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Abstract: The empirical Lewis picture of the chemical bond dominates the view chemists have of
molecules, of their stability and reactivity. Within the mathematical framework of quantum mechan-
ics, all this chemical information is hidden in the many-particle wave function Ψ. Thus, to reveal and
understand it, there is great interest in enhancing the Lewis model and connecting it to computable
quantities. As has previously been shown, the Lewis picture can often be recovered from the proba-
bility density |Ψ|2 with probabilities in agreement with valence bond weights: the structures appear
as most likely positions in the all-electron configuration space. Here, we systematically expand this
topological probability density analysis to molecules with multiple bonds and lone pairs, employing
correlated Slater-Jastrow wave functions. In contrast to earlier studies, non-Lewis structures are
obtained that disagree with the prevalent picture and have a potentially better predictive capability.
While functional groups are still recovered with these ab initio structures, the boundary between
bonds and lone pairs is mostly blurred or non-existent. In order to understand the newly found
structures, the Lewis electron pairs are replaced with spin-coupled electron motifs as the fundamental
electronic fragment. These electron motifs—which coincide with Lewis’ electron pairs for many
single bonds—arise naturally from the generally applicable analysis presented. An attempt is made
to rationalize the geometry of the newly-found structures by considering the Coulomb force and the
Pauli repulsion.

Keywords: probability density analysis; electronic structure; Lewis structures; chemical bonding;
similarity; clustering; spin coupling

1. Introduction

Structural formulas are such an important tool for chemists that they can justifiably
be labeled the ‘script of chemistry’. They not only show the geometry of molecules
but also capture parts of the electronic structure by depicting bond orders and formal
charges. These sketches of the electronic properties were conceived by G.N. Lewis based
on empirical observations [1] and are usually referred to as ‘dot structures’. For non-
radical systems, the depiction of individual electrons as dots is usually omitted. Instead,
the structures are built from electron pairs which are drawn as lines. Compared to pure dot
structures, the concept of electron pairs adds information on the quantized spin: two paired
electrons are spin-coupled. After the dawn of quantum mechanics, the concept of Lewis
structures was taken up in valence bond (VB) theory [2,3]. Within the VB interpretation,
a system is no longer described by only one dot structure, but by multiple structures with
different weights.

Artmann [4] and, later, Zimmermann and Van Rysselberghe [5] were the first to
investigate the maxima of the probability density |Ψ|2. Note that this probability density is,
in principle, measurable [6]. Based on their analyses, Linnett developed the—therefore,
semi-empirical—double quartet theory [7], attributing an important role to atom-centered
tetrahedrons and triangles of same-spin electrons when sketching his own spin-resolved
dot structures. These early works were picked up by Scemama and coworkers, who
performed a topological investigation with quantum Monte Carlo [8]. Recently, probability
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density analysis (PDA) has been introduced [9–12] as the all-electron equivalent of the
quantum theory of atoms in molecules (QTAIM) [13,14] focusing on the one-electron
density. The question arises about what can be gained from all-electron in comparison to
the one-electron methods that can be broadly categorized into electron density methods
(e.g., QTAIM, electron localization function (ELF) [15]) and orbital localization methods
(e.g., natural bond orbital (NBO) analysis [16]). Concerning electron density methods,
many-body information of a chemical system is implicitly contained in the exact ground
state density [17], but its retrieval remains unclear, especially for approximate solutions.
Orbital localization methods, on the other hand, lose this information due to the inherent
mean-field view. In contrast, all-electron approaches offer an explicit description of many-
body effects. However, this comes with the cost of additional complexity.

With PDA, ab initio dot structures are obtained as most likely electron configurations,
i.e., local maxima of |Ψ|2. Their number increases rapidly with O(n!), which is mainly
caused by the permutational symmetry of |Ψ|2. These structures often agree with Lewis
structures, and their importance can be evaluated by integrating the probability density
over the respective maxima’s basins of attraction [11]. The resulting probabilities, which can
be obtained for any wave function, have shown to be in good agreement with the weights
of VB theory [12]. As such, these dot structures depict electronic structure information
hidden in the many-particle wave function in condensed form.

In this work, we describe the comprehensive clustering of the local maxima. This
allows for introducing additional spin information to the representative dot structures of a
cluster revealing ‘electron motifs’ as characteristic spatial arrangements of spin-coupled
electrons. As such, these motifs are both a generalization of the electron pair and related to
Linnett’s tetrahedrons. While the term ‘electron motif’ or ’motif’ has already been used
in the literature to describe arrangements of related electrons found in the electronic
structure [11,18–20], we propose an ab initio definition in this work. Although these
structures are not intended to replace Lewis dot structures, direct insight into the electronic
structure is obtained from this generally applicable approach.

By systematic investigation of correlated Slater-Jastrow wave functions of 29 mole-
cules, we identify at most four characteristic motifs per bond accounting for >99% of
the total probability. Many of these motifs cannot be reconciled with the Lewis picture
of electron pairs. Whereas the individual probabilities differ significantly from those of
VB or complete active space (CAS) wave functions (due to the poor treatment of static
correlation), the shapes of the structures can be deemed highly accurate (due to the explicit
treatment of dynamic correlation) for the chosen ansatz. Lastly, we show the interaction
between motifs in acetic acid and their transferability in dehydroalanine (DHA).

It should be noted that a range of methods has been developed to also connect molec-
ular orbital theory with the Lewis picture. These methods are mostly variants of localized
molecular orbitals [21,22]: natural bond orbitals [23], quasi-atomic orbitals [24], intrinsic
bond orbitals [25], and the correlation theory of the chemical bond [26,27]. Furthermore,
other real-space analyses have been developed that focus on partitioning the 3-dimensional
space instead of the full configuration space: QTAIM [13,14], the electron localization func-
tion [28], and the electron distribution functions [29,30]. The tiling of the many-electron
wave function by Schmidt and coworkers [18] is another topological analysis of |Ψ|2.

2. Methods

In this section, the probability density analysis is described, including the definitions
of electron motifs and ab initio dot structures that have been added in this work.

2.1. The Probability Density

The all-electron probability density p is obtained as the square of the normalized 3n-
dimensional electronic wave function Ψ(R) for n electrons: p(R) = |Ψ(R)|2. Its argument
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is an electron configuration R ∈ R, which is an indexed set of n spinpositions x with
indices i ∈ {1 . . . n}:

R = (xi). (1)

A spinposition is a tuple of a position vector r ∈ R3 and a magnetic spin quantum
number ms ∈ {−1/2, +1/2}:

x = (r, ms). (2)

An electron configuration can be regarded as a sample point from the spatial probabil-
ity distribution. Since the electrons are indistinguishable, a permutation of the indices does
not alter p(R).

2.2. Maxima, Basins of Attraction, and Probabilities

With PDA, the local maxima R∗ of p(R) are investigated. They partition the con-
figuration space R into their basins of attraction ΩR∗ [9–12]. As such, a maximum is a
representative configuration for the entire distribution of electron configurations constitut-
ing its surrounding basin. The probability PR∗ of measuring the electron configuration R in
a basin of attraction of a certain maximum R∗ is obtained by

PR∗ =
∫

ΩR∗
p(R)dR. (3)

Note that this purely topological analysis is identical to QTAIM for one-electron
systems (e.g., H +

2 ). While numerical integration of such 3n-dimensional integrals on
real-space grids becomes unfeasible already for small n, it is possible with Monte Carlo
integration via importance sampling, which is a standard procedure in any quantum Monte
Carlo code.

At this point, the molecule H2 should be briefly discussed. The protons are positioned
at (0, 0, HA) and (0, 0, HB). The position vectors of both electrons are at these nuclei posi-
tions for all four local maxima R∗; see Figure 1a. Here, it is already apparent that the three
Lewis structures of H2 (Figure 1b) are reproduced: there are two ionic maxima (both elec-
trons at the same proton) and two covalent maxima (one electron at each proton). Covalent
and ionic maxima structures have been subject of discussion in previous works [11,31]. We
label the two covalent maxima as equivalent, since they differ only in the spin coordinates
and they have equal shape and value due to spin symmetry. In contrast, the ionic maxima
are not labeled as equivalent, since their equal shape and value is only due to spatial sym-
metry. For a CAS(2,2) wave function in the minimal basis of 1s orbitals, the probabilities
are 2× 49% for the two covalent and 2× 1.3% for the two ionic maxima [12].

For molecules with heavier atoms, valence electrons in the maxima are no longer at
core positions. While there are still equivalent maxima and qualitatively different maxima,
others have very similar overall arrangements, with small displacements of the individual
electrons positions (see Figure A1 in Appendix A). These small differences arise from spin
permutations, the number of which increases with n! [11]. Accordingly, to allow their
chemical interpretation, it is crucial to group equivalent and similar maxima into clusters.
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Figure 1. Probability density analysis for a CAS(2,2) wave function of H2. (a) Cross section of the 3n-dimensional probability
density p(R) with both electrons on the z-axis. The two z-coordinates of the electrons are labeled z1 and z2 with the quantum
numbers ms,1 = −1/2 and ms,2 = +1/2. Boundaries of the basins of attraction are indicated by green lines. (b) Sketches
of a covalent (top) and two ionic (mid & bottom) ab initio dot structures. Cluster probabilities and corresponding Lewis
structures are given.

2.3. Clustering of Maxima

A distance d between two spinpositions a and b is defined simply as the difference
between the two position vectors:

d(a, b) = |ra − rb|. (4)

In order to compare two electron configurations A′ and B, the best-match permutation
(permuting A′ to A) is identified [9,10] that minimizes the cost function

∑
i

d(ai, bi). (5)

We then denote A as assigned to B. After this assignment, the distance between both
configurations is calculated by the metric

D(A, B) = max
i

d(ai, bi) (6)

as the maximal single-electron distance. This metric has two advantages: first, it is indepen-
dent on the electron number; second, it discriminates small deviations in many electrons
from a large deviation in a single electron. Note that other metric choices are possible, but
their discussion exceeds the scope of this work.

A cluster C is defined as a set of assigned maxima. At the beginning, each maximum
is a cluster itself. Two clusters A and B can be merged, if their distance

D(A,B) = min
A∈A,B∈B

D(A, B) (7)

is less than a similarity threshold dsim. This distance is the linkage function employed in
single-linkage cluster analysis [32,33]. Once the distances between all pairs of remaining
clusters is larger than dsim, the clustering is complete.
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Then, the cluster probability of a cluster C

PC = ∑
R∗∈C

PR∗ (8)

is the total probability of its elements (i.e., its maxima). These probabilities compare well to
the weights of valence bond theory [12].

For larger systems, it is often advantageous to restrict the elements a ∈ A in (5) and (6)
to a subset Ã ⊂ A (i.e., a ∈ Ã). For instance, the subset Ã can be defined by the distance of
its elements to the center of a bond, if only this bond is to be investigated. This yields local
basin and cluster probabilities PR̃∗ and PC̃ , respectively. By means of this ‘local clustering’,
the combinatorial explosion of the number of clusters for large molecules is tamed.

If the four maxima of H2 (Figure 1a) are clustered with this metric D and a threshold
less than the proton-proton distance (i.e., dsim < d(HA, HB)), the two covalent maxima
are clustered together, while the two ionic maxima remain separated. With this approach,
the three Lewis structures are reproduced; see Figure 1b.

For methanol and a threshold of dsim = 0.2 a0 (Bohr radius), two significant clusters
are obtained that are depicted in Figure 2.

(a) covalent structure (52%) (b) ionic structure (46%)

Figure 2. Representative maxima of the two most probable clusters in methanol and their cluster probabilities PC obtained
for dsim = 0.2 a0 . α and β electrons are visualized in semi-transparent red and blue so that coinciding opposite-spin electrons
appear as violet. Black lines connect spin-coupled electrons cCij = −1 forming electron motifs. The nucleus positions are
represented as transparent spheres, bond lines are added for clarity. The insets show the overlay of all assigned maxima of
the respective cluster. Electrons with the same index have the same color.

Their probabilities sum up to 98%. The remaining 2% are constituted by several minor
clusters with low probabilities showing the same motifs at the C O and O H bonds but
with an ionic motif at one or multiple C H bonds. If only the C O bond is of interest,
local cluster probabilities of 53% for the covalent and 47% for the ionic cluster are obtained.

The insets in the figures show all maxima within the covalent (Figure 2a) and the
ionic cluster (Figure 2b). In these insets, the electrons are color-coded according by their
index and show the positional spread of the maxima, which is a result of opposite-spin
permutations (cf. Figure A1 in Appendix A). It is apparent that the positional differences of
the lone pair electrons across the maxima of one cluster are much larger than for the bond
electrons, which has already been discussed in previous work for methylamine [11]. Still,
all maxima within one cluster are structurally similar.

Based on these observations and with the goal of keeping the overall bias intro-
duced to our analysis minimal, we adhere to the following guideline for the choice of
dsim, the single parameter of the proposed clustering: choose dsim so that maxima with
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different formal charges (i.e., different number of electrons in the vicinity of atoms) are
separated but structurally similar maxima originating solely from spin-permutations are
clustered together.

Next, we utilize the spin information contained in the clustered maxima. This will
lead to the recovery of the lines connecting the dots in the Lewis structures and beyond.

2.4. Spin Correlation, Electron Motifs, and Ab Initio Dot Structures

After the maxima clustering, a representative maximum R∗C can be chosen for each
cluster (e.g., the one with the highest function value p(R)). Additionally, for each pair of
electron indices in a cluster C, a spin correlation cCij value can be calculated as the cluster
average 〈 · 〉C

cCij = 4 〈ms,i ms,j〉C =
4

PC
∑

R∗∈C
PR∗ mR∗

s,i mR∗
s,j , (9)

weighted by the probabilities PR∗ and normalized by 4/PC to the interval [−1,+1]. Note
that this definition is equivalent to the statistical correlation for singlet systems, because
〈ms,i〉C = 0. Furthermore, the spin correlation is also equivalent to the identically named
quantity in the Ising model [34].

We denote electron indices with cCij = −1 (i.e., pairs in which the spins are always
opposite) as ‘spin coupled’. Here, we define a group of spin-coupled electrons as an
‘electron motif’. If the motif contains more than two electrons, values of cCij = +1 between
next-neighboring electrons arise as a consequence. If one spin flips (comparing two
maxima) in such an electron motif, all other spins of the motif flip as well.

The distribution of spin-correlation values cCij over a range of molecules is displayed in
Figure A2 in Appendix B and shows values of 0, −1, and +1 with much higher frequency
compared to all other, intermediary values. The latter, partial spin-coupling values are
closely and evenly distributed around cCij = 0 and will be subject of future works.

Finally, and in order to visualize the electron motif information obtained for a cluster in
a condensed and comprehensible way, we visualize it in a representative maxima structure
R∗C by black lines connecting the spin-coupled electrons (see Figures 1b for H2 and Figure 2
for methanol). This finalizes the ab initio dot structure.

3. Computational Approach
3.1. Wave Function Generation

Throughout this work, we employed a correlated Slater-Jastrow wave function ansatz.
This compact ansatz offers the explicit description of dynamic correlation [35]. Note that
CAS and VB wave functions have recently been studied by two of the authors [12].

Gaussian 16 [36] was used for all density functional theory (DFT) calculations. All
geometries were optimized with DFT (B3LYP [37–39] with the VWN(III) local correlation
energy [40]) using the aug-cc-pVTZ basis [41]. For the subsequent single-point calculations,
each function of the Slater-type triple-ζ TZPae basis [42] was expanded into 14 primitive
Gaussian-type functions [43,44]. The Kohn-Sham orbitals for the Slater part of the wave
function were obtained in this TZPae basis. Note that the basis set dependence of PDA
has not yet been systematically investigated. This dependence is however—in principle—
smaller than for non-real-space methods (e.g., valence bond theory), since the resulting
wave function alone is investigated. Basis sets that give the same wave function also give
the same PDA results.

Subsequently, an sm444 Schmidt-Moskowitz type Jastrow factor [35,45,46] was added
to the Kohn-Sham determinant and energy minimized [47] with the open-source quantum
Monte Carlo package Amolqc [48]. Together with the Slater-type basis set, this ensures a
correct description of two-particle cusps [35,49].
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3.2. Monte Carlo Integration of the Probability Density

The 3n-dimensional basin probability (3) integrals were calculated by Monte Carlo
integration. A sample of size N = 106 was drawn from the probability density p(R) for
every investigated molecule during a standard variational Monte Carlo run [50].

For each sampled electron configuration R, p(R) is locally maximized to identify the
basin ΩR∗ , it is found in. The probability of a local maximum R∗ can then be calculated as

PR∗ = lim
N→∞

NR∗

N
, (10)

where NR∗ is the number of electron configurations found in the basin of attraction ΩR∗ .

3.3. Local Maximization

Instead of maximizing p, − ln p is minimized. Note that − ln p(R) decreases mono-
tonically with p(R). Therefore, it has the same basins and critical points as the probability
density, but its minimization is more stable.

A two-phase minimization algorithm was employed. In the first phase (during a
latency period), a step-length limited steepest descent algorithm is used to ensure the
locality of the minimization. To avoid overshooting at the nuclear singularities, we employ
a correction in the vicinity of nuclei [51]. The latency period is reset each time an electron
arrives at a singularity. After the latency period, we smoothly switch to an L-BFGS-B
algorithm [52], which moves the remaining valence electrons to their final positions in the
maximum. The sampling of p(R), as well as the local minimization of the sampled electron
configurations, were also conducted with Amolqc [48].

3.4. Clustering and Spin-Correlation Analysis

Clustering and spin-correlation analysis was conducted with the open-source software
package inPsights [53].

The assignment problem (i.e., minimizing the cost function in (5)) is solved by the
Hungarian algorithm [54] in cubic time O(n3) [55]. If all N (potentially identical) maxima
structures were compared with each other, the number of comparisons would grow with
O(N2). To allow for sample sizes of N = 106, a pre-clustering strategy was employed to
quickly reduce the number of structures N′ ≈ 101 to 103. For this, maxima were sorted by
their function value and a greedy, spherical pre-clustering algorithm was employed with
a sphere radius of r = 0.01 a0. The algorithm is described in Appendix C. The maxima
clustering calculations were conducted on a standard desktop computer with a single CPU.
Computation times ranged from minutes to several hours depending on the number of
electrons and the complexity of the |Ψ|2 topology.

After the pre-clustering, we employed the DBSCAN clustering algorithm [56,57],
where we set the minimal cluster size minPts = 1 to conduct single-linkage clustering.
The dsim value was selected in the range of 0.1 a0 to 0.4 a0 with 0.2 a0 being the default.
Acetic acid and DHA were clustered locally. All other molecules (i.e., molecules shown in
Tables 1–4) have been clustered considering all electrons, and marginal probabilities were
obtained by subsequent summation.

Infrequently, and for symmetrical molecules, spatially similar maxima are encountered
that are exactly transformable into each other by rotation or reflection but for which a differ-
ent distance-based assignment is found. If this different and arbitrary assignment leads to
a spin flip, spin-correlation information is lost. In these cases, and to prevent this arbitrary
assignment, the clustering dsim was decreased, and the clusters were assigned manually.



Molecules 2021, 26, 911 8 of 21

Table 1. Covalent ab initio dot structures found for homo- and heteroatomic single bonds between the elements H, B, C, N, O, and F with their associated local cluster probabilities in
parentheses. Motifs of spin-coupled electrons within are indicated by black lines.

H B C N O F

H

1c: H H (96.5%)

H

H

2c: H BH2 (91.4%)

H

HH

3c: H CH3 (97.4%)

HH

4c: H NH2 (99.5%)
H

5c: H OH (98.7%) † 6c: H F (43.9%)

B H

H

H

H

7c: H2B BH2 (99.7%)

H

HHH

H

8c: H2B CH3 (99.9%)

C
H

HH H

HH

12c: H3C CH3 (99.9%)
H

HH

HH

13c: H3C NH2 (81.9%)
H

HH
H

14c: H3C OH (52.6%)
H

HH

15c: H3C F (0.3%)

N
H

H

HH

16c: H2N NH2 (99.4%)

HH

H

17c: H2N OH (70.1%)

HH

18c: H2N F (53.1%)

O
H

5c′: H OH (1.1%) †

H

H

19c: HO OH (60.6%) †

H

20c: HO F (58.0%) †

F

6c′ : H F (6.7%)

H

HH

15c′ : H3C F (0.3%)

HH

18c′ : H2N F (1.1%) 21c: F F (60.3%)

† extended correlations with O H electrons.
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Table 2. Ionic ab initio dot structures found for homo- and heteroatomic single bonds between the elements H, B, C, N, O, and F with their associated local cluster probabilities in
parentheses. Motifs of spin-coupled electrons within are indicated by black lines.

H B C N O F

H

1i: H H (2× 1.8%)

H

H

2i H BH2 (8.5%)

H

HH

3i: H CH3 (2.1%)

HH

4i: H NH2 (0.5%) 6i: H F (49.4%)

B H

H

HH

9i: H2B NH2 (99.9%) †
H

H

H
10i: H2B OH (99.9%)

H

H

11i: H2B F (100%)

C
H

HH

HH

13i: H3C NH2 (18.0%)
H

HH H

14i H3C OH (47.4%)
H

HH

15i: H3C F (99.3%)

N H

H

HH

16i: H2N NH2
(2× 0.1%) †

HH

H
17i: H2N OH (29.8%) ‡

HH

18i: H2N F (45.9%)

O

H

H

19i: HO OH
(2× 18.7%)

H

20i: HO F (32.2%) ‡

F
H

20i’: HO F (9.8%) 21i: F F (2× 19.9%)

† extended correlations with N H electrons; ‡ extended correlations with O H electrons.
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Table 3. Covalent and ionic ab initio dot structures found for homo- and heteroatomic double bonds
between the elements C, N, and O with their associated local cluster probabilities in parentheses.
Motifs of spin-coupled electrons within are indicated by black lines.

C N O

Covalent

C

H

H

H

H

22c: H2C CH2
(48.1%) †

HH

H

23c: H2C NH
(76.0%)

H

H

24c: H2C O (8.3%)

N H

26c: HN O (42.4%)

C

H

H

H

H

22c′: H2C CH2
(37.7%) †

H

H

H

23c′: H2C NH
(23.8%)

H

H

24c′: H2C O (8.4%)

N H

H

25c: HN NH (100%)

H

26c′: HN O (20.5%)

C

H

H

H

H

22c′′: H2C CH2
(2× 7.0%)

Ionic

C

HH

H

23i: H2C NH
(2× 0.1%)

H

H

24i: H2C O
(2× 41.3%)

N H

26i: HN O
(2× 18.6%) ‡

† only for comparison, obtained by decomposition of the main covalent cluster; ‡ extended correlations with
N H electrons.

In total, 31 molecules were investigated. Raw samples and maxima clustered data,
and representative maxima are available in binary, YAML, and x3dom HTML format, respec-
tively, in the supplementary material [58]. Because of file size limitations, only the first
2.5× 105 of the total 106 sample points are available. The remaining data is available upon
request.
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Table 4. Covalent and ionic ab initio dot structures found for homo- and heteroatomic triple bonds
between the elements C and N with their associated local cluster probabilities in parentheses. Motifs
of spin-coupled electrons within are indicated by black lines.

C N

Covalent

C
H H

27c: HC CH (78.5%) †

H

28c: HC N (72.8%)

N

29c: N N (92.4%)

C
HH

27c′: HC CH (0.1%) †

H

28c′: HC N (0.2%)

N

29c′: N N (0.7%)

C
H H

27c′′: HC CH (15.5%)

H

28c′′: HC N (5.9%)

N

29c′′: N N (6.9%)

C
H H

27c′′′: HC CH (5.8%)

Ionic

C
H

28i: HC N (20.9%)
† only for comparison, obtained by decomposition of the main covalent cluster.

4. Results and Discussion

First, a systematic study of the electron motifs found in the chemical bonds of small
molecules including the elements H, B, C, N, O, and F is conducted. Second, we discuss the
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motif interaction in the carboxyl group of acetic acid. Lastly, the transferability of motifs is
shown for the DHA molecule.

The probabilities presented are always local cluster probabilities for the depicted bond.
These are either obtained directly from local clustering (cf. the discussion of methanol in
Section 2.3) or by subsequent summation of cluster probabilities obtained from global clus-
tering. Instead of the electron configuration of the representative maximum (cf. Figure 2),
a schematic ab initio dot structure is shown for every cluster. Again, the electron positions
are colored (blue and red) with respect to the ms quantum number. Yet, this coloring only
has an implication within an electron motif of spin-coupled electrons (connected by black
lines) but not between different electron motifs. For any depicted electron motif, all colors
could be exchanged without changing the information of the structure.

4.1. Single Bonds

Small molecules exhibiting single bonds between the elements H, B, C, N, O, and F
have been investigated. Based on the electron distribution among the two nuclei, covalent
(c) and ionic structures can be identified and are represented by the ab initio dot structures
in the Tables 1 and 2, respectively. For the empty spots in the upper triangle of the Table 1,
only ionic maxima are found, and vice versa.

For the series of homoatomic single bonds in dihydrogen (H H), diborane(4) D2d
(H2B BH2), ethane (H3C CH3), hydrazine (H2N NH2), hydrogen peroxide (HO OH),
and difluorine (F F), as expected, we find dominantly covalent structures 1c, 7c, 12c, 16c,
19c, and 21c with high probabilities. Only for hydrogen peroxide and difluorine, ionic struc-
tures (19i, 21i) have a significant probability, as well. This strong ionic contribution may be
related to the charge-shift character of these bonds, i.e., a large covalent–ionic resonance
interaction energy in VB theory [59]. For heteroatomic single bonds, the probabilities of the
ionic structures follow the trend which is expected, given the bond polarities derived from
electronegativity (see the columns and rows of Table 2). Note that the dominance of the
covalent structure is due to the correlated nature of the wave function. With a Hartree-Fock
wave function, very similar electron positions are obtained for the homoatomic single
bonds but with an independent distribution of the two opposite spin electrons on the two
positions due to the lack of explicit Coulomb repulsion. Half the maxima, therefore, have
two electrons at the same position, which is unphysical (except at the nuclei) and results in
the typical ionicity of 50% in Hartree-Fock.

While all polarity trends are described well, a wrong bond polarity is found for a few
molecules: for methane (CH4) and ammonia (NH3), hydridic (i.e., H–) structures are found
(4i and 5i) but not the expected protonic (i.e., H+) ones. This discrepancy is caused by
the poor treatment of static correlation in the wave function ansatz. Earlier work [12] has
shown that the probabilities are more reliable for VB and CAS wave functions. However,
this work focuses on the shape of the structures, which is reliably predicted.

The dominant covalent structures of the single bonds are characterized by an electron
pair shared between two atomic cores (see, for example, 12c in Figure 1). The respective
probability density maxima show one electron position outside each atomic core in direction
to the other core. In contrast to the two core electron positions, this ‘bond position’ is
displaced due to Pauli repulsion to the same-spin core electron and the Coulomb attraction
to the second core (as discussed in detail in previous work [11]). Since hydrogen has no
core electrons, the maximum position is always located directly at the nucleus, like in H2
as discussed in Section 2.2. The electrons identified at the two bond positions always have
opposite spin. Accordingly, the electron pair arises naturally as an electron motif.

Yet, the ab initio dot structures extend beyond the Lewis picture for several reasons.
First, the ‘lone pair’ positions are all spin coupled for and cannot be divided into electron
pairs without arbitrariness. Instead, they form intuitively understandable geometrical
shapes avoiding other electrons (especially those of same spin) due to Coulomb and Pauli
repulsion. Because they are all spin coupled, they form an electron motif that we will
denote as ‘lone motif’ in the following. Second, there are single bonds, where a lone motif
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is additionally spin coupled to the bonding electron pair (17c, 18c, 5c, 14c). Thus, there is
a larger electron motif, which includes the lone positions, as well as the bond positions.
However, the distinction between bond electrons and lone-pair electrons can still easily
be made. Last, this is no longer the case for the minor covalent structures (5c′, 6c′, 15c′′

and 18c′) found mostly for bonds with fluorine. Here, an electron pair on the bond can no
longer be identified. Instead, the border between bond and lone motif is blurred. These
structures may be compared to inverted bonds discussed in VB theory [60,61].

In the following, individual covalent structures will be discussed in more detail. For
hydrazine (16c), and similarly for methylamine (H3C NH2, 13c), and hydroxylamine
(H2N OH, 17c), the lone pair electrons are aligned with the depicted bond. For ammonia
(4c), the lone pair is aligned to any of the three N H bonds. For water (5c), hydroxylamine
(17c), and hydrogen peroxide (19c), the lone motif is also coupled with the bond motif
on the O H bond, which is not explicitly shown and indicated by a dagger in Table 1.
For water and methanol, the bond pair is tilted off the bond axis, which has already been
observed by Scemama et al. [8].

In the difluorine molecule (21c), the lone motif at each atom arranges in a hexagon of
alternating spins. In the depicted ab initio dot structure, the lone motif electron positions
are not in one plane. Instead, the electrons with same spin to the next bond electron
are always further away from the bond, which is easily explained with Pauli repulsion.
However, this system is a good example to discuss the impact of the clustering threshold
dsim: because of the discussed distortion of the hexagon, a spin coupling is predicted
between the lone motif and the bond pair for very small dsim. However, we chose a value
for dsim, which is comparable to that for other systems, and treat the distortion of the
hexagon like the small displacements discussed for methanol (Figure A1 in Appendix A).

Other ab initio dot structures of single bonds can clearly be identified as ionic struc-
tures by the distribution of electrons to the cores (Table 2). For the homoatomic systems,
only one of the two ionic structures is depicted. For all of the depicted dot structures,
the ionic bond pair is always spin coupled to the lone motif and integrated into its geom-
etry, forming a larger electron motif. Ionic fluorine structures (e.g., in hydrogen fluoride
(H F, 6i) always show a cube motif, which is only slightly distorted and composed of two
same-spin tetrahedrons. As discussed previously for the neon atom [11], this fits perfectly
to both the cubic atom proposed by Lewis [1] and the double quartet theory by Linnett [7].

For first row atoms, there are two possible orientations for the ionic lone pair motifs:
if an edge is directed towards the bond (e.g., for aminoborane (H2B NH2, 9i) and fluo-
romethane (H3C F, 15i), a bond pair could still be identified. In this regard, the Lewis
picture is recovered. This is no longer the case, if a vertex is directed towards the bond,
e.g., for borinic acid (H2B OH, 10i) and fluoroborane (H2B F, 11i), as found only for
boron- and hydrogen-containing bonds.

In summary, motifs found at single bonds are limited to at most three and exhibit
clear structural regularities. Covalent structures are characterized by a bond pair that can
be coupled to lone motifs, where individual electron pairs cannot be identified. In ionic
structures, an additional pair of electrons is incorporated into a present lone motif. This
will be different for multiple bonds, where increased spin-coupling and structural variety
is observed.

4.2. Multiple Bonds

Small molecules exhibiting double and triple bonds between the elements C, N,
and O have been investigated. Again, covalent and ionic structures are identified; see
Tables 3 and 4.

Whereas the position of the bond pair electrons could be rationalized for single bonds
by a combination of Coulomb force and Pauli repulsion, additional electrons complicate
the picture. In multiple bonds, there are two ways to accommodate these electrons. First,
they can be added to the single bond structure, so that the bond pair motif stays relatively
unchanged. Second, all electron positions could be moved from the bond axis, so that
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there are more equivalent bond positions. Whereas the former is related to the σ-π picture
of multiple bonds, the latter fits to the τ picture, where the bond is decomposed into
equivalent ‘banana bonds’. These equivalent bonds fit best with the Lewis dot structures
and are also obtained as localized molecular orbitals with Edminston-Ruedenberg or
Foster-Boys localization of molecular orbitals [62–64].

At first, the carbon-carbon bonds in ethylene (H2C C2H) and acetylene (HC CH) are
discussed. For both systems, a covalent structure is dominant; see Figure 3.

H

H

H

H

(a) ethylene (85.8%)

H H

(b) acetylene (78.6%)
Figure 3. Ab initio dot structures of the most probable clusters of ethylene and acetylene with their
cluster probabilities.

As discussed in earlier work [11,12], these structures fit with the τ picture. This is no
longer case the for the other systems in Tables 3 and 4. To compare the double bond in
ethylene to other double bonds, the main covalent cluster (Figure 3a) is divided into two
clusters, so that the two two-electron motifs are replaced with a rectangular four-electron
motif. This decomposition, which is again done only for comparison, leads to the two
structures with alternating spins (22c) and blocked spins (22c′). The same is done for
acetylene: the main covalent structure (Figure 3b) is decomposed into 27c and 27c′.

For ethylene, we find two symmetric, diagonal structures (22c′′) in addition to the
one presented in Figure 3a. These structures are in good agreement with VB theory for τ
bonds, which has already been discussed in earlier work [12]. Alternatively, they could be
discussed as a modified single bond structure, where the additional electrons are placed
close to the atoms and the single bond is only tilted off the bond axis.

For the double bond in methanimine (H2C NH), a rectangular bond motif (23c) is
found without decomposition. It is coupled with the lone motif to an extended motif
in which the spins are alternating. For nitroxyl (HN O), a rectangular motif (26c) is
also recovered, albeit distorted and also coupled with the lone motifs on both atoms.
Formaldehyde (H2C O) is dominated by an ionic structure (24i) reflecting the polarity of
the bond but shows a variation of the rectangular motif (24c) with two edges of a triangular
prism of six electrons on O directed towards a pair of electrons from C as a covalent motif.
In this structure, the identification of four bond electrons is no longer possible. Thus, in
this aspect, it is comparable to the minor covalent structures (c′) found for single bonds.

The single structure for (E)-diimine (HN NH, 25c) can be related to both the rectan-
gular motif and the diagonal motif: it can be described as a widened rectangle, to which a
central bond motif has been added. Alternatively, it is a diagonal motif, to which to lone
pairs have been added. Note that the observed spin coupling does not justify the latter.
The minor covalent structure for methanimine (23c′) is a combination of the ethylene and
the (E)-diimine structures 22c′ and 25c. In formaldehyde, the second covalent motif (24c′)
is best described as a tetrahedron of electrons between the atoms coupled to four lone
pair electrons.

The ab initio dot structures of acetylene, dinitrogen (N N), and hydrogen cyanide
(HC N) are compared in Table 4. The larger number of bond electrons leads to electron
arrangements around the favorable maximum positions along the bond axis or to electrons
at or near these positions with other spin-coupled electrons.

For the lone-pair free acetylene, regular, triangular prism motifs (27c, 27c′) occur, when
the dominant covalent structure (Figure 3b) is decomposed. Additionally, a triangular
antiprism (27c′′) and a rectangular bond motif, extended by two additional electrons to a
chair-like six-electron motif (26′′′), are found.

For hydrogen cyanide and dinitrogen, distorted (anti)prisms with one (28c′, 28c′′) or
two electrons (29c′, 29c′′) at or near the single bond maximum positions along are observed,
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respectively. The dominant motif in dinitrogen (29c) has two electrons near the bond
maximum positions forming the tips of two pyramids of alternating spin. The dominant
motif in hydrogen cyanide (28c) is again a combination of the acetylene prism motif (27c)
and the dominant dinitrogen motif (29c).

For hydrogen cyanide, a wedge-like ionic motif (28i) similar to that in formaldehyde
(24c) in Table 3 is found. Again, the probability of finding the ionic motifs correlates with
the electronegativity difference.

In summary, and as for the single bonds, a small variety of only three and four
significant motifs are found per double and triple bond, respectively, for the investigated
molecules. Furthermore, clear structural regularities and relationships could be identified,
thus making them characteristic for the respective bond type. In contrast to the single
bond motifs, the multiple bond motifs cannot be reconciled with the Lewis picture, as soon
as lone pair electrons are involved. In this case, and with only one exception, all valence
electrons are spin-coupled.

Overall, characteristic motifs were found for the two-center bonds investigated. Next,
motif interactions at neighboring bonds are investigated at the example of acetic acid.

4.3. Motif Interaction in the Carboxyl Group of Acetic Acid

The electronic structure of molecules is predominantly local in the sense that functional
groups exist with very similar properties in very different molecules. This locality is well
described by the electron density for parts of the molecule [14], by localized molecular
orbitals and by VB theory. Here, we can show that a many-electron view to locality is
possible with the probability density analysis. In many cases, the ab initio dot structures
found in small molecules containing a single functional group are directly transferable to
molecules with several functional groups where they appear with comparable probabilities.
In other cases, the structures are found with significantly altered probabilities, while some
motifs or motif combinations are not found at all.

The carboxyl group (COOH) in acetic acid (H3C COOH) can be thought of as a
hydroxy group (O H) adjacent to a carbonyl group (C O). Yet, chemically, the carboxyl
group differs substantially from alcohols and ketones. A substantial alteration of the
maxima is, therefore, expected. For the carbonyl group in acetic acid, we recover the ionic
double bond motif of formaldehyde 24i and the covalent double bond motif 24c′, but we
also find a distorted variant 24i′ of the ionic double bond motif 24i with two electrons
along the C O bond axis and six electrons arranged in a hexagon around the O nucleus.
This motif is known from fluoromethane (15c; see Table 1).

The ionic motifs are found with a probability of 49% for 24i and 46% for 24i′ compared
to 83% for 24i in formaldehyde. The covalent motif 24c′ is recovered with 5% compared to
8% in formaldehyde. The covalent motif 24c is found with < 1% in acetic acid compared to
8% in formaldehyde.

For the C O H group, the covalent and ionic C O motifs (14c and 14i) are identified,
both combined with a covalent O H bond motif (5c). In this context, these two C O H
structures will be denoted 14c-5c and 14i-5c; see Figures 4a,b.

(a) 14c-5c (b) 14i-5c (c) 14c-5i (d) 14i-5i
Figure 4. Combinations of C O and O H structures found at the C O H of acetic acid.

Two new structures arise for the C O H group in acetic acid, both with ionic O H
groups (i.e., with no electron at the proton). The first motif combines a covalent C O part
coupled with lone pairs and an ionic O H part, denoted 14c-5i, while the other is ionic
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both in C O and O H (14i-5i); see Figures 4c,d. The combined probability of finding
14c-5i or 14i-5i is 43% (see Table 5), while ionic O H maxima are not found in water or
methanol at all.

Table 5. Local probabilities of all significant (P > 1%) electronic motifs combinations in acetic acid.

C O H C O PC̃ /%

14i-5c 24i′ 30
14c-5i 24i 26
14c-5c 24i 22
14i-5i 24i′ 16
14i-5c 24c′ 4

The substantially increased ionicity of the structures reflects the increased polarity of
the O H bond, and thus acidity, in acetic acid, compared to water and alcohols. A shift to
ionic motifs is also found for the C O group. The covalent C O motif 14c is found with
53% in methanol compared to 49% (14c-5c and 14c-5i) in acetic acid and the ionic motif 14i
with 47% in methanol and with 51% in acetic acid (14i-5c and 14i-5i); see Table 5.

In addition to new motifs found in the carboxyl group, we find that the C O and
C O H motifs are not statistically independent. We do not find a spin coupling to specific
carboxyl motifs like the spin coupling of lone pair electrons to bond electrons but we do
find strong statistical coupling between the motifs. In Table 5, all observed combinations
of motifs and their probabilities are listed. The covalent C O motif 24c′ is found only
combined with the ionic C O H motif 14i-5c, and the new motif 24i′ coexists only with
the ionic C O H motifs 14i-5c and 14i-5i.

With PDA, the carboxyl group in acetic acid is obtained as a combination of C O H
and C O motifs, in which its probabilities are substantially altered in comparison with
H3C O H and H2C O. The motif probabilities show a strong shift towards ionic motifs.
Furthermore, the C O H and C O motifs are not independent but strongly correlated.
These findings correlate well with chemical and physical properties, such as acidity and
infrared group frequencies of the carboxyl group, in comparison to free hydroxyl and
ketone groups [65].

4.4. Motif Transferability in Dehydroalanine

The DHA molecule depicted in Figure 5 contains a C C double bond, a C N single
bond, and a carboxyl group.
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Figure 4. Combinations of C O and O H structures found at the C O H of acetic acid.
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Figure 5. Dehydroalanine.

The electron motifs of all three groups and their statistical correlations are investigated.
For DHA, the number of maxima and also the number of maxima clusters is substan-

tially increased in comparison to the small molecules discussed above. However, it is not
necessary to obtain and analyze all maxima clusters. Instead, we employ local clustering to
identify the motifs and their probabilities for each functional group. Statistical correlations
between neighboring functional groups can be analyzed by simultaneous local clustering
of two functional groups. This way, large numbers of maxima clusters do not occur at any
stage of the analysis, and the size of the molecules to be investigated is limited only by the
possibility of running a variational Monte Carlo calculation.

For the individual functional groups, the same motifs are found as in the correspond-
ing environments in the smaller molecules ethylene, methylamine, and acetic acid. In
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contrast to the discussion of the carboxyl group, no additional motifs arise. This indicates
that the electronic motifs are indeed characteristic for functional groups.

Whereas the electron motifs of the smaller molecules are recovered in DHA, the in-
dividual probabilities of the motifs shift significantly. In Table 6, the probabilities for the
motifs in DHA are compared with those of the corresponding smaller molecules.

Table 6. Local probabilities of motifs in dehydroalanine (DHA) compared to simple molecules (SM).

Group Motif PC̃(DHA)/% PC̃(SM)/%

C C 22c or 22c′ 93 86 a

C C 22c′′ 6 14 a

C N 13c 73 82 b

C N 13i 27 18 b

COOH 14i-5c and 24i′ 43 30 c

COOH 14c-5i and 24i 25 26 c

COOH 14c-5c and 24i 11 22 c

COOH 14i-5i and 24i′ 19 16 c

COOH 14i-5c and 24c′ 3 4 c

a ethene, b methylamine, c acetic acid.

These probability changes, once more, indicate an influence of the environment on
the electronic structure in a functional group and deserve further investigation which
is beyond the scope of this paper. Contrary to the situation in acetic acid, no statistical
correlation between individual motifs of any two functional groups is observed.

5. Conclusions

In this work, the probability density analysis based on the local maxima of the squared
wave function was presented. The existing analysis was expanded by a comprehensive
clustering of these maxima, which allows for the definition of a spin correlation and the
generalization of the electron pair to the electron motif. As an alternative to the empirical
Lewis structures, as well as to the semi-empirical Linnett structures, ab initio dot structures
have been introduced as the representation of a cluster and its spin information. These
ab initio structures have been presented and analyzed for single, double, and triple bonds
in small first row molecules. For single bonds, the ionic-covalent resonance of VB theory
can be reproduced (covalent and ionic structures are identified), and the results mostly fit
with the Lewis picture. However, the concept of distinct lone pairs cannot be reconciled
with the findings by probability density analysis, so that they have been replaced with a
lone motif. For multiple bonds, the agreement with the Lewis picture vanished for many
systems, and extended electron motifs occur due to the coupling of the bond electrons with
the lone motifs. In general, only very few motifs are found for each bond or functional
group. In acetic acid, the motifs of the C O H group in methanol and the C O group
in formaldehyde are recovered, but additional motifs arise. Furthermore, the motifs of
the two groups are strongly statistically correlated, reaffirming the status of the carboxyl
function as an independent functional group from an electronic structure perspective. In
DHA, on the other hand, the motifs of the three functional groups are very similar to the
motifs of the corresponding smaller molecules, and no significant statistical correlation is
found. This demonstrates the transferability of electron motifs corresponding to individual
functional groups. Furthermore, the limited spatial extent of the motifs reflects the locality
of chemistry at the level of real space many-electron analysis. This allows a probability
density analysis for large molecules, in spite of the exponentially increasing number of
local maxima, by employing a local clustering focused on only one or two bonds.
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Appendix A. Structural Similarity

Figure A1. Two similar maxima of methanol. The flipped spins at the CH3 group lead to small
positional shifts of the valence electrons.

Appendix B. Spin-Correlation Distribution

Figure A2. Histogram with 101 bins of spin-correlation values cCij calculated from all clusters of the

molecules 129. Same-spin correlation values (cCij = +1) were only found within motifs composed of
more than two electrons.

Appendix C. Pre-Clustering

To reduce the number of comparisons, we utilize that similar maxima also have
similar probability density values p. Thus, by sorting the maxima and comparing only
those within a window of values [− ln p,− ln p + ∆), the number of comparisons is often
drastically reduced. We employ this in a spherical greedy pre-clustering algorithm, where
we start with the first maximum as a cluster center and compare it with all maxima from
the window. Maxima within a similarity sphere of radius r are then clustered together. The
first maximum being outside of r constitutes the center of a new cluster sphere to which
all subsequent maxima from the window must be compared. This is then repeated for all
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value windows. This algorithm is greedy because the creation of spherical cluster centers is
random and depends on the order of maxima. As long as the sphere radius is chosen with
r ≤ dsim/2, the maxima in the pre-cluster spheres will be merged into the same clusters
during the main-clustering, as they would have been without the pre-clustering step.
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