RNase H domain of HIV-1 reverse transcriptase with high affinity (KD of 70 nM) [100].
They also separated monothiophosphate-modified aptamers that specifically bind to CD44 with a high
affinity in the range 180–295 nM, an affinity significantly higher than that of hyaluronic acid [101].
The selection of a thioaptamer targeting the Dengue virus type-2 envelope (DENV-2) protein domain
III was also achieved by Gandham et al. DENTA-1 thioapatamer binds to DENV-2 EDIII, with a
dissociation constant of 154 nM [102].

Recently, thiophosphate ester aptamers (TA), selected from large combinatorial libraries, with
CD44 (CD44TA) targeting moiety, was attached to discoidal silicon mesoporous microparticles (SMP)
to improve the accumulation of these carriers in infected macrophages in the lungs. This thioaptamer
significantly lowered the bacterial load in the lungs, caused recruitment of T lymphocytes, and
enhanced binding affinity and specificity for proteins as well as stability in vitro [103,104].

X-aptamers were the next generation of phosphorothioate aptamers, in which a C5 position
of the nucleobase was modified with a drug-like functionality [105]. This modification showed
a significant enhancement of nuclease resistance and increased binding affinities [106]. The best
X-aptamer modification with small molecule drugs and antibodies can be achieved if these molecules
can fold into unique 3-D structure scaffolds to bind specifically to the target protein [50].

Prater and Miller reported a single methylphosphonateinternucleotide linkage at the 3′-end of an
oligo-2′-O-methylribonucleotide (Figure 12) that showed high binding affinities for their complementary
targets and prevented degradation by the 3′-exonuclease activity found in mammalian serum [107].
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A comparison of duplex stabilities between different phosphorothioate, methylphosphonate, and
2′-OCH3 RNA analogs of two self-complementary DNA 14-mers was conducted by Kibler-Herzog et al.
Highly modified phosphorothioates or methylphosphonates are less stable than their partially modified
counterparts, which are less stable than the unmodified parent compounds. Phosphorothioate
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derivatives were found to be more stable when the linkage modified was between adenines rather
than between thymines [108].

The effect of chemical modifications on the thermal stability of different G-quadruplex-forming
oligonucleotides was investigated by Sacca et al. The methylphosphonate-modified 15mer oligonucleotide,
known as the thrombin-binding aptamer (15TBA-M) gave no observable thermal transition, resulting in a
flat thermal profile. In contrast, the unmodified oligonucleotide, phosphorothioate aptamers (15TBA-S),
and the 2′-O-methyl ribonucleotide analogs (15TBA-O) gave a reversible and concentration-dependent
thermal transition. In addition, loss of the negative charge at the level of the phosphate backbone, as in
the methylphosphonate analogs, leads to a strong destabilization of the G-quadruplex structure [14].

3.3.2. Triazole Modification

Oligonucleotide triazole modification instead of phosphodiester linkage has been investigated
extensively in many studies [109,110] to protect the oligonucleotides from nuclease hydrolysis [111].

This modification is usually achieved using a click reaction between azide- and alkyne-bearing
nucleosides (Figure 13) [112,113] or through automated phosphoramidite synthesis with modified
dinucleoside blocks (Figure 14) [114].
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The triazole unit can link nucleotides directly or with methylene or single ether bond linkage.
These analogs are similar to oligonucleotides and show increased resistance to nuclease cleavage.
The triazole oligonucleotide analogs demonstrated DNA binding affinities similar to those of
unmodified oligonucleotides. The modification was shown to protect oligonucleotides from nuclease
hydrolysis [111].

Triazole-modified DNA aptamers with a structure similar to thrombin-inhibiting G-quadruplexes,
TBA15 and TBA31, had been tested for their stabilities and binding affinities. No change was observed
in their binding affinities, but the triazole modification protected aptamers from nuclease hydrolysis
and increased their stabilities [110,115].

3.4. Modifications on the Bases and SOMAmers

The most modified positions on nucleic acid bases occur on pyrimidines’ C5-position and the N7
position of purines (Figure 15). These sites have been shown to be in good contact with polymerase
enzymes and are easily adapted in the major groove of nucleic acid duplexes [116].
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These modifications on nucleotides involve, for example, the coupling of l-proline-containing
residues, dipeptide, urea derivative, and a sulfamide residue, followed by triphosphorylation. These
modified 2′-deoxyribonucleoside triphosphates, dNTPs, were shown to be excellent substrates to
be incorporated into DNA by the polymerase chain reaction (PCR) and are excellent candidates for
SELEX [117].

Modified base aptamers are able to retain target binding properties, and thus they may enhance
the binding affinity [118,119]. For example, a base-modified aptamer, 5-(1-pentynyl)-2′-deoxyuridine,
used instead of thymidine, was isolated via a selection experiment against human coagulation protease
thrombin (Figure 16) [118].
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Gupta et al. introduced a different chemical modification by adding new side chains at the
5-position of uracil. These side chains ranged from high hydrophilic to more hydrophobic fragments.
They assessed the impact of these side chains on the plasma pharmacokinetics of the modified aptamers.

These changes were effective in increasing the chemical diversity of the aptamers. By increasing
the rate of discovery of high-affinity ligand to protein targets, they also caused an increase in nuclease
resistance, with lower renal clearance for more hydrophilic side chains [119].

Photo-reactive chromophore 5-iodo-UTP was incorporated in a SELEX to generate a base-modified
aptamer with a high capability for covalent interaction with HIV-1 Rev protein [120]. An anti-fibrinogen
base aptamer modified with boronic thymidine-5′-triphosphate (Figure 17) was isolated by Li et al. This
aptamer has specific recognition of fibrinogen glycosylation, enhancing the binding affinity compared
to unmodified aptamer [121].

Molecules 2018, 23, x FOR PEER REVIEW  20 of 57 

aptamer has specific recognition of fibrinogen glycosylation, enhancing the binding affinity compared to 
unmodified aptamer [121]. 

 
Figure 17. The chemical structures of B-TTP. 

The addition of an adenine residue to the C5 position of uracil ((E)-5-(2-(N-(2-(N6-adeninyl)ethyl)) 
carbamylvinyl)-uracil) increased the hydrogen bonding interaction and enhanced its efficiency to target the 
anticancer agent, camptothecin derivative 1 (CPT1). A very potent aptamer, CMA-70, was selected, and then 
improved to the shorter (CMA-59) aptamer. An improved binding affinity was seen for both modified 
aptamers compared to the natural aptamers [122]. Moreover, enantioselective base-modified aptamers 
isolated by SELEX were capable of binding only to the (R)-isomer of thalidomide. The aptamer thymidine 
was replaced with a modified deoxyuridine with a cationic group via a C5 hydrophobic methylene linker. 
The additional functional group improved the stability against nucleases and increased the binding affinity 
to thalidomide [123]. An arginine-modified dUTP (Figure 18) was involved in a SELEX experiment to 
improve its enantioselectivity. The isolated aptamers displayed enantioselective binding to the negatively 
charged glutamic acid as the target [124]. 

N

N

NH2

O
OO

HO

P
O

P
O

P
O

OOO

OOO

H
N

N
H

O

O

NH2

HN

HN NH2  
Figure 18. Chemical structure of the arginine-modified analog of dUTP. 

A glycol-DNA aptamer was produced from an alkyne unit, 5-ethynyl-modified dUTP, via SELMA 
selection could recognize the monoclonal antibody, 2G12, which is known to bind to mannose-rich glycans 
on the HIV envelope protein, gp120, thus neutralizing various HIV strains [125–127]. 

Lee and colleagues revealed that 5-BzdU (5-(N-benzylcarboxyamide)-2-deoxyuridine) modification of 
the AS1411 aptamer might selectively increase its targeting affinity to cancer cells while having no significant 

Figure 17. The chemical structures of B-TTP.

The addition of an adenine residue to the C5 position of uracil ((E)-5-(2-(N-(2-(N6-adeninyl)ethyl))
carbamylvinyl)-uracil) increased the hydrogen bonding interaction and enhanced its efficiency to target
the anticancer agent, camptothecin derivative 1 (CPT1). A very potent aptamer, CMA-70, was selected,
and then improved to the shorter (CMA-59) aptamer. An improved binding affinity was seen for both
modified aptamers compared to the natural aptamers [122]. Moreover, enantioselective base-modified
aptamers isolated by SELEX were capable of binding only to the (R)-isomer of thalidomide. The aptamer
thymidine was replaced with a modified deoxyuridine with a cationic group via a C5 hydrophobic
methylene linker. The additional functional group improved the stability against nucleases and
increased the binding affinity to thalidomide [123]. An arginine-modified dUTP (Figure 18) was
involved in a SELEX experiment to improve its enantioselectivity. The isolated aptamers displayed
enantioselective binding to the negatively charged glutamic acid as the target [124].
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A glycol-DNA aptamer was produced from an alkyne unit, 5-ethynyl-modified dUTP, via SELMA
selection could recognize the monoclonal antibody, 2G12, which is known to bind to mannose-rich
glycans on the HIV envelope protein, gp120, thus neutralizing various HIV strains [125–127].

Lee and colleagues revealed that 5-BzdU (5-(N-benzylcarboxyamide)-2-deoxyuridine) modification
of the AS1411 aptamer might selectively increase its targeting affinity to cancer cells while having no
significant influence on the normal healthy cells [128]. The 5-BzdU residue was further modified by
replacing the benzyl group by other aromatic or aliphatic groups to enhance the binding affinity of this
modified aptamer to their targets [129].

Another increasingly expanding approach utilizes the replacement of natural nucleotides with
artificial unnatural bases in the DNA sequence to improve the therapeutic properties [130,131].
A nucleoside triphosphate modified with a tyrosine-like phenol (Figure 19) was used in the selection of
DNA aptamers against Escherichia coli DH5α cells. The modified aptamer displayed high selectivity
and affinity for the target cells compared to the unmodified aptamer [132].
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5-[(p-Carborane-2-yl)ethynyl]-2′-deoxyuridine 5′-O-triphosphate was synthesized and used by
Balintová et al. as substrate for KOD XL DNA polymerase in a primer extension (PEX) reaction
to generate carborane-modified DNA or oligonucleotides. These carborane-modified hydrophobic
aptamers may increase the potential interactions against hydrophobic proteins or analytes [133].
C5-modified carboxamide pyrimidines’ functionality was a smart choice to facilitate the attachment
of other hydrophobic groups, such as benzene, thiophene, naphthalene, isopropyl, and amino acid
derivatives (Figure 20) [134].
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A new protocol was lately described to select nucleobase-modified aptamers. This protocol utilizes
click chemistry (CuAAC) to introduce the favored nucleobase modification based on alkyne-modified
uridine (5-ethynyl-deoxyuridine (EdU)) instead of thymidine. This new protocol enables a wide range
of functionality and generates modified DNA aptamers with extended interaction properties [135].

The slow off-rate-modified aptamers (SOMAmers) are aptamers with significant base modification
to give a protein-like functionality. This formulation improves the binding affinities and binding
kinetics with enhanced selectivity when compared to traditional aptamers. This is achieved by
increasing both the number and strength of the hydrophobic interactions between nucleic acids and
the corresponding targets, thus partially mimicking the binding mode of antibodies and other proteins.
The power of this kind of base modification is that it exhibits very little nuclease degradation over a
48-h incubation in human serum [136,137], it facilitates the detection of various proteins in the blood
serum, and it has been widely applied in the discovery of disease biomarkers [138,139].

Modified DNA SOMAmers ((5-(N-benzylcarboxamide)-2′-deoxyuridine (Bn-dU) or 5-[N-(1-
naphthylmethyl)carboxamide]-2′-deoxyuridine (NapdU) replacing dT) that inhibit interleukin-6 (IL-6)
signaling, a key component of inflammatory diseases, were found to be stable in serum and blocked
the interaction of IL-6 with its receptor, IL-6Rα [136].

An advanced SOMAmer-based assay was developed for quantification of soluble glypican-3 in
hepatocellular carcinoma (HCC) patient samples using glypican-3 SOMAmer. The assay verified its
good sensitivity, accuracy, and precision compared to the traditional antibody-based assay, with a high
binding affinity [140]. Gawande and co-workers explored selection experiments using double-modified
DNA aptamers with amino-acid-like moieties on pyrimidine bases to target proprotein convertase
subtilisin/kexin type 9. They isolated aptamers that showed higher affinity, biostability, and inhibitory
potency compared to singly modified aptamers with broad utility in research, diagnostic, and
therapeutic applications [141].

Wang et al. reported a biophysical and enzymatic properties study of three widely used protein-like
side chain dNTPs: 8-histaminyl-deoxyadenosine (dAimTP), 5-guanidinoallyl-deoxyuridine (dUgaTP),
and 5-aminoallyl-deoxycytidine (dCaaTP). The base-pairing abilities of oligonucleotides having one
or three modified nucleosides were tested by thermal denaturation analysis and as a substrate for
enzymatic polymerization with both modified and natural dNTPs [142].

3.5. Spiegelmers

Spiegelmers are the synthetic mirror image of d-nucleic acids that show high resistance to nuclease
degradation and may retain their binding affinity to their d-form targets or be selected with high
binding affinity to new targets (Figure 21) [143]. For example, NOX-A12, a structured mirror image
RNA oligonucleotide in the l-configuration that neutralizes stromal cell-derived factor-1, interferes with
chronic lymphocytic leukemia migration and drug resistance [144]. NOX-A12, a spiegelmer that binds
and neutralizes CXCL12, was developed for interference with CXCL12 in the tumor microenvironment
and for cell mobilization.

An l-RNA aptamer targeting the HIV-1 trans-activation responsive (TAR) RNA was developed.
This spiegelmer showed great specificity and strong binding activity based on tertiary interactions
more than Watson–Crick pairing [145]. In addition, NOX-G15 is a mixed DNA/RNA mirror image
aptamer that binds to the glucagon and improves glucose tolerance in models of type 1 and type 2
diabetes [146].

A 67-mer l-enantiomeric spiegelmer for gonadotropin-releasing hormone (GnRH) was selected
from a random pool of oligonucleotides, and this effective antagonist spiegelmer showed a high binding
affinity (KD = 20 nM) with longer plasma half-life stability [147]. Another l-GnRH spiegelmer was
chemically synthesized according to the isolated natural d-GnRH aptamer. The resulting spiegelmer
had similar affinities to that of d-aptamers [148]. A biologically stable mirror image enantiomeric
l-DNA spiegelmer against bacterial Staphylococcal enterotoxin B was developed. The spiegelmer
bound the whole protein target, with only a slightly reduced affinity, which shows the possibility of
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identifying spiegelmers against large protein targets [149]. Spiegelmers also undergo similar different
strategies and chemical modifications as natural aptamers to enhance their stability against nucleases
and improve their binding affinity [143]. A nuclease-resistant modified l-RNA aptamer (MLRA)
with cationic nucleotide, 5′ aminoallyl-uridine, was isolated in an in vitro selection process and this
spiegelmer was capable of binding oncogenic pre-miR-19a with exceptional affinity, and the cationic
modification was absolutely crucial for binding [150].
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Finally, Taylor and Holliger described protocols for the replication of artificial analogs of DNA and
RNA having a different backbone or sugar homologous xeno nucleic acids (XNAs). For the directed
evolution of synthetic oligonucleotide ligands (XNA aptamers) for specific targeting of proteins or
nucleic acid units, a cross-chemistry selective exponential enrichment (X-SELEX) approach is used.
This approach may be applied to select and isolate fully modified XNA aptamers for a wide range of
target molecules [151].

Conventional SELEX, based on only four natural DNA/RNA nucleotides, often yields poor binders
only. Synthetic biology has increased the number of DNA/RNA building blocks, with tools to sequence,
PCR amplifies, and clone artificially expanded genetic information systems (AEGISs). Several examples
have been reported of a SELEX using AEGIS, producing a molecule that binds to cancer cells [130,152].

A functional RNA molecule containing an artificial nucleobase pair was designed by Hernandez
et al. to increase the number of building blocks in nucleic acids.They replaced the C:G pair by a pair
between two components of an artificially expanded genetic-information system (AEGIS), Z and P
(6-amino-5-nitro-2(1H)-pyridone and 2-amino-imidazo [1,2-a]-1,3,5-triazin-4-(8H)-one). The structure
shows that the Z:P pair does not greatly change the conformation of the RNA molecule nor the details
of its interaction with a hypoxanthine ligand, with a 3.7 -nM affinity of the riboswitch for guanine [153].

A laboratory in vitro evolution (LIVE) experiment based on an artificially expanded genetic
information system (AEGIS) was reported by Biondi et al. An AEGIS aptamer that binds to an isolated
protein target was outlined against an antigen from Bacillus anthracis. The AEGIS aptamer showed
improved stability and binding of the aptamer to its target [154].

3.6. Circular Aptamers

The majority of nucleic acid degradations are caused by plasma exonucleases that break the
phosphodiester bonds at either the 3′ or 5′ terminals, leading to the cleavage of of nucleotides one at a
time. Chemical modifications on the terminals increase the stability; however, cyclization eliminates
this source of degradation entirely [155]. For example, a comparison between two linear aptamers
targeting MUC1 and HER2 with their distinct double strand circular aptamers showed significant
biostability for the circular ones [20].
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Circular bivalent aptamers (cb aptamers) were constructed from aptamers selected against live
cancer cells, and were tested for their nuclease stability, binding affinity in vivo, and for their thermal
stability [156]. The results showed that circular aptamers sustained their sequence integrity for 12 h
compared to 1 h for linear aptamers in biological media. In addition, the thermal stability was enhanced
by at least 10 ◦C. Another example is a cyclic thrombin-binding aptamer (cycTBA), which was prepared
by covalently bonding the 3′ and 5′ ends of the linear aptamer via a linker [157]. The thermal stability
of cycTBA was highly enhanced (an increase of the melting point by 18 ◦C in both the K+ and Na+ ion
environment) and a 180-fold increase in the half-life in PBS, which is a strong indicator that cycTBA
has a higher resistance towards nucleases. However, its anticoagulant activity dropped by half. Such a
drop in the activity is an indication of a need for some flexibility in the aptamers’ structure [158].

3.7. Multivalent and Dimerization of Aptamers

As mentioned before, increasing aptamers′ affinity to the target and their stability are the main
hurdles for aptamers′ applications, especially as therapeutics. The several chemical modifications to
increase stability via increasing the size and mass of aptamers are promising. However, it might affect
the affinity towards targets. Multivalent aptamers might be the solution, since it increases the size and
at the same time increases the affinity. Multivalent aptamers are constructs composed of two (dimer) or
more (multi) identical or different aptamer motifs, with or without additional structural elements [159].
Simply, connecting identical aptamers should increase affinity to its target since it increases the number
of contact points. The connection of different aptamers can also lead to an increase in versatility [160].

Further refinement of aptamers is needed to achieve desired affinities [161]. Dimerization of
aptamers (identical and different) was performed by Hasegawa and co-workers [162]. Dimers of two
aptamers against thrombin (each binds to a different site) using a thymine linker with variable length
proved an enhanced affinity compared to the monomers in addition to an improved thrombin-inhibiting
effect. They also tested a dimer of two identical aptamers against vascular epithelial growth factor
(VEGF165), which is a dimeric protein. Ligand-guided selection (LIGS) of aptamers is known to give
aptamers with high specificity; however, these aptamers suffer from low affinity, which hinders their
further application in diagnostics and therapeutics. For example, an LIGS-aptamer against membrane
IgM (mIgM) was introduced with high specificity. In order to improve its affinity, a dimeric aptamer
was prepared that showed enhanced affinity without affecting its specificity [163].

Multivalency not only enhances the affinity and stability of aptamers but it can also improve
cellular uptake. Multivalent DNA structures with dual aptamers, a guanosine-rich oligonucleotide
100 aptamer (AS1411), which was developed to target nucleolin-overexpressing cells, and mucin-1
(MUC-1) aptamers, which were developed to target mucin glycoproteins, showed superior intercellular
uptake compared to oligomers with a single type of aptamers [21].

Extensive efforts have been dedicated to developing fluorescent RNA aptamers, which are crucial
to facilitate live-cell imaging. Fluorescent RNAs were developed. However, these aptamers suffered
from poor brightness and photostability. A dimerized aptamer (o-Coral) was prepared and tested,
showing high affinity, brightness, and stability compared to its parent aptamer [22].

4. Chemical and Physical Conjugation Strategies of Aptamers to Nanoparticles

Nanoparticles can be functionalized with different types of aptamers as targeting ligands. This
functionalization can be achieved via various approaches without affecting the 3-d aptamer functionality.
Chemical covalent bonds and physical conjugation strategies were frequently used through a spacer or
a linker to maintain aptamer binding activity.

4.1. Direct and Post-Insertion

Direct aptamer conjugation in the nanoparticle formulation is usually done by certain modifications
on the aptamer structure. For example, an aptamer called TDO5, which was selected specifically to
Ramos cells (a B-cell lymphoma cell line), was incorporated in micelle construction by attaching a
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simple lipid tail phosphoramidite with diacyl chains onto the end of the aptamer inserted with a PEG
linker. This amphiphilic unit is self-assembled into a spherical micelle structure. The results showed
an 80-fold higher internalization of the TD05-micelles by Ramose cells compared to unconjugated
micelles [164].

Direct conjugation was also used with anti-nucleolin-specific DNA (NCL) aptamer (AS1411) in
Xing et al.’s study to functionalize the surface of doxorubicin-loaded liposomes. The AS1411 aptamer
was firstly bound to a cholesterol molecule through a poly-thymine spacer and then involved in the
liposome bilayer structure during liposome preparation (Figure 22) [165]. Similarly, AS1411 aptamer
direct conjugation was used to coat liposomes loaded with cisplatin [166].
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Riccardi et al. designed a highly integrated and multifunctional nanosystem based on niosomal
formulations. These niosomes were loaded with the nucleolipid Ru(III)-complex, HoThyRu, and then
decorated with AS1411 aptamer via the post-insertion dispersion method. These niosome formulations
showed increased antiproliferative activity when loaded with both the Ru(III)-complex and the AS1411
aptamer compared with all the tested controls. A valuable therapeutic window was found for the
HeLa cancer cells for concentrations up to 3.5 µM. The final formulation provides several medical
applications, including “on-demand” release, specific tissue/cell type targeting, in vivo imaging, and
diagnosis [167].

Aptamers can also be directly incorporated in the nanoparticle formulation. For example,
gadolinium-doped luminescent and mesoporous strontium hydroxyapatite nanorods loaded with
doxorubicin (Gd:SrHap-Dox) were coated with AS1411 aptamer. The coating was performed by fridge
incubation of preformed drug-loaded nanorods with a G quadruplex structure of the AS1411 aptamer
for 12 h, mainly through strong electrostatic forces. Aptamer-capped Gd:SrHapnanorods can be
internalized into MCF-7 cells, resulting in pore opening and drug release [168].

Post-insertion is mostly used to functionalize preformed liposomes with certain aptamers linked
to a the lipid anchor, such as DSPE-PEG, to form micelles (Figure 23) [49].
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Willis et al. functionalized the membrane of lipid vesicles with nuclease-stable, anti-VEGF
aptamer, using the diacylglycerol (DAG) lipid as an anchor. This conjugation did not influence the
binding affinity of the aptamer, and the plasma residence time of the liposome-anchored aptamer was
considerably improved compared with that of the free aptamer [64].

4.2. Carbodiimide Chemistry

Carbodiimides are frequently used in organic synthesis, bioconjugation, and drug delivery.
For example, the water-soluble carbodiimide, 1-ethyl-3-(3-(dimethylaminopropyl)-carbodiimide (EDC),
is a common reagent used for activating carboxylic acid residues to react with ligands containing
amino groups, resulting in amide bond linkage (Figure 24) [169].
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Mann et al. functionalized liposomes with oligonucleotide aptamer (thioaptamer) against
E-selectin (ESTA) using carbodiimide chemistry. The carboxylated Cy3-labeled or unlabeled ESTA was
conjugated to amino PEGylated stealth liposome (NH2-PEG-lip) using 1-(3-dimethylaminopropyl)-
3-ethylcarbodimide hydrochloride (EDC) and sulfo(N-hydroxysuccinimide) (sulfo-NHS). In Vitro
targeting studies verified efficient and rapid uptake of the ESTA-conjugated liposomes (ESTA-lip).
Moreover, the aptamer-liposomes were retained in a human breast tumor xenografted model without
any decrease in the circulation half-life [170].

AS1411 aptamer-modified thermosensitive liposome (TSL) was designed as an efficient magnetic
resonance imaging (MRI) probe. Zhang et al. encapsulated Gd-chelates into an optimized TSL
formulation, followed by conjugating with AS1411 for specific targeting against tumor cells that
overexpress nucleolin receptors. The TSLs’ structure included carboxylate DSPE-PEG2000 (DSPE-
PEG2000-COOH), where the AS1411 aptamer was conjugated onto TSL through EDC/NHS carbodiimide
chemistry. The resulting liposomes exhibited much higher T1 relaxivity in MCF-7 cells, which enhances
early cancer diagnosis [171].

A pH-sensitive polymeric micelle using d-α-tocopheryl polyethylene glycol-block-poly-(β-amino
ester) (TPGS-b-PBAE, TP) as a pH-sensitive copolymer, loaded with paclitaxel (PTX), and functionalized
by AS1411 on the surface, was developed by Zhang et al. [172]. The aptamer conjugation
was achieved by carbodiimide chemistry, where the TPGS polymer was treated with succinic
anhydride to obtain carboxyl-modified TPGS polymer, then an amine-modified AS1411 aptamer
was added to the EDC/NHS-activated TPGS polymer. A higher cellular uptake, significant
cytotoxicity, reduction in tumor growth, and myelosuppression were observed in in vitro and in vivo
in mice SKOV3 ovarian cancer cells compared with free PTX injection [172]. As another similar
example, a polymeric micelles-AS1411 aptamer functionalization based on the same carbodiimide
chemistry was used in designing a multifunctional composite micelle made of poloxamer (Pluronic®
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F127) and beta-cyclodextrin-linked poly(lactide)-copoly(ethylene glycol) (PLA-PEG) encapsulating
doxorubicin [173]. Aptamer AS1411-modified Pluronic F127 (Pluronic F127-Ap) was synthesized by
the reaction of carboxylated-Pluronic F127, with the amino groups at the ends of AS1411 aptamers. An
in vivo study in MCF-7 tumor-bearing mice demonstrated that the AS1411-functionalized composite
micelles showed increased blood circulation, enhanced accumulation in tumor, improved anticancer
activity, and decreased cardiotoxicity [173]. Moreover, the same carbodiimide protocol for aptamer
conjugation was adapted in developing a doxorubicin-loaded unimolecular micelle composed of
hyperbranched copolymer molecules of H40 and PLA-PEG polymers with an anti-PSMA aptamer
covering the surface. This formulation showed a higher level of DOX accumulation in the tumor tissue
compared to aptamer-free polymeric micelles [174].

Polymeric nanocarriers, composed mainly of synthetic polymers, such as polyesters or
cationic polymers, as well as of natural polymers, such as polysaccharides or proteins (albumin,
collagen) [175], can also be functionalized by aptamers through carbodiimide chemistry. This is
achieved by carboxyl functionalization of the hydrophilic part of the polymeric unit (PEG) with
carboxyl groups on the nanoparticle surface, making them available for surface carbodiimide
coupling with 5′-amino-aptamer [176]. For example, carboxy-terminated poly(d,l-lactic-co-glycolic
acid)-block-poly(ethylene glycol) (PLGA–b–PEG–COOH) polymer nanoparticles were conjugated
to the A10 RNA aptamer (Apt) that binds to prostate-specific membrane antigen (PSMA), and this
formulation was evaluated in a LNCaP (PSMA+) xenograft mouse model of prostate cancer [176].
Non-aggregated polymeric nanoconjugates of paclitaxel–polylactide (Ptxl–PLA) were prepared. The
PLA was functionalized with PEG-COOH to obtain PLA-PEG-COOH, which was bioconjugated with
the amine-terminated A10 aptamer through the carbodiimide coupling reaction in the presence of EDC
and NHS to give aptamer-PLA-PEG-COOH/Cy5-PLA nanoconjugates. This aptamer–nanoconjugate
was found to be able to effectively target prostate-specific membrane antigen in a cell-specific
manner [177]. The same carbodiimide coupling chemistry of PLA-PEG-COOH copolymer with amino
terminal-aptamer has also been applied in decorating docetaxel (Dtxl)-encapsulated nanoparticles.
It was formulated with biocompatible and biodegradable PLGA-b-PEG copolymer, with the A10
2′-fluoropyrimidine RNA aptamers to distinguish the extracellular domain of the prostate-specific
membrane antigen (PSMA) [178].

Carbodiimide bioconjugation approaches of aptamer functionalized on the surface of
PLGA-b-PEG-COOH-based nanoparticles have been developed for targeted drug delivery systems,
such as anti-NCL aptamer (AS1411) [179], anti-MUC1 aptamer [180], and epithelial cell adhesion
molecule (EpCAM) [181] for paclitaxel-targeted delivery to glioma, paclitaxel-targeted delivery to breast
cancer, and for curcumin- and Nutlin-3a-targeted delivery to colorectal adenocarcinoma, respectively
(Figure 25) [49].

Alibolandi et al. adapted the same approach to synthesize PLGA-b-PEG nanoparticles loaded
with doxorubicin (Figure 26), followed by anti-EpCAM aptamer functionalization by similar coupling
chemistry, showing a higher tumor inhibition in a mouse xenograft model of human small lung cancer
compared to non-aptamer-conjugated polymeric nanoparticles [182].

PLGA-b-PEG nanoparticles encapsulating salinomycin were also decorated with a targeting RNA
aptamer that binds the CD133 marker, based on carbodiimide coupling chemistry. Higher cytotoxicity
towards CD133+ osteosarcoma cancer stem cells was shown compared to the non-functionalized
nanoparticles [183]. AS1411 aptamer-tagged PLGA-lecithin-PEG nanoparticles loaded with paclitaxel
for tumor cell targeting and delivery were tested by Aravind et al. The functionalized PLGA-
lecithin-PEG nanoparticles exhibited high encapsulation efficiency and superior sustained drug
release compared to the drug loaded in plain PLGA nanoparticles. They are considered a potential
carrier candidate for differential targeted drug delivery [184]. To treat MUC1-overexpressing
adenocarcinomas, chitosan-based polymeric nanocarriers for 5-fluorouracil [185] and SN38, an
irinotecan metabolite [186], targeted with a MUC1 aptamer via carbodiimide chemistry (EDC/NHS
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technique), were performed. These aptamer-guided nanocarriers showed enhanced cytotoxicity
compared to non-targeted nanocarriers [185,186].
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AS1411 aptamer-Ag nanoclusters were conjugated to polyethylene glycol-coated ultrasmall
gadolinium oxide nanoparticles (PEG-Gd2O3 NPs) through a covalent linkage between the carboxyl
group (−COOH) of PEG and the amino group (−NH2) modified on the 5-end of AS1411 aptamer.
These tracking-imaging nanoparticles induced hyperthermia by targeting MCF7 cancer cell lines [187].

Carbodiimide coupling chemistry was also applied for conjugating aptamers to quantum dot
(QD) nanoparticles. Carboxyl core-shell CdSe/ZnS QD was first activated with EDC/NHS reagents.
The resulting N-hydroxysuccinimide-activated QD was covalently linked to 5′-NH2-modified A10
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PSMA aptamer. Doxorubicin then intercalated in the double-stranded stem of the A10 aptamer
(QD-Apt(Dox)). This multifunctional nanosystem can deliver Dox to targeted prostate cancer cells and
sense the delivery of Dox by activating the fluorescence of QD [188]. A similar conjugation chemistry
was adapted by designing a tumor-targeted pH-responsive quantum dot-mucin1 aptamer-doxorubicin
(QD-MUC1-DOX) conjugate for the chemotherapy of ovarian cancer. It was shown that the developed
aptamer-guided conjugate had higher cytotoxicity than free DOX in multidrug-resistant cancer cells
(Figure 27) [28].
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The same 5′-amine-modified MUC-1 aptamer was used to cross-link carboxyl-functionalized
silica nanoparticles (COOH-FSiNPs) by EDC/NHS carbodiimide chemistry. This aptamer-conjugated
Rubpy-doped silica nanoparticle was tested for human breast carcinoma MCF-7 cells’ labeling. The
dye-doped silica nanoparticles serve as a stable bioprobe because of their facile conjugation with the
desired biomolecules [189].

5′-NH2-modified A10 PSMA aptamer was also conjugated to the surface of carboxyl-modified
superparamagnetic iron oxide nanoparticles via carbodiimide chemistry. Doxorubicin intercalates
within the aptamer GC pair. This nanocomposite combination showed higher toxicity to targeted cells
and minimized side effects to non-targeted cells [190].

3′-NH2-modified AS1411 aptamer was covalently linked to an EDC/NHS-activated nanocluster
composed of a mesoporous metal-organic framework (MOF) shell, and an upconversion luminescent
core (UCNP). This targeted nanocluster was further intercalated with doxorubicin to form a UCNPs/
MOF-Dox-AS1411 multifunctional nanosystem that intervenes drug delivery and cell imaging [191].

A new material that incorporates gold nanorods with a mesoporous silica structure that has
been surface modified with DNA aptamer was constructed. This nanostructure was functionalized
with a carboxylic group using succinic anhydride. Subsequently, the aptamer-gated nanovehicles
were decorated through binding with amine-modified AS1411 aptamer using EDC/NHS carbodiimide
chemistry. This multifunctional nanostructure combined chemotherapy, photochemotherapy, and
imaging into one system [192].

Standard peptide bond formation methodology using EDC/NHS coupling chemistry was also
used to conjugate amino-modified anti-protein tyrosine kinase 7 aptamer (anti-PTK7 aptamer) (sgc8)
aptamers on the surface of carboxyl-free-modified porous hollow magnetite nanoparticles (PHMNPs)
loaded with doxorubicin. This multifunctional nanosystem was tested for targeted cancer chemotherapy
and magnetic resonance imaging (MRI) [193].
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4.3. Thiol Maleiimide and Related Chemistry

Thiol maleimide coupling chemistry or Michael addition of a thiol to a maleimide or any
Michael accepter is commonly used for bioconjugation of thiolated (-SH) drugs or targeting ligand to
macromolecules or on the surface of nanoparticle drug delivery systems (Figure 28) [27].
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A DNA aptamer (sgc8) was successfully attached to the surface of liposomes using the thiol–
maleimide chemistry [194]. To prepare the sgc8 aptamer-liposomes, a maleimide polyethyleneglycol
(PEG-Mal) was incorporated in the liposome membranes during the liposomes′ preparation, followed
by overnight incubation at 4 ◦C with 5′-thiolated-sgc8-TMR aptamer. The sgc8 aptamer-liposome
cellular uptake studies demonstrated that the targeting was critical for cellular uptake [194].

A DNA aptamer was selected against mouse tumor endothelial cells (anti-mTEC aptamer)
(AraHH001). This aptamer was functionalized to the surface of PEGylated liposomes using the
thiol–maleimide crosslinking. This functionalization indicates the potential of the targeted delivery of
anti-angiogenesis drugs into tumor endothelial cells (Figure 29) [195].
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Li et al. developed nucleolin-targeting liposomes guided by aptamer AS1411 to deliver anti-BRAF
siRNA (siBraf) for the treatment of malignant melanomas. The AS1411 aptamer was covalently
attached to siRNA-loaded lipoplexes via thiol–maleimide chemistry. This combination showed major
silencing activity in A375 tumor xenograft mice and inhibited melanoma growth [196].

An RNA aptamer (Apt1) against the CD44 receptor was selected [197] and conjugated to the surface
of PEGylated liposomes using the thiol–maleimide chemistry. These Apt1-functionalized liposomes
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showed higher selectivity and uptake by CD44+ cancer cell lines compared to the CD44− cell line [198].
Moreover, thiolated Apt1 conjugation with DSPE-PEG-maleimide using thiol–maleimide chemistry
followed by successful post-insertion into liposomes was done by Alshaer et al. [199]. Micelles composed
of DSPE-PEG and DSPE-PEG-maleimide were prepared by the thin film evaporation hydration
method. Conjugation of Apt1-SH to micelle-DSPE-PEG-mal was performed using a thiol–maleimide
cross-linking reaction to form a thioether bond. Then, the micelle-DSPE-PEG-Apt1 was post-inserted in
siRNA-loaded liposomes by mixing and incubating at 60 ◦C for 1 h. Such nanocarriers showed a higher
luc2 inhibition by Apt1-functionalized liposomes in vitro and a prolonged gene inhibition in vivo
on an orthotopic MDA-MB-231 breast cancer model [199]. The same thiol–maleimide post-insertion
protocol was also adapted with AS1411-functionalized thermosensitive liposomes encapsulating both
doxorubicin and ammonium bicarbonate, for the selective targeting of multidrug-resistant breast
cancer cells (MCF-7/MDR) that overexpress nucleolin [200].

Dendrimers can also be guided by aptamers. Dendrimers are synthetic, highly branched (treelike)
macromolecules with nanometric dimensions. Dendrimers have many functional groups on their
surface, offering a high number of sites for the conjugation of targeting ligands [201]. A gene delivery
system composed of polyamidoamine (PAMAM) dendrimers was functionalized at the surface with
PEG-Mal via a specific reaction between the primary amino groups of PAMAM and the NHS groups of
the bifunctional PEG derivative. The resulting conjugate, PAMAM-PEG-Mal, was bioconjugated with
3′-SH-modified second generation anti-PSMA aptamer (A10-3.2) via the thiol–maleimide chemistry.
This targeted nanoformulation, loaded with the tumor suppressor non-coding genes (miR-15a and
miR-16-1), induces apoptosis and selective cell death of prostate cancer cells [202].

Parallel chemistry to thiol–maleimide conjugation has been used by introducing a soft electrophile
(as the Michael system) at the surface of the nanoparticle. This approach is most useful in dendrimer
nanoparticles due to their versatile surface functional groups [201]. Anti-nucleolin aptamer AS1411 was
conjugated to an amphiphilic multimolecular hyperbranched dendritic polymer using this technique.
This targeted system has enhanced cell uptake, excellent fluorescence properties, and smart targeting
capability in vitro, indicating the great potential of promising carriers for bioimaging and cancer-specific
delivery [201].

Another thiol–maleimide-related aptamer coupling was used in the conjugation of an EpCAM
aptamer to carboxymethyl cellulose (CMC)-magnetic iron oxide nanoparticles (CMC-MNPs).
CMC-MNPs interacted with 1,6-diaminohexane via carbodiimide coupling in order to introduce some
amino groups to the CMC-MNPs’ surface. Next, thiolated EpCAM aptamer was covalently linked
to amino-functionalized CMC-MNPs using the hetero-bifunctional crosslinker, 4-maleimidebutyric
acid-NHS ester. This magnetic nanoparticle-aptamer probe was utilized for specific hepatocellular
carcinoma imaging and treatment [203].

3-(2-Pyridyldithio) propionyl hydrazide (PDPH) was an alternative aptamer bioconjugation
cross-linker. PDPH is a heterofunctional crosslinker that possesses a carbonyl-reactive hydrazide group
at one end and a sulfhydryl-reactive-pyridyl disulfide group on the other end [204].

In a study by Pala et al., dextran-coated ferric oxide magnetic nanocarriers conjugated with the
HER2 aptamers were developed to induce hyperthermia in SK-BR-3 and U-87 MG cells. The hydrazide
group firstly reacted with the dextrin moiety to form a hydrazone bond, followed by conjugation
with 5′-thiolate HER2 aptamer to the pyridyl end to form a disulfide bond. The aptamer-tagged
nanoparticles were highly specific towards the HER2-expressing cells and a 90-fold lower dose was
required to kill 50% of the targeted cells compared to the aptamer-free nanoparticle [205]. HER2
aptamer (HB5) was also attached to silica-carbon nanoparticles and loaded with doxorubicin for
chemo-photothermal therapy of an HER2+ breast cancer cell line (SK-BR-3). The preparation of
aptamer-functionalized mesoporous silica-carbon-based doxorubicin (MSCN-PEG-HB5) was carried
out by bringing in NHS-PEG3500-MAL. PEG served as a linker between amine-functionalized MSCN
and thiol group-modified HB5. The results verified higher cytotoxicity of the combined therapy
compared to chemo- or photo-therapy alone [206].
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4.4. Electrostatic and cDNA Strand Conjugation

This approach controls the number of aptamers on the surface of nanoparticles and offers more
versatility to the functionalization method. This technique is based on a DNA strand conjugated on
the surface of the nanoparticle that is a complementary fit to the intended aptamer [207]. Baek et al.
used a complementary DNA strand (cDNA) conjugated to DSPE-PEG-maleimide phospholipids
through a thiolated linker and then post-inserted it into preformed PEGylated liposomes. The
anti-prostate-specific membrane antigen aptamer (anti-PSMA aptamer) was then paired to the cDNA
strand conjugated on the surface of the preformed liposomes. This formulation was tested in vitro
on a PSMA+ cell line (LNCaP) and on a mouse model of xenografted human prostate cancer after
doxorubicin encapsulation inside liposomes using the pH gradient-driven method [207].

A DNA-based nanostructure with self-assembly and a pyramid cage composed of four
oligonucleotides was introduced by Charoenphol and Bermudez [208]. DNA nanostructures allow
therapeutic molecules to be encapsulated within their interior space, or intercalated along their
double-helical edges, or incorporated as a part of the structure itself. AS1411 aptamers were
conjugated to DNA pyramids, where the modified 3′-poly adenine RNA aptamer (AS1411) bound to
its complementary 3′-poly thymine residue in DNA-based nanostructure. The aptamer-displaying
pyramids were found to be significantly more resistant to nuclease degradation with enhanced
intracellular uptake and they selectively inhibited the growth of cancer cells [208].

Another interesting DNA icosahedra nanostructure, loaded with doxorubicin for targeting MCF-7
breast cancer cells, was functionalized with anti-mucin1 (anti-MUC1) aptamers through cDNA strand
conjugation. Aptamer-conjugated DNA icosahedra nanostructures showed an efficient and specific
internalization for killing epithelial cancer cells [209].

A polyplex composed of cationic polymer polyethyleneimine (PEI) with plasmid DNA (pDNA)
containing the firefly luciferase gene was prepared [210]. The polyplex can electrostatically conjugate
anti-MUC1 aptamer on the surface to form the pDNA/PEI/MUC1 complex. This aptamer-guided
polyplex showed higher gene expression in a mouse xenograft model of human lung cancer and was
useful as a tumor-targeted gene delivery system with high transfection efficiency [210]. Zhao et al.
tested a PEI-citrate nanocomplex with anaplastic lymphoma kinase (ALK) siRNA, functionalized
with anti-CD30 aptamer via non-covalent bonds, to target human anaplastic large cell lymphoma
(ALCL). This targeted nanocomplex specifically silenced ALK gene expression, leading to growth arrest
and apoptosis [211]. The same nanocomplex formula was adapted by Subramanian et al. with an
electrostatic EpCAM aptamer (EpApt) against breast cancer cell lines. This EpApt nanocomplex was
able to target EpCAM tumor cells, deliver the siRNA, and silence the target gene [212].

Another targeted delivery system based on a dendrimer and a hybrid single-strand DNA-A9
PSMA (prostate-specific membrane antigen) RNA aptamer, followed by doxorubucin chelating, was
an example of a base pairing cDNA-mediated dendrimer–aptamer conjugation. This nanocarrier
reveals the promising possibility of this chemoimmuno therapeutic system against prostate cancer
for in vivo and in vitro models [213]. Similarly, the base pairing cDNA-mediated dendrimer–aptamer
conjugation strategy was also adapted in the conjugation of sgc8 to the three-armed Y-shaped dendritic
DNA nanostructure. This formulation exerted strong toxicity for a human T-cell acute lymphoblastic
leukemia cell line [214].

4.5. Avidin–Biotin Coupling

Avidin is a tetrameric biotin-binding protein. The tetrameric protein contains four identical
subunits (homotetramer), each of which can bind to biotin (vitamin B7, vitamin H) with a high degree
of affinity and specificity. The dissociation constant of the avidin–biotin complex was measured
to be ≈ 10−15 M, making it one of the strongest known non-covalent bonds [215]. This binding
approach was adapted by Ninomiya et al. to conjugate biotinylated aptamers on avidin-treated
liposomes by avidin–biotin coupling (Figure 30), where an anti-platelet-derived growth factor receptor
aptamer was surface-linked to doxorubicin-liposomes sensitized using poly (NIPMAM-co-NIPAM)
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as a thermosensitive polymer. Lower viability was observed against MDA-MB-231 breast cancer cell
lines treated with doxorubicin-loaded aptamer-functionalized liposomes under ultrasound irradiation
compared to cell viability without ultrasound irradiation [31].
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the nanocarrier.

Zhou et al. developed multifunctional aptamer-functionalized, doxorubicin-loaded calcium
carbonate (CC) nanostructure platforms (Apt-CCNs), where a cross-linked avidin membrane on the
surface of the CCNs was prepared to bind the biotin-modified sgc8 aptamer to prepare aptamer-modified
and DOX-loaded CCNs. This nanostructure platform showed accurate cell targeting and controlled
drug release [216].

An aptamer-conjugated Rubpy-doped silica nanoprobe has been tested for human breast carcinoma
MCF-7 cells’ labeling. This nanoprobe was made by avidin–biotin coupling between 5′-biotin-labeled
MUC-1 aptamer with avidin-functionalized silica NPs (avidin-FSiNPs) [189].

A biotin-modified Sgc8 aptamer was used to identify CCRF-CEM cells (a T-ALL cell line), and
then biotin-appended QDs were labeled with the aptamer via streptavidin and biotin amplification
interactions. The results revealed that the complex could be more effective in diagnosing leukemia
at the early stage and has the potential to image tumor cells in vitro or in vivo for early diagnosis of
disease [217].

4.6. Sulfhydryl-Aptamer Gold Coordination

The strength of the thiol–gold coordination interaction provides the basis to fabricate robust
self-assembled monolayers for diverse applications [218]. The attachment of thiolated nucleic acids
to gold nanoparticles (AuNPs) has enabled many milestone achievements in nanobiotechnology
(Figure 31) [219]. AS1411 aptamer was conjugated to gold nanostars. To synthesize the AS1411-Au
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nanoconstructs, thiolated AS1411 was attached to the AuNS surface via the gold−sulfur bond in a
2-day “salt-aging” process [220]. The AS1411-Au nanoconstructs were tested on 12 cancer cell lines
that represent four cancer subcategories, showing enhanced in vitro efficacy as a result of increased
aptamer stability and high local concentrations of AS1411 [220].
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Strong gold−thiol linkages were utilized to decorate gold nanoparticles (Au NPs) with AS1411
aptamer, which tethered with 21-base pairs of the (CGATCGA)3 sequence approached to the Au
NPs. This new platform has been used as nanocarriers to co-deliver the photosensitizer, 5,10,15,20-
tetrakis(1-methylpyridinium-4-yl) porphyrin (TMPyP4), and doxorubicin to target tumor cells, such as
HeLa and Dox-resistant MCF-7R cell lines. The photodynamic stimulation of these platforms enhanced
doxorubicin release in cancer cells with higher cytotoxicity compared to free doxorubicin [221].

5′-thiol-modified sgc8c aptamer selective to CCRF-CEM cells (T-cell acute lymphoblastic leukemia
cell line) was tethered to hairpin DNA–gold nanoparticle conjugates through the gold–thiol linkage.
The d(CGATCG) sequence within the hairpin DNA on the gold nanoparticle surface was used for
doxorubicin intercalating. The constructed nanoconjugates accommodated a high drug loading and
showed specific recognition of tumor cells in addition to triggered release of the encapsulated molecules
when exposed to laser illumination [222].

3′-thiolated PTK7 aptamer (sgc8c)-functionalized gold nanoparticles, via sulfur-gold linkage, was
synthesized to target T-cell acute lymphoblastic leukemia. Daunorubicin, an antitumor drug, was
chelated into CG-rich sequences of sgc8c aptamer. The resulting Apt-daunorubicin-Au nanoparticles
showed a higher internalization and delivery of drug into cells, with a better release in response to
slightly acidic pH [30].

A photodynamic and photothermal cancer therapy multimodal composed of an aptamer switch
probe (ASP) attached to a photosensitizer molecule, chlorin e6-polyvinylpyrrolidone (Ce6-PVP), was
tested against different leukemia cell lines. The photosensitizer, Ce6, is connected to the 3′-end of ASP
via coupling between the carboxyl group of the Ce6 molecule and the amino group at the 3′-end of the
sgc8 aptamer. A poly-T chain links the 5′-end of sgc8 to an eight-base segment complementary to sgc8,
which ends in a sulfhydryl group attachment to AuNRs. The AuNR-ASP-Ce6 composite enhanced
targeted binding and provided high specificity and therapeutic efficiency [223].

Another efficient photothermal therapy based on aptamer-conjugated Au-Ag nanorods was tested
on mixed cancer cells by Huang et al. The selected sgc8c aptamer, after 5′-thiol modification, was
attached to the nanorods′ surfaces through simple thiol–Au linkage. The aptamer-functionalized
nanorods killed 50% of the CCRF-CEMM cells compared to a 13% cell death in the control cells
(NB-4) [224].

A nanocomposite of aptamer−gold nanoparticle-hybridized graphene oxide (Apt-AuNP−GO)
was designed as a photothermal treatment of MUC1-positive human breast cancer cells (MCF-7). The
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thiolated-muc1 aptamer was linked to the gold nanoparticle, via sulfur–gold linkage, to facilitate
targeted treatment of the tumor cells (Figure 32). The Apt-AuNP−GO photothermal treatment led to
targeted inhibition of breast cancer MCF-7 cells’ growth by inducing apoptosis [225].
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Zhao et al. utilized this approach for the dual targeting Au shell-coated-liposomes with sulfhydryl
anti-MUC1 aptamer (S2.2) and the AS1411 aptamer. The preformed liposomes were mixed with gold
salt to form a uniformly distributed Au shell on the liposomes′ surfaces, followed by sulfhydryl-aptamer
coordination on the gold nanoparticle. These liposomes loaded with docetaxel and ammonium chloride,
with dual ligand functionalization, significantly increased cellular uptake in breast cancer cell line
(MCF-7) cells and showed higher tumor suppression compared to single targeting by one aptamer [226].

4.7. Oxidative Coupling

This conjugation strategy involves the periodate-mediated reaction of phenylene diamine-
substituted aptamer, with aniline groups installed on the outer surface of the nanoparticle
(Figure 33) [227].
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This approach is mainly applied to biomimetic nanocarriers. For example, bacteriophage MS2
virus has a protein coat of 180 sequence-identical monomers, expressed and self-assembled in Escherichia
coli, that are arranged in a hollow spherical nanostructure [228]. This robust, safe, biodegradable, and
genome-free nanostructure has many pores to encapsulate active medical ingredients in addition to the
possibility of interior and exterior bioconjugation [29]. The MS2 interior was loaded with porphyrins
capable of producing cytotoxic singlet oxygen upon illumination, then the surface was functionalized
with sgc8c aptamer for targeting protein tyrosine kinase 7 (PTK7) receptors on Jurkat leukemia T
cells. This method includes the chemo-selective coupling of an N,N-diethyl-N′-acylphenylene diamine
moiety attached to the aptamer to an aniline residue on the MS2 capsid surface in the presence of
sodium periodate (NaIO4). The aniline coupling partners can be introduced on the exterior surface
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of MS2 capsids either through direct chemical modification [227] or through the introduction of an
unnatural amino acid, p-aminophenylalanine (paF), into position 19 of the MS2 coat protein using
the amber stop codon suppression system (Figure 34) [229]. This targeted biomimetic nanocarrier
selectively targets and kills 76% of the tumor cells after only 20 min of illumination [29].
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4.8. Click Chemistry

The copper-catalyzed azide–alkyne cycloaddition reaction is widely used for the connection of
molecular entities of all sizes (Figure 35) [32].
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Figure 35. The general CuAAC reaction.

Aptamer-polymer hybrids (APHs) were synthesized based on the coupling of the 3′-N3-AS1411
aptamer with a ω-alkyne-functionalized polyether by click chemistry using tricarboxylate ligand
(BimC4A) to stabilize Cu (I) during the cycloaddition. APH molecules, being loaded with doxorubicin,
are actively internalized via endocytosis into MCF-7 cells and selectively kill nucleolin-expressing
target cells (Figure 36) [230].
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Figure 36. Functionalization of ω-alkyne-polyether to give aptamer-polymer through the
CuAAC reaction.

Table 3 represents a summary of the various conjugation strategies of aptamers to different
nanoparticles for drug targeting to cancer cells.
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Table 3. A summary of the conjugation methods of aptamers to different nanoparticles.

Target Aptamer Nanoparticle Drug/Imaging
Molecule Tumors Conjugation

Methodology Ref.

Nucleolin AS1411

PLGA-b-PEG Paclitaxel Glioma Carbodiimide chemistry [231]

Polyvalent mesoporous
nanoparticles Doxorubicin Breast Thiol-maleimide

chemistry [232]

pegylated PAMAM
dendrimer Camptothecin Colorectal Thiol-maleimide

chemistry [233]

polydopamine were
surface modify a

PLGA-b-TPGS polymer
Docetaxel Breast

Thiol-maleimide related
chemistry/Michael

addition on
dihydroxyindole unit

[234]

PLGA-b-PEG
Doxorubicin and
superparamagnetic

iron oxide
Glioma Carbodiimide chemistry [235]

polymersome Doxorubicin Breast
3′-Cholesterol
AS1411/direct
conjugation

[236]

PAMAM-PEG 5-fluorouracil Gastric cancer Thiol-maleimide
chemistry [237]

Alkyl-modified
PAMAM dendrimers Bcl-xLshRNA Lung Cancer Carbodiimide chemistry [238]

PSMA

A10 (F-RNA)

PEGylated liposomes 225Ac Prostate Carbodiimide chemistry [239]

PLGA-b-PEG Cis-Pt(IV) Prostate Carbodiimide chemistry [240]

TCL-SPION Doxorubicin Prostate

Carbodiimide chemistry
of oligonucleotide linker

followed by aptamer
complementary base

pair binding

[241]

A10-3-J1 Superparamagnetic iron
oxide Doxorubicin Prostate

Avidin-biotin DNA
linker followed by

aptamer complementary
base pair binding

[242]

A10-3.2 Atelocollagen miR-15a and
miR-16- Prostate Thiol-maleimide

chemistry [243]

MUC1 DNA
aptamer CuInS2 quantum dot Daunorubicin Prostate

Carbodiimide chemistry
of oligonucleotide linker

followed by aptamer
complementary base

pair binding

[244]

MUC1

DNA
aptamer

Zn-doped CdTe QDs Zn2+ doped
CdTe QDs

Lung Complementary DNA [245]

iron oxide nanoparticles Hyperthermia Breast Avidin-biotin coupling [246]

Chitosan-coated human
serum albumin Paclitaxel Breast Carbodiimide chemistry [247]

Poloxamer miRNA-29b Lung Carbodiimide chemistry [248]

Au@SPIONs Photothermal
therapy Colon SH-Aptamer gold

coordination [249]

Micelle
Doxorubicin and

proapoptotic
peptide (KLA)

Breast, Colon Carbodiimide chemistry [250]

5TR1 DNA
aptamer

PLGA modified with
chitosan Epirubicin Breast Electrostatic interaction [251]

DNA
aptamer

MA3

Thermosensitive
hydrogel Doxorubicin Breast Thiol-maleimide

chemistry [252]

PTK7 Sgc8 (DNA)

Polyvalent aptamer
system Doxorubicin

T-cell acute
lymphoblastic

leukaemia
Complementary DNA [253]

Au-Ag nanorods Doxorubicin
T-cell acute

lymphoblastic
leukemia

SH-Aptamer gold
coordination [254]

Single-walled carbon
nanotubes Daunorubicin

T-cell acute
lymphoblastic

leukemia
direct conjugation [255]
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Table 3. Cont.

Target Aptamer Nanoparticle Drug/Imaging
Molecule Tumors Conjugation

Methodology Ref.

PTK7 Sgc8 (DNA) Mesoporus
nanoparticles Doxorubicin

T-cell acute
lymphoblastic

leukaemia
Carbodiimide chemistry [256]

Gold nanoparticles Daunorubicin
T-cell acute

lymphoblastic
leukemia

SH-Aptamer gold
coordination [257]

Au Doxorubicin
T-cell acute

lymphoblastic
leukemia

SH-Aptamer gold
coordination [258]

Acoustic droplets Daunorubicin
T-cell acute

lymphoblastic
leukemia

Thiol-maleimide
chemistry [259]

IgM TDO5
(DNA) PAMAM Dendrimer Uptake study Burkitt’s

lymphoma Carbodiimide chemistry [260]

HER2 S6 aptamer
Plasmonic gold coating

on magnetic
nanoparticles

Fe3O4 Breast SH-Aptamer gold
coordination [261]

TSA14 PEGylated Liposomes Doxorubicin Breast Thiol-maleimide
chemistry [262]

A6
hybrid nanoparticles
(cationic lipids and

PLGA-b-PEG)
siRNA Breast Thiol-maleimide

chemistry [263]

CD44
DNA

thiolated
aptamer

PEG-PAMAM miRNA Breast

Carbodiimide chemistry
for PAMAM followed by

Aptamer
Thiol-maleimide

chemistry

[264]

EpCAM EpApt PLGA-b-PEG Lecithisn
curcumin Colorectal Carbodiimide chemistry [265]

DNA-EpCAM mesoporous silica Doxorubicin colon Carbodiimide chemistry [266]

EGFR RNA Lipid-polymer
nanoparticle Salinomycin Osteosarcoma

CSCs
Thiol-maleimide

chemistry [267]

Tenascin-C GBI-10 PEGylated Liposomes Gadolinium
Compounds Glioma Carbodiimide chemistry [268]

GBI-10 QD–Apt nanoprobes CdSe/ZnS Glioma Carbodiimide chemistry [269]

PDGFR Gint4.T PLGA-b-PEG PI3K-mTOR
inhibitor glioblastoma Carbodiimide chemistry [270]

Cell-SELEX SRZ1 Cationic-liposomes Doxorubicin Breast cancer Avidin-biotin coupling [271]

fibronectin
protein

DNA
aptamer
AS-14

gold-coated magnetic
nanoparticles

Magnetodynamic
nanotherapy Ehrlich carcinoma Thiol-maleimide

chemistry [272]

Cell-SELEX KW16-13 gold nanorods Photothermal
therapy Breast Thiol-maleimide

chemistry [273]

FGFR1 DNA
aptamer Iron oxide nanoparticles Hyperthermia Osteosarcoma Avidin-biotin coupling [274]

Nucliolin
MUC1 ATP

AS1411
MUC1 ATP

DNA dendrimers, pH
sensitive release Epirubicin Breast, Colon Electrostatic interaction [275]

Annexin A2 Annexin A2
aptamer

DNA/RNA hybrid
Nanoparticles Doxorubicin Ovarian cancer Complementary base

pairing [276]

CD20 DNA
aptamer

Lipid-polymer
Nanoparticles Salinomycin Melanoma Thiol-maleimide

chemistry [277]

5. Aptamer Toxicity and Immunogenicity

Although aptamers’ low toxicity and immunogenicity have been demonstrated by the majority of
studies published in the literature, some reported cases indicated that administrated doses of aptamers
were associated with a degree of toxicity and immunogenicity. As an example, macugen, an anti-VEGF
aptamer, showed minimal toxicity and no serious drug-related side effects when injected as single or
multiple doses into humans and animals [278–281]. The previously mentioned studies demonstrated
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the safety of macugen when locally administrated in the eye. Thus, the systemically administrated
aptamers might not always show the same level of safety as macugen [282]. Furthermore, macugen is the
only aptamer with proven clinical safety over an extended period of two years [283]. Aptamers tested in
future clinical trials might reveal contradicting results. The polyanionic nature of aptamers may result in
nonspecific interactions with human serum proteins. This could lead aptamers accumulating in tissues,
causing specific cases, and serious, and possibly life-threatening, side effects [284,285]. The toxicity
and immunogenicity of aptamers may also be the result of some chemical modifications. For example,
phosphorothiolated aptamers were associated with activation of the complement system [286]. Pattern
recognition receptors (PRRs) are a part of the innate immune system, which detects foreign nucleic
acids. Aptamers containing CpG may resemble pathogen-associated molecular patterns (PAMPs),
triggering the innate immune system and inducing the expression of deleterious cytokines [287,288].
Additionally, LNA aptamers impose a significant risk of hepatotoxicity [289,290]. Modifying aptamers
with hydrophobic moieties increases their promiscuity, potentially increasing toxicity. Also, lipophilic
particles have low hepatic clearance [291]. RNA aptamers modified with the 2′-fluoro group represent
another chemical modification that might be a concern since these aptamers may activate PRRs.
Although this may be advantageous in cancer therapies, it may also produce unwanted side effects. For
example, 2′-fluoro pyrimidine-modified aptamers can enhance the activity of retinoic acid-inducible
gene 1 (RIG-1), and increase apoptosis and interferon-β expression in human cancer cells. On the other
hand, 2′O-methyl pyrimidines fail to induce such an immune response [292]. The immune system may
produce antibodies against PEGylated aptamers. For example, a phase 2 trial evaluating pegnivacogin,
a PEGylated RNA aptamer, reported an allergic reaction induced by the aptamer [293]. In conclusion,
even though aptamers may not have performed as anticipated in some clinical trials, they are still
considered a safer alternative for antibodies. Nonetheless, further extensive clinical evaluation of their
toxicity and immunogenicity is highly recommended for the production of a safer aptamer generation.

6. Conclusions

Aptamers are specific nucleic acid-based binding ligands that have refined properties, making
them good candidates for various biomedical applications at the diagnostic, therapeutic, and targeted
drug delivery levels. Since the discovery of aptamers, several chemical modifications have been
introduced to enhance their resistance against nucleases and improve their stability in vivo. As for
targeting ligands, aptamers have been successfully conjugated to nanocarriers, drug molecules, and
nucleic acids, and they have been successfully implicated in the selective targeting and delivery
of therapeutic payloads into targeted cells. Currently, there are several aptamers in various stages
of clinical trials, with many already showing promising preclinical data. The field of aptamers is
relatively new, but there is a growing body of evidence that it will contribute significantly to the future
advancement of the new generation of targeted therapeutics.

Aptamers stand for a remarkable new family of medicinal agents placed between conventional
organic molecules and biological drugs. Aptamers have size advantages, can be easily chemically
synthesized, are largely non-toxic and non-immunogenic, and have high affinities and specificities
that are comparable to antibodies. Aptamers can be synthesized and selected to a range of targets
more efficiently.

Despite all these advantages, aptamers suffer from decreased in vivo stability and high renal
excretion. Chemical modifications of aptamers can enhance their pharmacokinetic properties and
improve their bioavailability. Moreover, aptamer chemical or physical conjugation to different types of
drugs or even to target nanoparticles can expand the range of their medical applications.

Conflicts of Interest: The authors declare no conflict of interest.
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