Supplementary Materials

Broadband Visible Light-Absorbing [70]Fullerene-BODIPY-Triphenylamine Triad: Synthesis and Application as Heavy Atom-Free Organic Triplet Photosensitizer for Photooxidation

San-E Zhu,^{*1} Jian-Hui Zhang,¹, Yu Gong,¹, Li-Feng Dou,¹ Li-Hua Mao,¹ Hong-Dian Lu,¹ Chun-Xiang Wei,¹ Hong Chen,¹ Xue-Fei Wang^{*2} and Wei Yang^{*1}

¹School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, China.

²School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

E-mail address: zhuse@hfuu.edu.cn (S.-E Z.); <u>wangxf@ucas.ac.cn</u> (X.-F. W.); weyang@ustc.edu.cn (W. Yang).

Contents

 The spectral response of DHN with MB as the sensitizer The photostability of C₇₀-B-T High resolution mass spectra ¹H NMR and ¹³C NMR spectra 	S2
	S2 S2-7

1. The spectral response of DHN with MB as the sensitizer.

Figure S1. Absorption spectral change for the photooxidation of DHN using **MB** as the sensitizer. $c[MB] = 1.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$, $c[DHN] = 1.0 \times 10^{-4} \text{ mol } \text{L}^{-1}$. In CH₂Cl₂– MeOH (9/1, v/v).

2. The photostability of C₇₀-B-T.

Figure S2. The stability of C_{70} -B-T. c = 1.0×10^{-5} mol L⁻¹ in CH₂Cl₂-MeOH (9/1, v/v). After being exposed to light for 1 h, no bleaching is observed.

3. High resolution mass spectra

D:\data\gc\20201130\ZJH-C70\0_A18\1\1Ref

Figure S3. The high resolution mass spectrum (HRMS) of C₇₀-1.

D:\data\gc\20201207\ZJH-1\0_G11\1\1Ref

Figure S4. The high resolution mass spectrum (HRMS) of 5.

D:\data\gc\20201207\ZJH-2\0_G12\1\1Ref

Figure S5. The high resolution mass spectrum (HRMS) of 6.

 $D:\data\gc\20201130\ZJH-BDP-2Ph\0_A23\1\Ref$

Figure S6. The high resolution mass spectrum (HRMS) of B-T.

 $D:\label{eq:last_linear} D:\label{eq:last_linear} D:\label{eq:last_linear} data\gc\20201216\ZJH-201214-670\0_H20\1\Ref$

Figure S7. The high resolution mass spectrum (HRMS) of C₇₀-B-T.

4. ¹H NMR and ¹³C NMR spectra

Figure S8. ¹H NMR of C₇₀-1 in CDCl₃ (400 MHz).

Figure S9. ¹³C NMR of C₇₀-1 in CDCl₃ (100 MHz).

Figure S10. ¹H NMR of 2 in CDCl₃ (400 MHz).

Figure S11. ¹H NMR of **3** in CDCl₃ (400 MHz).

Figure S13. ¹³C NMR of 5 in CDCl₃ (100 MHz).

Figure S15. ¹³C NMR of 6 in CDCl₃ (100 MHz).

Figure S16. ¹H NMR of B-T in CDCl₃ (400 MHz).

Figure S17. ¹³C NMR of B-T in CDCl₃ (100 MHz).

Figure S18. ¹H NMR of C₇₀-B-T in CDCl₃ (400 MHz).

Figure S19. ¹³C NMR of C₇₀-B-T in CDCl₃ (100 MHz).

Figure S20. Expansion of the ¹³C NMR of C₇₀-B-T.

Figure S21. Expansion of the ¹³C NMR of C₇₀-B-T.

Figure S22. Expansion of the ¹³C NMR of C₇₀-B-T.

Figure S23. Expansion of the ¹³C NMR of C₇₀-B-T.