Supporting Information

for

Improving the High-Frequency Response of PEI-based Earphone with Sodium Copper Chlorophyllin

Hao-Zhi Li, Jun-Jie Wu, Wei-Jen Lee, and Chien-Sheng Chen,*

Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Republic of China (Taiwan).

* To whom correspondence should be addressed:

Dr. Chien-Sheng Chen

Fax: 886-2-2653-9142

E-mail: 092847@mail.fju.edu.tw
Figure S1. Solubility test of sodium copper chlorophyllin (SCC). SCC (2 mg, left), SCC/Cu(ClO$_4$)$_2$ (4/1, middle), and SCC/Ni(ClO$_4$)$_2$ (6/1, right) in MPG.
Figure S2. Binding isotherms for SCC titrated with Zn(ClO$_4$)$_2$ (A) and Ca(ClO$_4$)$_2$ (B).
Figure S3. FT-IR spectra for SCC.

Figure S4. FT-IR spectra for SCC/Cu(ClO₄)₂.
Figure S5. FT-IR spectra for SCC/Cu(ClO4)$_2$/DME.

Figure S6. FT-IR spectra for SB.
Figure S7. FT-IR spectra for SB/Cu(ClO$_4$)$_2$.

Figure S8. FT-IR spectra for SB/Cu(ClO$_4$)$_2$/DME.
Figure S9. FT-IR spectra for sodium citrate.

Figure S10. FT-IR spectra for SC/Cu(ClO₄)₂.
Figure S11. FT-IR spectra for SC/Cu(ClO₄)₂/DME.