Biocompatible organic coatings based on bisphosphonic acid RGD-derivatives for PEO-modified titanium implants

Lyudmila V. Parfenova¹,*, Elena S. Lukina¹, Zulfia R. Galimshina¹, Guzel U. Gil’fanova¹, Veta R. Mukaeva², Ruzil G. Farrakhov², Ksenia V. Danilko³, Grigory S. Dyakonov⁴, Evgeny V. Parfenov²

¹Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141, Prospekt Oktyabrya, Ufa 450075, Russian Federation
²Department of Theoretical Basis of Electrical Engineering, Ufa State Aviation Technical University, 12 Karl Marx Street, Ufa 450008, Russian Federation
³Bashkir State Medical University, 3 Lenin Street, Ufa 450000, Russian Federation
⁴Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 Karl Marx Street, Ufa 450008, Russian Federation

*Correspondence: luda_parfenova@ipc-ras.ru

Supporting Information

Figure S1. 1H, 13C and 31P NMR of compound (1)..3
Figure S2. 1H, 13C and 31P NMR of compound (2)..5
Figure S3. 1H, 13C and 31P NMR of compound (3)..7
Figure S4. 1H NMR of compound (4)...9
Figure S5. 1H NMR of compound (5)...10
Figure S6. 1H NMR of compound (6)...11
Figure S8. 1H, 13C and 31P NMR of compound (8)...14
Figure S9. 1H, 13C and 31P NMR of compound (9)...16
Figure S10. 1H, 13C and 31P NMR of compound (10)..18
Figure S11. 1H, 13C and 31P NMR of compound (11)..20
Figure S12. 1H, 13C and 31P NMR of compound (12)..22
Figure S13. 1H, 13C and 31P NMR of compound (13)..24
Figure S14. 1H, 13C and 31P NMR of compound (14)..26
Figure S15. 1H and 31P NMR of compound (15)...28
Figure S16. MALDI TOF/TOF of compound (15)...29
Figure S17 1H and 31P NMR of compound (17)...30
Figure S18. MALDI TOF/TOF of compound (17)...31
Figure S19. 1H and 31P NMR of compound (18)...32
Figure S20. MALDI TOF/TOF of compound (18)...33
Figure S21. 1H and 31P NMR of compound (19). .. 34

Figure S22. MALDI TOF/TOF of compound (19). .. 35

Figure S23. 1H and 31P NMR of compound (20). .. 36

Figure S24. MALDI TOF/TOF of compound (20). .. 37

Figure S25. 1H and 31P NMR of compound (21). .. 38

Figure S26. MALDI TOF/TOF of compound (21). .. 39

Figure S27. 1H and 31P NMR of compound (22). .. 40

Figure S28. XPS spectra of Ti-PEO modified by compounds 15-20........ 42
Figure S1. 1H, 13C and 31P NMR of compound (1).
Figure S2. 1H, 13C and 31P NMR of compound (2).
31P NMR
Figure S3. ^1H, ^{13}C and ^{31}P NMR of compound (3).
31P NMR
Figure S4. 1H NMR of compound (4).
Figure S5. 1H NMR of compound (5).
Figure S6. 1H NMR of compound (6).
Figure S7. 1H, 13C and 31P NMR of compound (7).
Figure S8. 1H, 13C and 31P NMR of compound (8).

1H NMR

13C NMR
31P NMR
Figure S9. 1H, 13C and 31P NMR of compound (9).
31P NMR
Figure S10. 1H, 13C and 31P NMR of compound (10).
31P NMR
Figure S11. 1H, 13C and 31P NMR of compound (11).
Figure S12. 1H, 13C and 31P NMR of compound (12).
Figure S13. 1H, 13C and 31P NMR of compound (13).
31P NMR
Figure S14. 1H, 13C and 31P NMR of compound (14).
Figure S15. 1H and 31P NMR of compound (15).
Figure S16. MALDI TOF/TOF of compound (15).
Figure S17 1H and 31P NMR of compound (17).
31P NMR

Figure S18. MALDI TOF/TOF of compound (17).
Figure S19. 1H and 31P NMR of compound (18).
Figure S20. MALDI TOF/TOF of compound (18).
Figure S21. 1H and 31P NMR of compound (19).
Figure S22. MALDI TOF/TOF of compound (19).

![MALDI TOF/TOF spectrum](image)

[Table of m/z values]

<table>
<thead>
<tr>
<th>m/z</th>
<th>SN</th>
<th>Quality Fac.</th>
<th>Res.</th>
<th>Intens.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>586.001</td>
<td>7.8</td>
<td>972</td>
<td>1197</td>
<td>205.77</td>
<td>36</td>
</tr>
<tr>
<td>603.229</td>
<td>43.1</td>
<td>8412</td>
<td>13064</td>
<td>352.26</td>
<td>35</td>
</tr>
<tr>
<td>610.032</td>
<td>7.4</td>
<td>118</td>
<td>8086</td>
<td>43.55</td>
<td>3</td>
</tr>
<tr>
<td>620.890</td>
<td>12.3</td>
<td>396</td>
<td>9861</td>
<td>70.29</td>
<td>8</td>
</tr>
<tr>
<td>644.899</td>
<td>149.3</td>
<td>12571</td>
<td>11660</td>
<td>299.91</td>
<td>81</td>
</tr>
<tr>
<td>650.070</td>
<td>17.2</td>
<td>325</td>
<td>9320</td>
<td>186.38</td>
<td>13</td>
</tr>
<tr>
<td>771.183</td>
<td>9.5</td>
<td>276</td>
<td>11750</td>
<td>134.52</td>
<td>7</td>
</tr>
<tr>
<td>879.242</td>
<td>34.7</td>
<td>1727</td>
<td>11548</td>
<td>140.22</td>
<td>25</td>
</tr>
<tr>
<td>879.242</td>
<td>34.7</td>
<td>1727</td>
<td>11548</td>
<td>140.22</td>
<td>25</td>
</tr>
<tr>
<td>1075.199</td>
<td>11.2</td>
<td>1251</td>
<td>12716</td>
<td>31.58</td>
<td>10</td>
</tr>
</tbody>
</table>

31P NMR
Figure S23. 1H and 31P NMR of compound (20).
Figure S24. MALDI TOF/TOF of compound (20).

31P NMR
Figure S25. 1H and 31P NMR of compound (21).
Figure S26. MALDI TOF/TOF of compound (21).
Figure S27. 1H and 31P NMR of compound (22).
31P NMR
Figure S28. XPS spectra of Ti-PEO modified by compounds 15-20.