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Abstract: The pyrazoline ring is defined as a “privileged structure” in medicinal chemistry. A variety
of pharmacological properties of pyrazolines is associated with the nature and position of various
substituents, which is especially evident in diarylpyrazolines. Compounds with a chalcone fragment
show a wide range of biological properties as well as high reactivity which is primarily due to
the presence of an α, β-unsaturated carbonyl system. At the same time, bicyclic monoterpenoids
deserve special attention as a source of a key structural block or as one of the pharmacophore
components of biologically active molecules. A series of new diarylpyrazoline derivatives based
on isobornylchalcones with different substitutes (MeO, Hal, NO2, N(Me)2) was synthesized. An-
tioxidant properties of the obtained compounds were comparatively evaluated using in vitro model
Fe2+/ascorbate-initiated lipid peroxidation in the substrate containing brain lipids of laboratory mice.
It was demonstrated that the combination of the electron-donating group in the para-position of ring
B and OH-group in the ring A in the structure of chalcone fragment provides significant antioxidant
activity of synthesized diarylpyrazoline derivatives.

Keywords: isobornylchalcones; diarylpyrazolines; Fe2+/ascorbate-initiated lipid peroxidation;
antioxidant activity

1. Introduction

Lipid peroxidation (LPO) is a process initiated by free radicals attacking phospho-
lipids or polyunsaturated fatty acids, which leads to the formation of various types of
toxic oxidation products [1]. These highly reactive products, through interaction with
cellular components, can initiate the mechanisms of several disorders and diseases, such as
cardiovascular, neurodegenerative diseases, cancer and aging [2]. Thus, the design and
development of new antioxidants for the prevention and treatment of the above-mentioned
diseases are becoming increasingly important.

Chalcones (1,3-diphenyl-2-propen-1-ones) are a subclass of open-chain flavonoids that
are present in many plants [3]. Structurally, chalcones consist of two aromatic rings (A
and B) linked by a three-carbon α-β unsaturated carbonyl moiety (Figure 1). The chalcone
skeleton is considered a privileged scaffold in medicinal chemistry and is widely used as
an effective template for drug discovery [4]. Compounds with a chalcone fragment exhibit
various types of biological activity such as antibacterial, antifungal, anti-inflammatory,
anti-cancer, etc. [5–10].
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Figure 1. Chemical structures of some biologically active compounds. 
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tabolism of carcinogens by inhibition of distinct phase 1 metabolic enzymes and activa-
tion of phase 2 detoxifying enzymes, and display anti-inflammatory properties [12]. 
Xanthohumol, the main prenylchalcone of hops and beer, showed a high antioxidant ac-
tivity (AOA) of inhibiting the oxidation of low density lipoproteins (LDL), greater than 
α-tocopherol and isoflavone genistein, but less than flavonol quercetin (Figure 1) [13]. 
Chalcones are highly reactive due to the presence of two active electrophilic centers, the 
carbonyl group and the double bond conjugated to it, and can react as ambident elec-
trophiles due to the delocalization of the electron density in the three-carbon α-β un-
saturated carbonyl system. In addition, these compounds are of great interest as available 
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It was demonstrated that synthetic chalcone derivative 2-hydroxy-4′-methoxychalcone
(AN07) potentially has anti-atherosclerosis effects, as well as antioxidant, anti-inflammatory,
and neuroprotective effects [11]. Some prenylchalcones are isolated from hops and beer
and exhibit antioxidant effects, modulate metabolism of carcinogens by inhibition of
distinct phase 1 metabolic enzymes and activation of phase 2 detoxifying enzymes, and
display anti-inflammatory properties [12]. Xanthohumol, the main prenylchalcone of hops
and beer, showed a high antioxidant activity (AOA) of inhibiting the oxidation of low
density lipoproteins (LDL), greater than α-tocopherol and isoflavone genistein, but less
than flavonol quercetin (Figure 1) [13]. Chalcones are highly reactive due to the presence
of two active electrophilic centers, the carbonyl group and the double bond conjugated to
it, and can react as ambident electrophiles due to the delocalization of the electron density
in the three-carbon α-β unsaturated carbonyl system. In addition, these compounds are of
great interest as available starting reagents for reactions involving binucleophiles, leading
to a wide variety of 5-, 6-, and 7-membered carbo- and heterocyclic compounds, such as
benzodiazepines, dihydropyrimidines, pyrazolines, etc. [14–17].

Amongst these heterocyclic ring-containing scaffolds, pyrazolines as a class of electron-
rich nitrogen heterocyclic compounds play an important role due to their extensive use
as pharmacophore and synthon. Interestingly, 2-pyrazoline derivatives synthesized from
chalcones have shown a variety of biological activities, such as antibacterial, antitumor,
antifungal, anti-inflammatory, antioxidant, and antimalarial [18–24]. Previously it has been
reported that 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-(multi-substituted-4-hydroxyphenyl)-
2-pyrazolines showed significant human LDL-antioxidant activities (Figure 1) [25]. These
results demonstrated that bulky di-tert-butyl groups contribute to higher activity by creating
steric and electronic factors to stabilize the phenoxy radical formed from the phenolic hydroxy
group, which could affect the antioxidant activity of human low-density lipoproteins.
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At the same time, the hybridization of biologically active molecules, based on the
combination of pharmacophore groups of two or more known biologically active com-
pounds, is a powerful strategy for drug development. It leads to the development of new
hybrid compounds that preserve the pre-selected characteristics of the original templates.
Previously, it was demonstrated that the introduction of a terpene fragment into the 4-
methylcoumarin scaffold increased the antioxidant, antiradical, and membrane-protective
activity of the coumarin derivatives [26]. The 3,4-dihydro-2Hbenz[e][1,3]oxazine derivative
of 2-hydroxy-3-isobornyl-5-methylbenzaldehyde showed high membrane-protective activ-
ity on the model H2O2-induced hemolysis towards mammalian red blood cells [27]. From
this point of view, the synthesis of heterocyclic compounds based on the transformations
of isobornylphenols and the study of their antioxidant activity is an interesting subject
of research.

Heterogeneous systems, particularly oil–water emulsions, are often used to study an-
tioxidant activity [28–33]. The interfacial properties of derivatives affected by the type of
substituting group is the predominant factor to exert antioxidant activity in this model [31,32].
A suitable and affordable source of easily oxidized lipids for preparation of model emulsions
is the brain of laboratory animals. Brain homogenate is a substrate widely used as an oxidative
stress model [34–38]. The brain is extremely vulnerable to oxidative stress, in part because it
is highly enriched with non-heme iron, which is catalytically involved in the production of
oxygen free radicals. In addition, the brain contains a relatively high degree of polyunsatu-
rated fatty acids that are particularly good substrates for peroxidation reactions [39,40]. This
approach is common for studies of antioxidant activity of food products, plant extracts, and
chemical compounds promising for pharmacology. We regularly use this method to assess
the antioxidant activity of compounds of various structures [26,27,41,42].

This work describes the synthesis of diarylpyrazoline derivatives with an isobornyl
substituent and a study of their antioxidant activity using the model of Fe2+/ascorbate-
initiated LPO in substrate obtained from mice brain homogenate. Quercetin and resveratrol
were used as a standard.

2. Results and Discussion

The initial racemic 1,3-dihydroxy-4-isobornylbenzene 1 was synthesized via the alky-
lation of resorcinol with camphene according to the known method [43] (Scheme 1). Ace-
tophenones 3 and 4 were obtained by acetylation of compound 1 with acetic anhydride in
BF3 Et2O followed by O-allylation of the resulting product 2 [44].

Claisen–Schmidt condensation of isobornylacetophenone derivatives 3 and 4 with
appropriately substituted benzaldehydes was carried out in order to synthesize a set
of chalcone derivatives with dimethylamino, chloro, bromo, methoxy, and nitro B-ring
substituents (Scheme 1). The synthesis of chalcones 6a–k and 8a–k has been previously
described [44,45]. Chalcones 6a–d and 8a–d were synthesized by KOH/MeOH condensa-
tion of compounds 3 and 4 with appropriate benzaldehydes, methoxychalcones 6e–k, 8e–k
by condensation of compounds 3 and 4 with methoxy-substituted benzaldehydes 5e–k in
the presence of sodium hydride in dimethylformamide. The reaction of chalcones 6a–k,
8a–k with hydrazine in acetic acid under reflux condition produced the corresponding
pyrazoline derivatives 7a–k, 9a–k (Scheme 1, Table 1).
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Scheme 1. Synthesis of pyrazoline derivatives 7a–k and 9a–k. Reagents and conditions: (i) Ac2O, BF3·Et2O, 60 ◦C, 3 h, 76%;
(ii) (CH3)2CO, AllylBr, K2CO3/KI, heat; (iii) for 6a–d, 8a–d 40% (w/v) sodium hydroxide, methanol, rt; for 6e–k, 8e–k NaH,
DMF, 0–25 ◦C; (iv) hydrazine hydrate, CH3COOH, rf.

Table 1. Yields of pyrazolines.

Compound R Yield, % Compound R Yield, %

7a 3-NO2 78 9a 3-NO2 85
7b 4-Cl 70 9b 4-Cl 76
7c 4-Br 91 9c 4-Br 91
7d 4-NMe2 71 9d 4-NMe2 68
7e 2-OMe 96 9e 2-OMe 93
7f 3-OMe 91 9f 3-OMe 77
7g 4-OMe 90 9g 4-OMe 82
7h 2,3-OMe 90 9h 2,3-OMe 92
7i 3,4-OMe 99 9i 3,4-OMe 99
7j 2,4,6-OMe 75 9j 2,4,6-OMe 56
7k 3,4,5-OMe 98 9k 3,4,5-OMe 96

The structure of new substituted diarylpyrazolines with an isobornyl moiety was
established on the basis of 1H and 13C NMR spectroscopy and mass spectrometry. In the
1H NMR spectra of compounds 7a–k and 9a–k, there are no signals of the vinyl protons
of the unsaturated α-β bond in the region of δH 7.41–8.39 ppm, but there is a signal of
the CH3 group of the N-acyl fragment in the region of δH 2.28–2.46 ppm. Signals of the
methylene (in the range of 3.08–3.33 and 3.84–3.99 ppm) and methine (5.49–5.96 ppm)
groups of the pyrazoline ring are also observed. The integrated intensity of the aromatic
proton signals corresponds to the declared structures. The 13C NMR spectra contain signals
of the CH3 carbon atom of the N-acyl group at 21–22 ppm and signals of the methine
(57 ppm) and methylene (42 ppm) groups are observed, the signal of the C=O group carbon
atom is present in the weak field region of 210 ppm. Copies of 1H and 13C NMR spectra of
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compounds 7a,b,i,j and 9a,b,i,k are provided in Supplementary Materials. Mass spectral
data are in accordance with the proposed structures.

Figure 2 shows the results of a comparative assessment of the antioxidant activity of
44 chalcones and diarylpyrazolines. The AOA of compounds was evaluated as inhibition
of accumulation of secondary LPO products (TBA-RS) in substrates. In general, pyrazoline
derivatives (Figure 2b) exhibit greater activity compared to the corresponding chalcones
(Figure 2a) containing an α-β-unsaturated carbonyl system, which indicates the leading
role of 4,5-dihydro-1H-pyrazole scaffold in the manifestation of antioxidant function of the
compounds under consideration. At the same time, for both chalcones and arylpyrazolinesa
significant dependence of the activity on the structure, number and position of substituents
in both phenyl cores (A and B) was observed.
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Thus, in this model system, no AOA was detected for chalcones containing nitro group
(6a and 8a) or halogen atoms (6b,c and 8b,c) in the aromatic ring B. The presence of donor
methoxy groups in this ring promotes antioxidant activity, and not only their number but
also their position is essential. In addition to methoxy groups, the antioxidant activity of
chalcones can also be impacted by the dimethylamine group at the C-4 position of the
B ring. Interestingly, in such a structure, high activity was detected only in chalcone 8d,
but not in chalcone 6d, which differ in substituents in ring A. The influence of the A-ring
substituents’ structure on the AOA of chalcones is also noted for the above-mentioned
compounds. The presence of two allyl substituents (8e–k) had a greater effect than the
combination of allyl and hydroxyl substituents (6e–k) with other matching structures.

Among the diarylpyrazolines, the compounds containing the halogen atom (7b,c and
9b,c) in the B ring were also the least active. Diarylpyrazolines with a nitro group in ring B
(7a and 9a) turned out to be more active than the corresponding chalcones (6a and 8a). As
with chalcones, the antioxidant activity of diarylpyrazolines is associated with the presence
of electron-donating substituent in the para-position of this ring. For instance, high AOA
was also found in diarylpyrazolines with a dimethylamine group at position C-4 of ring B
(7d and 9d). Among mono methoxy pyrazolines, the most active were compounds with a
substituent in the para-position of ring B, while the ortho- and meta-isomers showed similar
results of activity. Moreover, the structure of the substituents in ring A is also important
here. In all cases, compounds with a hydroxyl group in the C-2 position of ring A turned
out to be more active than the corresponding derivatives with two allyloxy substituents.
For diarylpyrazolines with two methoxy groups in ring B, the compounds with the catechol
moiety 7i and 9i were predictably most active. It should be noted that these compounds are
leaders in antioxidant activity among all studied compounds and showed significant ability
to inhibit LPO at the level of values for standards. The patterns revealed above were also
valid for diarylpyrazolines with three methoxy groups (7j,k and 9j,k). In contrast to the
first three compounds (7g,k and 9k), which showed high AOA, compound 9j, combining
two allyloxy substituents in ring A and 2,4,6-trimethoxy substituents in ring B, inhibited
LPO to a small extent.

The decrease in Fe2+-induced lipid peroxidation in substrate obtained from mouse
brain homogenate in the presence of pyrazolines could be the result of their ability to chelate
Fe2+ and/or radical scavenging activity. Compound 7i was the most effective antioxidant.
These results strongly suggest that the presence of hydroxyl group at 2′-position in ring
A (compare 7a–k to 9a–k) and the catechol moiety in ring B (7i and 9i) are essential for
inhibiting Fe2+/ascorbate-mediated LPO in this model system.

3. Materials and Methods
3.1. Chemistry

The 1H- and 13C-NMR spectra were recorded on a Avance II 300 instrument (300 MHz
and 75 MHz, (Bruker CorporationGermany) in CDCl3. The assignment of the atoms’
signals of synthesized compounds was carried out using the 1H and J-modulated 13C NMR
spectra, as well as using the HSQC, HMBC, NOESY, COSY techniques. The melting points
were measured on a Gallenkamp MPD 350 instrument (Sanyo, Moriguchi, Japan) and were
not corrected. Mass spectra were recorded on a Thermo Finnigan LCQ Fleet instrument
(Thermo Fisher Scientific, Waltham, MA, USA). The reaction progress was monitored by
thin layer chromatography (TLC) on Sorbfil plates. Column chromatography was carried
out on silica gel Alfa Aesar 70/230 µ (Alfa Aesar, Ward Hill, MA, USA).

The spectral data were partially obtained using the equipment of the Center of Collec-
tive Usage Chemistry (Institute of Chemistry, Komi Scientific Centre, Ural Branch of the
RAS, Syktyvkar, Russia).

Synthesis and spectral characteristics of compounds 1–4, 6a–k, and 8a–k have been
described previously [43,44].
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General Procedure for the Synthesis of Pyrazolines

A mixture of chalcone (1 mmol), hydrazine monohydrate (5 mmol), and acetic acid
(6 mL) were refluxed for 1–2.5 h. The progress of the reaction was monitored by TLC. The
resulting mixture was poured into ice-cold water andallowed to stand. The precipitate
that formed was separated by filtration and washed with cold water. In cases where no
precipitate was formed, the mixture was extracted with ethyl acetate (3 × 10 mL). The
organic extracts were dried over anhydrous sodium sulphate, filtrated, and evaporated
under vacuum. Additional purification of the reaction product was carried out by column
chromatography on silica gel.

1-(5-(3-Nitrophenyl)-3-(4′-allyloxy-2′-hydroxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-1-yl)
etanone (7a). Yellow oil; 78% yield. IR (KBr), ν/cm−1 3415 (OH), 1668 (C=O), 1625 (C=N),
1348 (N−O) 1261 (=C−O), 1247 (C−N). 1H NMR (CDCl3, δ ppm, J/Hz): 0.71 (s, 3H, 10-
CH3); 0.85 (s, 3H, 8-CH3); 0.86 (s, 3H, 9-CH3); 1.29−1.46 (m, 2H, 5-CH2, 6-CH2); 1.57−1.61
(m, 2H, 3-CH2, 6-CH2); 1.82−1.84 (m, 2H, 5-CH2, 4-CH); 2.06−2.11 (m, 1H, 3-CH2); 2.43
(s, 3H, N-COCH3); 3.26−3.33 (m, 2H, 18-CH2, 2-CH); 3.89−3.99 (m, 1H, 18-CH2); 4.59
(d, J = 5 Hz, 2H, 1′-CH2); 5.36 (d, J = 11 Hz, 1H, 3′-CH2(Hcis)); 5.50−5.53 (d, J = 17 Hz,
1H, 3′-CH2(Htrans)); 5.62−5.68 (m, 1H, 19-CH); 6.07−6.13 (m, 1H, 2′-CH); 6.57 (s, 1H,
13-CH); 7.11 (s, 1H, 16-CH); 7.53−7.64 (m, 2H, 24-CH, 25-CH); 7.48−7.51 (m, 2H, 21-CH,
23-CH); 10.17 (s, 1H, C(14)-OH). 13C NMR (CDCl3, δ ppm): 12.2 (10-CH3); 20.1 (8-CH3);
21.5 (9-CH3); 21.9 (N-COCH3); 27.4 (5-CH2); 34.1 (3-CH2); 39.4 (6-CH2); 42.7 (18-CH2);
44.1 (2-CH); 45.5 (4-CH); 48.1 (7-C); 49.6 (1-C); 57.6 (19-CH-N); 68.9 (1′-CH2); 99.9 (13-CH);
106.5 (11-C); 117.6 (3′-CH2); 120.9 (21-CH); 122.9 (25-CH); 124.5 (15-C); 127.5 (16-CH); 130.1
(24-CH); 131.9 (23-CH); 132.6 (2′-CH); 143.5 (20-C); 146.3 (22-C); 156.5 (17-C=N); 160.2
and 167.9 (12-C) and (14-C); 211.1 (C=O). ESI-MS m/z: found 518.71 [M + H]+, calcd. for
C30H36N3O5 518.62.

1-(5-(4-Chlorophenyl)-3-(4′-allyloxy-2′-hydroxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-1-
yl)etanone (7b). Yellow oil; 70% yield. IR (KBr), ν/cm−1 3431 (OH), 1662 (C=O), 1627 (C=N),
1263 (=C−O), 1257 (C−N), 1022 (Ar−Cl). 1H NMR (CDCl3, δ ppm, J/Hz): 0.74 (s, 3H, 10-
CH3); 0.83 (s, 3H, 8-CH3); 0.84 (s, 3H, 9-CH3); 1.29−1.39 (m, 2H, 5-CH2, 6-CH2); 1.48−1.58
(m, 2H, 3-CH2, 6-CH2); 1.61−1.83 (m, 2H, 5-CH2, 4-CH); 2.01−2.11 (m, 1H, 3-CH2); 2.39
(s, 3H, N-COCH3); 3.12−3.19 (m, 1H, 18-CH2); 3.28 (t, J = 9.0 Hz, 1H, 2-CH); 3.84−3.94
(m, 1H, 18-CH2); 4.59 (d, J = 4.9 Hz, 2H, 1′-CH2); 5.37 (d, J = 10.9 Hz, 1H, 3′-CH2(Hcis);
5.49−5.56 (m, 2H, 3′-CH2(Htrans), 19-CH); 6.07−6.13 (m, 1H, 2′-CH); 6.56 (s, 1H, 13-CH);
7.11 (s, 1H, 16-CH); 7.23 (d, J = 8 Hz, 2H, 21-CH, 25-CH); 7.31 (d, J = 8.3 Hz, 2H, 22-CH,
24-CH); 10.25 (s, 1H, C(14)-OH). 13C NMR (CDCl3, δ ppm): 12.4 (10-CH3); 20.3 (8-CH3);
21.5 (9-CH3); 22.1 (N-COCH3); 27.4 (5-CH2); 34.3 (3-CH2); 39.6 (6-CH2); 42.7 (18-CH2); 44.3
(2-CH); 45.6 (4-CH); 48.1 (7-C); 49.5 (1-C); 57.7 (19-CH-N); 68.8 (1′-CH2); 99.9 (13-CH); 106.9
(11-C); 117.5 (3′-CH2); 124.5 (15-C); 127.2 (21-CH, 25-CH); 127.6 (16-CH); 129.2 (22-CH,
24-CH); 132.1 (2′-CH); 132.6 (20-C); 139.9 (23-C); 156.6 (17-C=N); 160.1 and 167.8 (12-C) and
(14-C); 211.3 (C=O). ESI-MS m/z: found 507.95 [M + H]+, calcd. for C30H36ClN2O3 508.06.

1-(5-(4-Bromophenyl)-3-(4′-allyloxy-2′-hydroxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-1-
yl)etanone (7c). Gray-yellow powder; 91% yield; m.p. 73–74 ◦C. IR (KBr), ν/cm−1 3421
(OH), 1668 (C=O), 1625 (C=N), 1261 (=C−O), 1245 (C−N). 1H NMR (CDCl3, δ ppm, J/Hz):
0.73 (s, 3H, 10-CH3,); 0.82 (s, 3H, 8-CH3,); 0.92 (s, 3H, 9-CH3,); 1.29−1.47 (m, 2H, 5-CH2,
6-CH2); 1.52−1.61 (m, 2H, 3-CH2, 6-CH2); 1.68−1.83 (m, 2H, 5-CH2, 4-CH); 2.02−2.06 (m,
1H, 3-CH2); 2.39 (s, 3H, N-COCH3); 3.12−3.28 (m, 2H, 18-CH2, 2-CH); 3.84−3.95 (m, 1H,
18-CH2); 4.60 (d, J = 4.8 Hz, 2H, 1′-CH2); 5.37 (d, J = 11 Hz, 1H, 3′-CH2(Hcis)); 5.50−5.55
(m, 2H, 3′-CH2(Htrans), 19-CH); 6.07−6.13 (m, 1H, 2′-CH); 6.55 (s, 1H, 13-CH); 7.11 (s,
1H, 16-CH); 7.14−7.19 (m, 2H, 21-CH, 25-CH); 7.48−7.51 (m, 2H, 22-CH, 24-CH); 10.25
(s, 1H, C(14)-OH). 13C NMR (CDCl3, δ ppm): 12.4 (10-CH3); 20.1 (8-CH3); 21.5 (9-CH3);
22.1 (N-COCH3); 27.4 (5-CH2); 34.2 (3-CH2); 39.6 (6-CH2); 42.7 (18-CH2); 44.2 (2-CH); 44.3
(4-CH); 45.5 (7-C); 48.8 (1-C); 57.7 (19-CH-N); 68.8 (1′-CH2); 99.9 (13-CH); 106.9 (11-C); 117.5
(3′-CH2); 124.5 (15-C); 127.5 (21-CH, 25-CH); 127.6 (16-CH); 132.1 (22-CH, 24-CH); 132.7
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(2′-CH); 132.6 (20-C); 140.5 (23-C); 156.8 (17-C=N); 16.1 and 168.8 (12-C) and (14-C); 210.8
(C=O). ESI-MS m/z: found 552.35 [M + H]+, calcd. for C30H36BrN2O3 552.51.

1-(5-(4-Dimethylaminophenyl)-3-(4′-allyloxy-2′-hydroxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-
1-yl)etanone (7d). Yellow oil; 71% yield. IR (KBr), ν/cm−1 3396 (OH), 1664 (C=O), 1624
(C=N), 1261 (=C−O), 1226 (C−N). 1H NMR (CDCl3, δ ppm, J/Hz): 0.71 (s, 3H, 10-CH3);
0.85 (s, 3H, 8-CH3); 0.92 (s, 3H, 9-CH3); 1.27−1.46 (m, 2H, 5-CH2, 6-CH2); 1.52−1.61 (m, 2H,
3-CH2, 6-CH2); 1.67−1.83 (m, 2H, 5-CH2, 4-CH); 2.01−2.11 (m, 1H, 3-CH2); 2.37 (s, 3H, N-
COCH3); 2.94 (s, 6H, C(23)-N(CH3)2); 3.28−3.34 (m, 2H, 18-CH2, 2-CH); 3.77−3.83 (m, 1H,
18-CH2); 4.59 (d, J = 4.8 Hz, 2H, 1′-CH2); 5.36 (d, J = 10.8 Hz, 1H, 3′-CH2(Hcis)); 5.47−5.56
(m, 2H, 3′-CH2(Htrans), 19-CH); 6.06−6.13 (m, 1H, 2′-CH); 6.55 (s, 1H, 13-CH); 6.69−6.73
(m, 2H, 21-CH, 25-CH); 7.14−7.19 (m, 3H, 22-CH, 24-CH, 16-CH); 10.39 (s, 1H, C(14)-OH).
13C NMR (CDCl3, δ ppm): 12.3 (10-CH3); 20.1 (8-CH3); 21.5 (9-CH3); 22.1 (N-COCH3); 27.4
(5-CH2); 34.1 (3-CH2); 39.6 (6-CH2); 40.5 (C(23)-N(CH3)2); 42.8 (18-CH2); 44.2 (2-CH); 44.3
(4-CH); 49.1 (7-C); 51.1 (1-C); 57.9 (19-CH-N); 68.8 (1′-CH2); 99.8 (13-CH); 107.3 (11-C); 112.7
(22-CH, 24-CH); 117.5 (3-CH2′ ); 124.1 (15-C); 126.7 (21-CH, 25-CH); 127.6 (16-CH); 129.1
(20-C); 132.8 (2′-CH); 150.13 (23-C); 156.8 (17-C=N); 160.7 and 167.3 (12-C) and (14-C); 199.8
(C=O). ESI-MS m/z: found 516.81 [M + H]+, calcd. for C32H42N3O3 516.69.

1-(5-(2-Methoxyphenyl)-3-(4′-allyloxy-2′-hydroxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-
1-yl)etanone (7e). Gray-yellow powder; 96% yield; m.p. 70–71 ◦C. IR (KBr), ν/cm−1 3427
(OH), 1668 (C=O), 1625 (C=N), 1259 (=C−O), 1239 (C−N), 1188 (O−CH3). 1H NMR (CDCl3,
δ ppm, J/Hz): 0.71 (s, 3H, 10-CH3); 0.86 (s, 3H, 8-CH3); 0.93 (s, 3H, 9-CH3); 1.21−1.29 (m,
2H, 5-CH2, 6-CH2); 1.56−1.65 (m, 2H, 3-CH2, 6-CH2); 1.72−1.85 (m, 2H, 5-CH2, 4-CH);
2.05−2.15 (m, 1H, 3-CH2); 2.43 (s, 3H, N-COCH3); 3.05−3.18 (m, 1H, 18-CH2); 3.27 (t,
J = 8.9 Hz, 1H, 2-CH); 3.72−3.98 (br.s, 4H, 18-CH2, C(21)-OCH3); 4.59 (d, J = 4.8 Hz, 2H,
1′-CH2); 5.35 (d, J = 11 Hz, 1H, 3′-CH2(Hcis)); 5.52 (d, J = 16.8 Hz, 1H, 3′-CH2(Htrans));
5.76−5.81 (m, 1H, 19-CH); 6.07−6.12 (m, 1H, 2′-CH); 6.54 (s, 1H, 13-CH); 6.93 (d, J = 9 Hz,
2H, 22-CH, 25-CH); 7.06−7.09 (m, 2H, 24-CH, 16-CH); 7.27−7.29 (m, 1H, 23-CH); 10.44
(s, 1H, C(14)-OH). 13C NMR (CDCl3, δ ppm): 12.3 (10-CH3); 20.3 (8-CH3); 21.5 (9-CH3);
22.2 (N-COCH3); 27.4 (5-CH2); 34.2 (3-CH2); 39.3 (6-CH2); 41.7 (18-CH2); 44.3 (2-CH);
45.6 (4-CH); 48.1 (7-C); 49.5 (1-C); 54.1 (19-CH-N); 57.9 (C(21)-OCH3); 68.8 (1′-CH2); 99.8
(13-CH); 107.3 (11-C); 111.1 (22-CH, 25-CH); 117.5 (3′-CH2); 120.8 (24-CH); 122.2 (15-C);
124.2 (16-CH); 127.5 (20-C); 127.8 (23-CH); 132.8 (2′-CH); 156.1 (21-C); 156.3 (17-C=N); 157.5
and 160.6 (12-C) and (14-C); 199.8 (C=O). ESI-MS m/z: found 503.71, [M + H]+, calcd. for
C31H39N2O4 503.64.

1-(5-(3-Methoxyphenyl)-3-(4′-allyloxy-2′-hydroxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-
1-yl)etanone (7f). Gray-yellow powder; 91% yield; m.p. 64–65 ◦C. IR (KBr), ν/cm−1 3429
(OH), 1668 (C=O), 1625 (C=N), 1259 (=C−O), 1247 (C−N), 1189 (O−CH3). 1H NMR (CDCl3,
δ ppm, J/Hz): 0.71 (s, 3H, 10-CH3); 0.85 (s, 3H, 8-CH3); 0.92 (s, 3H, 9-CH3); 1.21−1.38 (m,
2H, 5-CH2, 6-CH2); 1.52−1.64 (m, 2H, 3-CH2, 6-CH2); 1.73−1.86 (m, 2H, 5-CH2, 4-CH);
2.03−2.12 (m, 1H, 3-CH2); 2.40 (s, 3H, N-COCH3); 3.25−3.31 (m, 2H, 18-CH2, 2-CH);
3.72−3.96 (br.s, 4H, 18-CH2, C(22)-OCH3); 4.59 (d, J = 4.7 Hz, 2H, 1′-CH2); 5.36 (d, J = 10.9
Hz, 1H, 3′-CH2(Hcis)); 5.50−5.55 (m, 2H, 3′-CH2(Htrans), 19-CH); 6.06−6.11 (m, 1H, 2′-CH);
6.55 (s, 1H, 13-CH); 6.82−6.86 (m, 3H, 23-CH, 24-CH, 25-CH); 7.10 (s, 1H, 16-CH); 7.29 (s,
1H, 21-CH); 10.31 (s, 1H,C(14)-OH). 13C NMR (CDCl3, δ ppm): 12.3 (10-CH3); 20.1 (8-CH3);
21.4 (9-CH3); 22.1 (N-COCH3); 27.4 (5-CH2); 33.9 (3-CH2); 39.6 (6-CH2); 42.6 (18-CH2); 44.2
(2-CH); 45.6 (4-CH); 48.1 (7-C); 49.7 (1-C); 54.2 (C(22)-OCH3); 58.1 (19-CH-N); 68.8 (1′-CH2);
99.9 (13-CH); 106.8 (11-C); 111.8 (24-CH); 112.9 (25-CH); 117.7 (3′-CH2); 117.9 (23-CH);
119.8 (15-C); 127.6 (16-CH); 130.13 (21-CH); 132.7 (2′-CH); 133.1 (20-C); 143.1 (22-C); 154.2
(17-C=N); 157.4 and 160.1 (12-C) и(14-C); 199.8 (C=O). ESI-MS m/z: found 503.66, [M + H]+,
calcd. for C31H39N2O4 503.64.
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1-(5-(4-Methoxyphenyl)-3-(4′-allyloxy-2′-hydroxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-
1-yl)etanone (7g). Gray-yellow powder; 90% yield; m.p. 61–62 ◦C. IR (KBr), ν/cm−1 3415
(OH), 1667 (C=O), 1626 (C=N), 1255 (=C−O), 1240 (C−N), 1184 (O−CH3). 1H NMR
(CDCl3, δ ppm, J/Hz): 0.72 (s, 3H, 10-CH3); 0.85 (s, 3H, 8-CH3); 0.92 (s, 3H, 9-CH3);
1.29−1.48 (m, 2H, 5-CH2, 6-CH2); 1.51−1.61 (m, 2H, 3-CH2, 6-CH2); 1.72−1.83 (m, 2H,
5-CH2, 4-CH); 2.04−2.11 (m, 1H, 3-CH2); 2.38 (s, 3H, N-COCH3); 3.19−3.39 (m, 2H, 18-CH2,
2-CH); 3.72−3.91 (br.s, 4H, 18-CH2, C(23)-OCH3); 4.60 (d, J = 4.8 Hz, 2H, 1′-CH2); 5.35
(d, J = 10.8 Hz, 1H, 3′-CH2(Hcis)); 5.50−5.55 (m, 2H, 3′-CH2(Htrans), 19-CH); 6.07−6.13
(m, 1H, 2′-CH); 6.56 (s, 1H, 13-CH); 6.69−6.71 (m, 2H, 22-CH, 24-CH); 7.13 (s, 1H, 16-CH);
7.19−7.21 (m, 2H, 25-CH, 21-CH,); 10.33 (s, 1H, C(14)-OH). 13C NMR (CDCl3, δ ppm): 12.3
(10-CH3); 20.1 (8-CH3); 21.5 (9-CH3); 22.1 (N-COCH3); 27.4 (5-CH2); 34.1 (3-CH2); 39.6 (6-
CH2); 42.7 (18-CH2); 44.3 (2-CH); 45.6 (4-CH); 48.1 (7-C); 49.5 (1-C); 54.3 (C(23)-OCH3); 57.8
(19-CH-N); 68.8 (1′-CH2); 99.9 (13-CH); 107.1 (11-C); 114.4 (22-CH, 24-CH); 117.5 (3′-CH2);
120.5 (15-C); 127 (21-CH, 25-CH); 127.5 (16-CH); 132.7 (2′-CH); 133.7 (20-C); 139.4 (23-C);
157.4 (17-C=N); 163.2 and 167.5 (12-C) and (14-C); 200.1 (C=O). ESI-MS m/z: found 503.62,
[M + H]+, calcd. for C31H39N2O4 503.64.

1-(5-(2,3-Dimethoxyphenyl)-3-(4′-allyloxy-2′-hydroxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-1-
yl)etanone (7h). Gray-yellow powder; 90% yield; m.p. 63–64 ◦C. IR (KBr), ν/cm−1 3433
(OH), 1668 (C=O), 1627 (C=N), 1265 (=C−O), 1226 (C−N), 1188 (O−CH3). 1H NMR (CDCl3,
δ ppm, J/Hz): 0.67 (s, 3H, 10-CH3); 0.80 (s, 3H, 8-CH3); 0.88 (s, 3H, 9-CH3); 1.16−1.25
(m, 2H, 5-CH2, 6-CH2); 1.31−1.34 (m, 2H, 3-CH2, 6-CH2); 1.43−1.71 (m, 2H, 5-CH2, 4-
CH); 1.98−2.10 (m, 1H, 3-CH2); 2.37 (s, 3H, N-COCH3); 3.02−3.33 (m, 2H, 18-CH2, 2-CH);
3.72−3.98 (m, 7H, 18-CH2, C(21)-OCH3, C(22)-OCH3); 4.55 (d, J = 4.9 Hz, 2H, 1′-CH2);
5.31 (d, J = 11.2 Hz, 1H, 3′-CH2(Hcis)); 5.49 (d, J = 16.4 Hz, 1H, 3′-CH2(Htrans)); 5.68−5.72
(m, 1H, 19-CH); 6.05−6.09 (m, 1H, 2′-CH); 6.50 (s, 1H, 13-CH); 6.68−6.77 (m, 1H, 23-CH);
6.81−6.92 (m, 1H, 24-CH); 6.93−7.04 (m, 1H, 25-CH); 7.06 (s, 1H, 16-CH); 10.36 (s, 1H,
C(14)-OH). 13C NMR (CDCl3, δ ppm): 12.3 (10-CH3); 20.5 (8-CH3); 21.4 (9-CH3); 22.1
(N-COCH3); 27.4 (5-CH2); 34.3 (3-CH2); 39.5 (6-CH2); 42.3 (18-CH2); 44.3 (2-CH); 45.5
(4-CH); 48.1 (7-C); 49.5 (1-C); 54.3 (19-CH-N); 55.8 (C(22)-OCH3); 60.4 (C(21)-OCH3); 68.8
(1′-CH2); 99.8 (13-CH); 107.2 (11-C); 111.9 (24-CH); 117.5 (3′-CH2); 118.3 (23-CH); 124.4
(15-C); 124.9 (25-CH); 127.7 (16-CH); 132.8 (2′-CH); 135.2 (20-C); 152.9 (22-C); 157.3 (21-C);
157.4 (17-C=N); 160.7 and 167.5 (12-C) and (14-C); 198.6 (C=O). ESI-MS m/z: found 533.60,
[M + H]+, calcd. for C32H41N2O5 533.67.

1-(5-(3,4-Dimethoxyphenyl)-3-(4′-allyloxy-2′-hydroxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-1-
yl)etanone (7i). Gray-yellow powder; 99% yield; m.p. 71–72 ◦C. IR (KBr), ν/cm−1 3431
(OH), 1669 (C=O), 1626 (C=N), 1265 (=C−O), 1221 (C−N), 1186 (O−CH3). 1H NMR (CDCl3,
δ ppm, J/Hz): 0.72 (s, 3H, 10-CH3); 0.83 (s, 3H, 8-CH3); 0.92 (s, 3H, 9-CH3); 1.19−1.57
(m, 2H, 5-CH2, 6-CH2); 1.61−1.72 (m, 2H, 3-CH2, 6-CH2); 1.79−1.92 (m, 2H, 5-CH2, 4-
CH); 2.01−2.16 (m, 1H, 3-CH2); 2.40 (s, 3H, N-COCH3); 3.18−3.37 (m, 2H, 18-CH2, 2-CH);
3.79−4.02 (m, 7H, 18-CH2, C(22)-OCH3, C(23)-OCH3); 4.59 (d, J = 4.7 Hz, 2H, 1′-CH2);
5.31 (d, J = 11 Hz, 1H, 3′-CH2(Hcis)); 5.48−5.55 (m, 2H, 3′-CH2(Htrans), 19-CH); 6.05−6.16
(m, 1H, 2′-CH); 6.55 (s, 1H, 13-CH); 6.61−6.85 (m, 3H, 21-CH, 24-CH, 25-CH); 7.13 (s, 1H,
16-CH); 10.34 (s, 1H, C(14)-OH). 13C NMR (CDCl3, δ ppm): 12.3 (10-CH3); 20.1 (8-CH3);
21.5 (9-CH3); 22.1 (N-COCH3); 27.4 (5-CH2); 34.2 (3-CH2); 39.5 (6-CH2); 42.8 (18-CH2); 44.2
(2-CH); 45.6 (4-CH); 48.1 (7-C); 49.5 (1-C); 55.9 (C(22)-OCH3, C(23)-OCH3); 58.1 (19-CH-N);
68.8 (1′-CH2); 99.9 (13-CH); 107.1 (11-C); 109.3 (24-CH); 111. (25-CH); 117.5 (3′-CH2); 117.9
(21-CH); 125.3 (15-C); 127.6 (16-CH); 132.7 (2′-CH); 134.1 (20-C); 148.7 (23-C); 149.1 (22-C);
156.8 (17-C=N); 160.8 and 167.6 (12-C) and (14-C); 199.7 (C=O). ESI-MS m/z: found 533.73,
[M + H]+, calcd. for C32H41N2O5 533.67.

1-(5-(2,4,6-Trimethoxyphenyl)-3-(4′-allyloxy-2′-hydroxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-
1-yl)etanone (7j). Yellow oil; 75% yield. IR (KBr), ν/cm−1 3427 (OH), 1658 (C=O), 1600
(C=N), 1261 (=C−O), 1232 (C−N), 1199 (O−CH3). 1H NMR (CDCl3, δ ppm, J/Hz): 0.72
(s, 3H, 10-CH3); 0.83 (s, 3H, 8-CH3); 0.92 (s, 3H, 9-CH3); 1.29−1.58 (m, 2H, 5-CH2, 6-CH2);
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1.62−1.74 (m, 2H, 3-CH2, 6-CH2); 1.79−1.86 (m, 2H, 5-CH2, 4-CH); 2.01−2.13 (m, 1H, 3-
CH2); 2.28 (s, 3H, N-COCH3); 3.21−3.29 (m, 2H, 18-CH2, 2-CH); 3.57−4.01 (m, 10H,18-CH2,
C(21)-OCH3, C(23)-OCH3, C(25)-OCH3); 4.59 (d, J = 4.8 Hz, 2H, 1′-CH2); 5.35 (d, J = 10.9
Hz, 1H, 3′-CH2(Hcis)); 5.53 (d, J = 15.7 Hz, 1H, 3′-CH2(Htrans)); 5.59−6.16 (m, 4H, 2′-CH,
19-CH, 24-CH, 22-CH); 6.56 (s, 1H, 13-CH); 7.15 (s, 1H, 16-CH); 10.58 (s, 1H, C(14)-OH).
13C NMR (CDCl3, δ ppm): 12.3 (10-CH3); 20.1 (8-CH3); 21.5 (9-CH3); 22.1 (N-COCH3); 27.4
(5-CH2); 34.2 (3-CH2); 39.5 (6-CH2); 40.3 (18-CH2); 44.2 (2-CH); 45.6 (4-CH); 47.9 (7-C);
49.3 (19-CH-N); 49.5 (1-C); 55.3 (C(21)-OCH3, C(23)-OCH3, C(25)-OCH3); 68.7 (1′-CH2);
91.3 (22-CH, 24-CH); 99.7 (13-CH); 107.6 (11-C); 117.3 (3′-CH2); 125.6 (15-C); 127.4 (16-CH);
132.9 (2′-CH); 140.1 (20-C); 149.2 (23-C); 156.9 (25-C); 157.1 (21-C); 159.1 (17-C=N); 160.9
and 167.1 (12-C) and (14-C); 200.1 (C=O). ESI-MS m/z: found 563.81, [M + H]+, calcd. for
C33H43N2O6 563.70.

1-(5-(3,4,5-Trimethoxyphenyl)-3-(4′-allyloxy-2′-hydroxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-
1-yl)etanone (7k). Gray-yellow powder; 98% yield; m.p. 73–74 ◦C. IR (KBr), ν/cm−1 3431
(OH), 1670 (C=O), 1593 (C=N), 1261 (=C−O), 1238 (C−N), 1188 (O−CH3). 1H NMR (CDCl3,
δ ppm, J/Hz): 0.71 (s, 3H, 10-CH3); 0.84 (s, 3H, 8-CH3); 0.92 (s, 3H, 9-CH3); 1.29−1.48
(m, 2H, 5-CH2, 6-CH2); 1.59−1.71 (m, 2H, 3-CH2, 6-CH2); 1.79−1.91 (m, 2H, 5-CH2, 4-
CH); 2.01−2.17 (m, 1H, 3-CH2); 2.42 (s, 3H, N-COCH3); 3.25−3.31 (m, 2H, 18-CH2, 2-CH);
3.79−4.01 (m, 10H, 18-CH2, C(22)-OCH3, C(23)-OCH3, C(24)-OCH3); 4.59 (d, J = 4.7 Hz, 2H,
1′-CH2); 5.35 (d, J = 10.8 Hz, 1H, 3′-CH2(Hcis)); 5.47−5.55 (m, 2H, 3′-CH2(Htrans), 19-CH);
6.07−6.13 (m, 1H, 2′-CH); 6.46 (s, 1H, 25-CH); 6.49 (s, 1H, 21-CH); 6.56 (s, 1H, 13-CH);
7.12 (s, 1H, 16-CH); 10.31 (s, 1H, C(14)-OH). 13C NMR (CDCl3, δ ppm): 12.2 (10-CH3); 20.1
(8-CH3); 21.5 (9-CH3); 22.1 (N-COCH3); 27.4 (5-CH2); 34.2 (3-CH2); 39.5 (6-CH2); 42.8 (18-
CH2); 44.2 (2-CH); 45.6 (4-CH); 48 (7-C); 49.5 (1-C); 56.22 (C(24)-OCH3, C(22)-OCH3); 58.2
(19-CH-N); 60.8 (C(23)-OCH3); 68.8 (1′-CH2); 99.9 (13-CH); 102.55 (25-CH); 102.8 (21-CH);
107.1 (11-C); 117.5 (3′-CH2); 123.6 (15-C); 127.5 (16-CH); 132.7 (2′-CH); 137.2 (20-C); 153.8
(22-C, 23-C, 24-C); 156.8 (17-C=N); 160.9 and 167.7 (12-C) and (14-C); 199.7 (C=O). ESI-MS
m/z: found 563.68, [M + H]+, calcd. for C33H43N2O6 563.70.

1-(5-(3-Nitrophenyl)-3-(2′,4′-diallyloxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-1-yl)etanone
(9a). Gray-yellow powder; 85% yield; m.p. 58–60 ◦C. IR (KBr), ν/cm−1 1660 (C=O), 1610
(C=N), 1350 (N−O), 1259 (=C−O), 1220 (C−N). 1H NMR (CDCl3, δ ppm, J/Hz): 0.75 (s,
3H, 10-CH3); 0.89 (s, 3H, 8-CH3); 0.97 (s, 3H, 9-CH3) 1.29−1.56 (m, 2H, 5-CH2, 6-CH2);
1.61−1.72 (m, 2H, 3-CH2, 6-CH2); 1.79−1.95 (m, 2H, 5-CH2, 4-CH); 2.19−2.31 (m, 1H, 3-
CH2); 2.44 (s, 3H, N-COCH3); 3.26−3.48 (m, 2H, 18-CH2 2-CH); 3.89−3.98 (m, 1H, 18-CH2);
4.53−4.67 (m, 4H, 1′-CH2, 1′ ′-CH2); 5.22−5.43 (m, 3H, 3′-CH2(Hcis), 3′ ′-CH2(Hcis), 19-CH);
5.49−5.69 (m, 2H, 3′-CH2(Htrans), 3′ ′-CH2(Htrans)); 6.02−6.12 (m, 2H, 2′-CH, 2′ ′-CH); 6.44
(s, 1H, 13-CH); 7.49−7.56 (m, 1H, 24-CH); 7.61−7.65 (m, 1H, 25-CH); 7.94 (d, J = 16.5 Hz,
1H, 16-CH); 8.12−8.20 (m, 2H, 21-CH, 23-CH). 13C NMR (CDCl3, δ ppm): 12.4 (10-CH3);
20.2 (8-CH3); 21.6 (9-CH3); 21.9 (N-COCH3); 27.5 (5-CH2); 34.3 (3-CH2); 40.3 (6-CH2); 44.4
(2-CH); 45.4 (4-CH); 45.7 (18-CH2); 48.1 (7-C); 49.6 (1-C); 59.2 (19-CH-N); 68.8 (1′-CH2); 69.8
(1′ ′-CH2); 97.1 (13-CH); 111.9 (11-C); 117.4 (3′-CH2); 118.3 (3′ ′-CH2); 121 (23-CH); 122.5
(21-CH); 125.7 (15-C); 128.7 (16-CH); 129.7 (24-CH, 25-CH); 132.8 (2′-CH, 2′ ′-CH); 144.4
(20-C); 148.6 (22-C); 154.1 (17-C=N); 160.5 and 168.9 (12-C) and (14-C); 210.1 (C=O). ESI-MS
m/z: found 558.67 [M + H]+, calcd. for C33H40N3O5 558.68.

1-(5-(4-Clorophenyl)-3-(2′,4′-diallyloxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-1-yl)etanone
(9b). Gray-yellow powder; 76% yield; m.p. 64–65 ◦C. IR (KBr), ν/cm−1 1662 (C=O), 1610
(C=N), 1259 (=C−O), 1219 (C−N), 1016 (Ar−Cl). 1H NMR (CDCl3, δ ppm, J/Hz): 0.75 (s,
3H, 10-CH3); 0.88 (s, 3H, 8-CH3); 0.96 (s, 3H, 9-CH3); 1.29−1.58 (m, 2H, 5-CH2, 6-CH2);
1.49−1.64 (m, 2H, 3-CH2, 6-CH2); 1.82−1.96 (m, 2H, 5-CH2, 4-CH2); 2.19−2.29 (m, 1H,
3-CH2); 2.4 (s, 3H, N-COCH3); 3.25−3.41 (m, 2H, 18-CH2, 2-CH); 3.81−3.90 (m, 1H, 18-
CH2); 4.51−4.68 (m, 4H, 1′-CH2, 1′ ′-CH2); 5.32−5.38 (m, 3H, 3′-CH2(Hcis), 3′ ′-CH2(Hcis),
19-CH); 5.52 (d, J = 17 Hz, 2H, 3′-CH2(Htrans), 3′ ′-CH2(Htrans)); 6.03−6.10 (m, 2H, 2′-CH,
2′ ′-CH); 6.43 (s, 1H, 13-CH); 7.21 (d, J = 8.1 Hz, 2H, 21-CH, 25-CH); 7.28 (d, J = 8 Hz, 2H,
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22-CH, 24-CH); 7.98 (d, J = 16.5 Hz, 1H, 16-CH). 13C NMR (CDCl3, δ ppm): 12.4 (10-CH3);
20.1 (8-CH3); 21.5 (9-CH3); 21.9 (N-COCH3); 27.5 (5-CH2); 34.2 (3-CH2); 39.6 (6-CH2); 44.4
(2-CH); 45.5 (18-CH2); 45.6 (4-CH); 48.1 (7-C); 49.6 (1-C); 59.2 (19-CH-N); 68.8 (1′-CH2);
69.9 (1′ ′-CH2); 97.1 (13-CH); 111.3 (11-C); 117.4 (3′-CH2); 118.3 (3′ ′-CH2); 125.5 (15-C); 127.2
(21-CH, 25-CH) 128.5 (16-CH, 22-CH, 24-CH); 132.9 (2′-CH, 2′ ′-CH); 133.1 (20-C); 140.9
(23-C); 154.2 (17-C=N); 160.4 and 168.7 (12-C) and (14-C); 209.6 (C=O). ESI-MS m/z: found
548.18 [M + H]+, calcd. for C33H40ClN2O3 548.14.

1-(5-(4-Bromophenyl)-3-(2′,4′-diallyloxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-1-yl)etanone
(9c). Yellow powder; 91% yield; m.p. 60–61 ◦C. IR (KBr), ν/cm−1 1662 (C=O), 1608 (C=N),
1259 (=C−O), 1220 (C−N). 1H NMR (CDCl3, δ ppm, J/Hz): 0.75 (s, 3H, 10-CH3); 0.88 (s,
3H, 8-CH3); 0.96 (s, 3H, 9-CH3); 1.29−1.49 (m, 2H, 5-CH2, 6-CH2); 1.60−1.64 (m, 2H, 3-CH2,
6-CH2); 1.72−1.96 (m, 2H, 5-CH2, 4-CH); 2.12−2.33 (m, 1H, 3-CH2); 2.42 (s, 3H, N-COCH3);
3.19−3.42 (m, 2H, 18-CH2, 2-CH); 3.76−4.01 (m, 1H, 18-CH2); 4.50−4.65 (m, 4H, 1′-CH2,
1′ ′-CH2); 5.28−5.40 (m, 3H, 3′-CH2(Hcis), 3′ ′-CH2(Hcis), 19-CH); 5.52 (d, J = 16.8 Hz, 2H,
3′-CH2(Htrans), 3′ ′-CH2(Htrans)); 6.06−6.10 (m, 2H, 2′-CH, 2′ ′-CH); 6.43 (s, 1H, 13-CH);
7.15 (d, J = 8.3 Hz, 2H, 21-CH, 25-CH); 7.45 (d, J = 8.3 Hz, 2H, 22-CH, 24-CH); 7.11 (d,
J = 16.5 Hz, 1H, 16-CH). 13C NMR (CDCl3, δ ppm): 12.5 (10-CH3); 20.1 (8-CH3); 21.6 (9-
CH3); 22.5 (N-COCH3); 27.5 (5-CH2); 34.2 (3-CH2); 39.6 (6-CH2); 44.3 (2-CH); 44.4 (4-CH);
45.5 (18-CH2); 48.1 (7-C); 49.6 (1-C); 59.3 (19-CH-N); 68.8 (1′-CH2); 69.8 (1′ ′-CH2); 97.1 (13-
CH); 111.2 (11-C); 117.4 (3′-CH2); 118.3 (3′ ′-CH2); 127.4 (15-C); 127.7 (21-CH, 25-CH); 131.8
(16-CH, 22-CH, 24-CH); 132.9 (2′-CH,2′ ′-CH); 136.5 (20-C); 141.2 (23-C); 157.1 (17-C=N);
164.1 and 168.5 (12-C) and (14-C); 203.2 (C=O). ESI-MS m/z: found 592.28 [M + H]+, calcd.
for C33H40BrN2O3 592.58.

1-(5-(4-Dimethylaminophenyl)-3-(2′,4′-diallyloxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-
1-yl)etanone (9d). Yellow oil; 68% yield. IR (KBr), ν/cm−1 1658 (C=O), 1612 (C=N), 1259
(=C−O), 1219 (C−N). 1H NMR (CDCl3, δ ppm, J/Hz): 0.75 (s, 3H, 10-CH3); 0.87(s, 3H,
8-CH3); 0.97 (s, 3H, 9-CH3); 1.29−1.55 (m, 2H, 5-CH2, 6-CH2); 1.60−1.69 (m, 2H, 3-CH2,
6-CH2); 1.72−1.95 (m, 2H, 5-CH2, 4-CH); 2.15−2.34 (m, 1H, 3-CH2); 2.39 (s, 3H, N-COCH3);
2.93 (s, 6H, C(23)-N(CH3)2); 3.28−3.44 (m, 2H, 18-CH2, 2-CH); 3.73−3.91 (m, 1H, 18-CH2);
4.57 (d, J = 4.9 Hz, 4H, 1′-CH2, 1′ ′-CH2); 5.28−5.55 (m, 5H, 3′-CH2(Hcis), 3′ ′-CH2(Hcis),
19-CH, 3′-CH2(Htrans), 3′ ′-CH2(Htrans)); 6.07−6.10 (m, 2H, 2′-CH, 2′ ′-CH); 6.44 (s, 1H,
13-CH); 6.71 (d, J = 8.1 Hz, 2H, 21-CH, 25-CH); 7.17−7.20 (m, 2H, 22-CH, 24-CH); 7.95 (d,
J = 16.5 Hz, 1H, 16-CH). 13C NMR (CDCl3, δ ppm): 12.4 (10-CH3); 20.2 (8-CH3); 21.6 (9-
CH3); 22.1 (N-COCH3); 27.5 (5-CH2); 34.2 (3-CH2); 39.6 (6-CH2); 40.7 (C(23)-N(CH3)2); 44.4
(2-CH); 44.6 (4-CH); 45.4 (18-CH2); 48.1 (7-C); 49.6 (1-C); 59.3 (19-CH-N); 68.8 (1′-CH2); 69.8
(1′ ′-CH2); 97.2 (13-CH); 111.1 (11-C); 112.8 (22-CH, 24-CH); 117.3 (3′-CH2); 118.1 (3′ ′-CH2);
125.4 (15-C); 126.9 (21-CH, 25-CH); 128.5 (16-CH); 130.4 (20-C); 133 (2′-CH, 2′ ′-CH); 137.5
(23-C); 150 (17-C=N); 154.3 and 160.1 (12-C) and (14-C); 197.5 (C=O). ESI-MS m/z: found
556.77 [M + H]+, calcd. for C35H46N3O3 556.75.

1-(5-(2-Methoxyhenyl)-3-(2′,4′-diallyloxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-1-yl)etanone
(9e). Yellow powder; 93% yield; m.p. 55–56 ◦C. IR (KBr), ν/cm−1 1658 (C=O), 1608 (C=N),
1247 (=C−O), 1219 (C−N), 1192 (O−CH3). 1H NMR (CDCl3, δ ppm, J/Hz): 0.76 (s,
3H, 10-CH3); 0.89 (s, 3H, 8-CH3); 0.96 (s, 3H, 9-CH3); 1.30−1.49 (m, 2H, 5-CH2, 6-CH2);
1.64−1.68 (m, 2H, 3-CH2, 6-CH2); 1.69−1.89 (m, 2H, 5-CH2, 4-CH); 2.20−2.39 (m, 1H,
3-CH2); 2.46 (s, 3H, N-COCH3); 3.13−3.32 (m, 2H, 18-CH2, 2-CH); 3.71−4.09 (br.s, 4H, 18-
CH2, C(21)-OCH3); 4.55 (d, J = 4.8 Hz, 4H, 1′-CH2, 1′ ′-CH2); 5.30−5.41 (m, 3H, 3′-CH2(Hcis),
3′ ′-CH2(Hcis), 3′-CH2(Htrans)); 5.52 (d, J = 16.7 Hz, 1H, 3′ ′-CH2(Htrans)); 5.80 (d, J = 11
Hz, 1H, 19-CH); 6.04−6.10 (m, 2H, 2′-CH, 2′ ′-CH); 6.42 (s, 1H, 13-CH); 6.85−7.01 (m, 2H,
22-CH, 24-CH); 7.05−7.11 (m, 1H, 23-CH); 7.21−7.29 (m, 1H, 25-CH); 7.95 (d, J = 16.5 Hz,
1H, 16-CH). 13C NMR (CDCl3, δ ppm): 12.4 (10-CH3); 20.2 (8-CH3); 21.6 (9-CH3); 22
(N-COCH3); 27.5 (5-CH2); 34.2 (3-CH2); 39.6 (6-CH2); 44.3 (2-CH); 44.7 (18-CH2); 45.7
(4-CH); 48.1 (7-C); 49.6 (1-C); 55.4 (19-CH-N, C(22)-OCH3); 68.7 (1′-CH2); 69.9 (1′ ′-CH2);
97.2 (13-CH); 110.8 (24-CH); 111.8 (11-C); 117.3 (3′-CH2); 117.8 (3′ ′-CH2); 120.6 (22-CH);
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125.3 (15-C); 125.8 (23-CH); 128.3 (16-CH, 25-CH); 129.8 (20-C); 133 (2′-CH, 2′ ′-CH); 154.9
(21-C); 156.2 (17-C=N); 160.1 and 168.6 (12-C) and (14-C); 200.3 (C=O). ESI-MS m/z: found
543.68, [M + H]+, calcd. for C34H43N2O4 543.71.

1-(5-(3-Methoxyhenyl)-3-(2′,4′-diallyloxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-1-yl)etanone
(9f). Yellow-brown powder; 77% yield; m.p. 50–51 ◦C. IR (KBr), ν/cm−1 1662 (C=O), 1609
(C=N), 1261 (=C−O), 1217 (C−N), 1192 (O−CH3). 1H NMR (CDCl3, δ ppm, J/Hz): 0.75
(s, 3H, 10-CH3); 0.88 (s, 3H, 8-CH3); 0.96 (s, 3H, 9-CH3); 1.29−1.57 (m, 2H, 5-CH2, 6-
CH2); 1.60−1.68 (m, 2H, 3-CH2, 6-CH2); 1.81−1.89 (m, 2H, 5-CH2, 4-CH); 2.20−2.34 (m,
1H, 3-CH2); 2.43 (s, 3H, N-COCH3); 3.26−3.40 (m, 2H, 18-CH2, 2-CH); 3.75−4.01 (br.s,
4H, 18-CH2, C(22)-OCH3); 4.56 (d, J = 4.9 Hz, 4H, 1′-CH2, 1′ ′-CH2,); 5.33−5.55 (m, 5H,
3′-CH2(Hcis), 3′ ′-CH2(Hcis), 19-CH, 3′-CH2(Htrans), 3′ ′-CH2(Htrans)); 6.06−6.12 (m, 2H,
2′-CH, 2′ ′-CH); 6.43 (s, 1H, 13-CH); 6.78−6.89 (m, 3H, 21-CH, 23-CH, 25-CH); 7.24 (t, J = 8
Hz, 1H, 24-CH); 7.95 (d, J = 16.4 Hz, 1H, 16-CH). 13C NMR (CDCl3, δ ppm): 12.4 (10-CH3);
20.2 (8-CH3); 21.6 (9-CH3); 21.9 (N-COCH3); 27.5 (5-CH2); 34.2 (3-CH2); 39.6 (6-CH2); 44.4
(2-CH); 45.6 (4-CH); 45.7 (18-CH2); 48.1 (7-C); 49.6 (1-C); 55.2 (C(22)-OCH3); 59.7 (19-CH-N);
68.8 (1′-CH2); 69.8 (1′ ′-CH2); 97.2 (13-CH); 111.4 (25-CH); 111.6 (11-C); 112.8 (23-CH); 117.4
(3′-CH2); 117.9 (3′ ′-CH2); 118.1 (21-CH); 125.5 (15-C); 128.5 (16-CH); 129.8 (24-CH); 132.9
(2′-CH, 2′ ′-CH); 141.5 (20-C); 143.9 (22-C); 154.3 (17-C=N); 160.2 and 168.7 (12-C) and (14-C);
200.5 (C=O). ESI-MS m/z: found 543.79, [M + H]+, calcd. for C34H43N2O4 543.71.

1-(5-(4-Methoxyhenyl)-3-(2′,4′-diallyloxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-1-yl)etanone
(9g). Yellow oil; 82% yield. IR (KBr), ν/cm−1 1659 (C=O), 1610 (C=N), 1249 (=C−O), 1220
(C−N), 1184 (O−CH3). 1H NMR (CDCl3, δ ppm, J/Hz): 0.75 (s, 3H, 10-CH3); 0.88 (s,
3H, 8-CH3); 0.97 (s, 3H, 9-CH3); 1.29−1.46 (m, 2H, 5-CH2, 6-CH2); 1.60−1.67 (m, 2H,
3-CH2, 6-CH2); 1.89−1.95 (m, 2H, 5-CH2, 4-CH); 2.15−2.32 (m, 1H, 3-CH2); 2.42 (s, 3H,
N-COCH3); 3.29−3.44 (m, 2H, 18-CH2, 2-CH); 3.75−4.01 (br.s, 4H, 18-CH2, C(23)-OCH3);
4.56 (d, J = 4.8 Hz, 4H, 1′-CH2, 1′ ′-CH2); 5.31−5.55 (m, 5H, 3′-CH2(Hcis), 3′ ′-CH2(Hcis),
19-CH, 3′-CH2(Htrans), 3′ ′-CH2(Htrans); 6.07−6.11 (m, 2H, 2′-CH, 2′ ′-CH); 6.44 (s, 1H,
13-CH); 6.87 (d, J = 8 Hz, 2H, 22-CH, 24-CH); 7.24 (d, J = 8.1 Hz, 2H, 21-CH, 25-CH); 7.95
(d, J = 16.5 Hz, 1H, 16-CH). 13C NMR (CDCl3, δ ppm): 12.4 (10-CH3); 20.2 (8-CH3); 21.6
(9-CH3); 21.8 (N-COCH3); 27.5 (5-CH2); 34.2 (3-CH2); 39.6 (6-CH2); 44.3 (2-CH); 44.5 (4-CH);
45.5 (18-CH2); 48.1 (7-C); 49.6 (1-C); 55.27 (C(23)-OCH3); 59.3 (19-CH-N); 68.8 (1′-CH2); 69.9
(1′ ′-CH2); 97.2 (13-CH); 110.7 (11-C); 114.1 (22-CH, 24-CH); 116.9 (3′-CH2); 118.2 (3′ ′-CH2);
125.5 (15-C); 127.2 (21-CH, 25-CH); 128.5 (16-CH); 132.9 (2′-CH, 2′ ′-CH); 134.5 (20-C); 154.6
(23-C); 156.4 (17-C=N); 165.1 and 168.8 (12-C) and (14-C); 201.3 (C=O). ESI-MS m/z: found
543.74, [M + H]+, calcd. for C34H43N2O4 543.71.

1-(5-(2,3-Dimethoxyhenyl)-3-(2′,4′-diallyloxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-1-yl)
etanone (9h). White powder; 92% yield; m.p. 52–53 ◦C. IR (KBr), ν/cm−1 1658 (C=O), 1608
(C=N), 1267 (=C−O), 1219 (C−N), 1190 (O−CH3). 1H NMR (CDCl3, δ ppm, J/Hz): 0.76
(s, 3H, 10-CH3); 0.89 (s, 3H, 8-CH3); 0.96 (s, 3H, 9-CH3); 1.29−1.41 (m, 2H, 5-CH2, 6-CH2);
1.60−1.67 (m, 2H, 3-CH2, 6-CH2); 1.79−1.96 (m, 2H, 5-CH2, 4-CH); 2.28−2.31 (m, 1H, 3-
CH2); 2.42 (s, 3H, N-COCH3); 3.15−3.30 (m, 2H, 18-CH2, 2-CH); 3.81−4.05 (m, 7H, 18-CH2,
C(21)-OCH3, C(22)-OCH3); 4.55 (d, J = 4.7 Hz, 4H, 1′-CH2, 1′ ′-CH2); 5.25−5.39 (m, 3H,
3′-CH2(Hcis), 3′ ′-CH2(Hcis), 3′-CH2(Htrans)); 5.57 (d, J = 16.8 Hz, 1H, 3′ ′-CH2(Htrans));
5.71−5.80 (m, 1H, 19-CH); 5.96−6.13 (m, 2H, 2′-CH, 2′ ′-CH); 6.41 (s, 1H, 13-CH); 6.72−6.81
(m, 2H, 23-CH, 25-CH); 7.01 (t, J = 8.1 Hz, 1H, 24-CH); 7.97 (d, J = 16.6 Hz, 1H, 16-CH).
13C NMR (CDCl3, δ ppm): 12.4 (10-CH3); 20.2 (8-CH3); 21.6 (9-CH3); 21.9 (N-COCH3); 27.5
(5-CH2); 34.2 (3-CH2); 39.7 (6-CH2); 44.4 (2-CH); 45.3 (18-CH2); 45.7 (4-CH); 48.1 (7-C); 49.6
(1-C); 55.2 (C(22)-OCH3); 55.3 (19-CH-N); 60.3 (C(21)-OCH3); 68.8 (1′-CH2); 69.8 (1′ ′-CH2);
97.2 (13-CH); 111.5 (23-CH); 112.4 (11-C); 117.3 (3′-CH2); 118.2 (3′ ′-CH2); 118.7 (25-CH);
124.2 (24-CH); 125.3 (15-C); 128.5 (16-CH); 133 (2′-CH, 2′ ′-CH); 136.3 (20-C); 154.7 (22-C);
154.8 (21-C); 156.4 (17-C=N); 160.1 and 168.5 (12-C) and (14-C); 200.1 (C=O). ESI-MS m/z:
found 573.74, [M + H]+, calcd. for C35H45N2O5 573.73.
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1-(5-(3,4-Dimethoxyhenyl)-3-(2′,4′-diallyloxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-1-yl)
etanone (9i). Yellow-brown powder; 99% yield; m.p. 50–51 ◦C. IR (KBr), ν/cm−1 1658 (C=O),
1609 (C=N), 1259 (=C−O), 1235 (C−N), 1192 (O−CH3). 1H NMR (CDCl3, δ ppm, J/Hz):
0.76 (s, 3H, 10-CH3); 0.87 (s, 3H, 8-CH3); 0.95 (s, 3H, 9-CH3); 1.29−1.52 (m, 2H, 5-CH2,
6-CH2); 1.60−1.71 (m, 2H, 3-CH2, 6-CH2); 1.79−1.96 (m, 2H, 5-CH2, 4-CH); 2.19−2.31 (m,
1H, 3-CH2); 2.42 (s, 3H, N-COCH3); 3.25−3.43 (m, 2H, 18-CH2, 2-CH); 3.79−4.01 (m, 7H,
18-CH2, C(22)-OCH3, C(23)-OCH3); 4.56 (d, J = 4.9 Hz, 4H, 1′-CH2, 1′ ′-CH2); 5.27−5.54
(m, 5H, 3′-CH2(Hcis), 3′ ′-CH2(Hcis), 19-CH, 3′-CH2(Htrans), 3′ ′-CH2(Htrans)); 5.96−6.13
(m, 2H, 2′-CH, 2′ ′-CH); 6.44 (s, 1H, 13-CH); 6.82 (br.s, 3H, 21-CH, 24-CH, 25-CH); 7.95
(d, J = 16.7 Hz, 1H, 16-CH). 13C NMR (CDCl3, δ ppm): 12.4 (10-CH3); 20.1 (8-CH3); 21.5
(9-CH3); 21.9 (N-COCH3); 27.5 (5-CH2); 34.2 (3-CH2); 39.7 (6-CH2); 44.4 (2-CH); 45.6 (18-
CH2); 45.7 (4-CH); 48.1 (7-C); 49.6 (1-C); 55.8 (C(22)-OCH3, C(23)-OCH3); 59.6 (19-CH-N);
68.8 (1′-CH2); 69.8 (1′ ′-CH2); 97.1 (13-CH); 109.2 (24-CH); 111.4 (25-CH); 112.2 (11-C); 117.3
(3′-CH2); 117.9 (21-CH); 118.2 (3′ ′-CH2); 125.4 (15-C); 128.5 (16-CH); 132.9 (2′-CH, 2′ ′-CH);
135.1 (20-C); 148.3 (23-C); 149.1 (22-C); 154.4 (17-C=N); 160.2 and 168.7 (12-C) and (14-C);
201.6 (C=O). ESI-MS m/z: found 573.59, [M + H]+, calcd. for C35H45N2O5 573.73.

1-(5-(2,4,6-Trimethoxyhenyl)-3-(2′,4′-diallyloxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-1-
yl)etanone (9j). Yellow oil; 56% yield. IR (KBr), ν/cm−1 1653 (C=O), 1610 (C=N), 1263
(=C−O), 1246 (C−N), 1199 (O−CH3). 1H NMR (CDCl3, δ ppm, J/Hz): 0.76 (s, 3H, 10-CH3);
0.87 (s, 3H, 8-CH3); 0.98 (s, 3H, 9-CH3); 1.29−1.63 (m, 2H, 5-CH2, 6-CH2); 1.61−1.72 (m,
2H, 3-CH2, 6-CH2); 1.81−1.96 (m, 2H, 5-CH2, 4-CH); 2.21−2.36 (m, 4H, 3-CH2, N-COCH3);
3.18−3.31 (m, 2H, 18-CH2, 2-CH); 3.58−4.05 (m, 10H, 18-CH2, C(21)-OCH3, C(23)-OCH3,
C(25)-OCH3); 4.59 (d, J = 5 Hz, 4H, 1′-CH2, 1′ ′-CH2); 5.28 (d, J = 10 Hz, 1H, 3′-CH2(Hcis));
5.31 (d, J = 10.5 Hz, 1H, 3′ ′-CH2(Hcis)); 5.41 (d, J = 16.3 Hz, 1H, 3′-CH2(Htrans)); 5.52 (d,
J = 16.7 Hz, 1H, 3′ ′-C(Htrans)); 6.01−6.15 (m, 5H, 2′-CH, 2′ ′-CH, 19-CH, 24-CH, 22-CH);
6.45 (s, 1H, 13-CH); 7.96 (s, 1H, 16-CH). 13C NMR (CDCl3, δ ppm): 12.4 (10-CH3); 20.1
(8-CH3); 21.5 (9-CH3); 21.9 (N-COCH3); 27.7 (5-CH2); 34.2 (3-CH2); 39.7 (6-CH2); 42.9
(18-CH2); 44.4 (2-CH); 45.7 (4-CH); 49.7 (7-C); 49.9 (1-C); 50.6 (19-CH-N); 55.26 (C(21)-
OCH3, C(23)-OCH3, C(25)-OCH3); 68.8 (1′-CH2); 69.9 (1′ ′-CH2); 91.4 (22-CH, 24-CH); 99.7
(13-CH); 111.3 (11-C); 117.2 (3′-CH2); 117.8 (3′ ′-CH2); 125.1 (15-C); 128.7 (16-CH); 133.2
(2′-CH, 2′ ′-CH); 141.2 (20-C); 154.3 (23-C); 156.2 (25-C, 21-C); 159.6 (17-C=N); 160.4 and
168.1 (12-C) and (14-C); 202.3 (C=O). ESI-MS m/z: found 603.52, [M + H]+, calcd. for
C36H47N2O6 603.76.

1-(5-(3,4,5-Trimethoxyhenyl)-3-(2′,4′-diallyloxy-5′-isobornylphenyl)-4,5-dihydro-(1H)-pyrazole-1-
yl)etanone (9k). Yellow powder; 96% yield; m.p. 51–52 ◦C. IR (KBr), ν/cm−1 1660 (C=O),
1608 (C=N), 1259 (=C−O), 1243 (C−N), 1190 (O−CH3). 1H NMR (CDCl3, δ ppm, J/Hz):
0.72 (s, 3H, 10-CH3); 0.85 (s, 3H, 8-CH3); 0.93 (s, 3H, 9-CH3); 1.29−1.49 (m, 2H, 5-CH2,
6-CH2); 1.60−1.68 (m, 2H, 3-CH2, 6-CH2); 1.79−1.98 (m, 2H, 5-CH2, 4-CH); 2.19−2.31 (m,
1H, 3-CH2); 2.44 (s, 3H, N-COCH3); 3.25−3.42 (m, 2H, 18-CH2, 2-CH); 3.76−4.03 (m, 10H,
18-CH2, C(22)-OCH3, C(23)-OCH3, C(24)-OCH3); 4.57 (d, J = 4.7 Hz, 4H, 1′-CH2, 1′ ′-CH2);
5.28−5.54 (m, 5H, 3′-CH2(Hcis), 3′ ′-CH2(Hcis), 19-CH, 3′-CH2(Htrans), 3′ ′-CH2(Htrans));
6.04−6.13 (m, 2H, 2′-CH, 2′ ′-CH); 6.47 (m, 3H, 13-CH, 21-CH, 25-CH); 7.88 (d, J = 16.6 Hz,
1H, 16-CH). 13C NMR (CDCl3, δ ppm): 12.3 (10-CH3); 20 (8-CH3); 21.4 (9-CH3); 21.9 (N-
COCH3); 27.5 (5-CH2); 34.2 (3-CH2); 39.7 (6-CH2); 44.4 (2-CH); 45.6 (4-CH); 45.8 (18-CH2);
48.1 (7-C); 49.6 (1-C); 56.1 (C(23)-OCH3); 60.1 (19-CH-N); 60.7 (C(22)-OCH3, C(24)-OCH3);
68.8 (1′-CH2); 69.9 (1′ ′-CH2); 97.2 (13-CH); 102.6 (25-CH); 102.7 (21-CH); 111.2 (11-C); 117.4
(3′-CH2); 118.1 (3′ ′-CH2); 125.4 (15-C); 128.5 (16-CH); 132.9 (2′-CH, 2′ ′-CH); 138.1 (20-C);
153.5 (22-C, 23-C, 24-C); 154.5 (17-C=N); 160.3 and 168.9 (12-C) and (14-C); 202.3 (C=O).
ESI-MS m/z: found 603.81, [M + H]+, calcd. for C36H47N2O6 603.76.

3.2. Antioxidant Activity

The antioxidant activity of pyrazoline derivatives was evaluated in vitro as inhibition
of accumulation of secondary lipid peroxidation (LPO) products in substrates obtained
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from mouse brain homogenates (oil–water emulsion). The brain was homogenized in
physiological saline (pH 7.4) (10% v/v) and centrifuged at 3000 rpm for 10 min. The
low-speed supernatant was separated. The test compounds were added to the supernatant
at final concentrations of 0.1 mM; then after 30 min, LPO was initiated by adding a
freshly prepared solution of FeSO4 and ascorbic acid. Resveratrol and quercetin were
taken as the most suitable reference compounds. Incubation of substrate was carried out
in thermostated Biosan ES-20 shaker for 1 h at 37 ◦C. The concentration of secondary
LPO products reacting with TBA (TBA reactive substances, TBA-RS) was determined at
λ 532 nm using the extinction coefficient of 1.56 × 105 M−1·cm−1 [37,46,47]. Absorption
was measured using a Thermo Spectronic Genesys 20 instrument. Each experiment was
repeated 4–8 times. Statistical analysis was assessed by applying Microsoft Office Excel
2010 software packages. Experimental data are presented as arithmetic mean values with
indication of standard error of mean (SEM).

The assays were performed using the equipment of the Centre of Collective Usage
Molecular Biology, Institute of Biology, Komi Scientific Centre, Ural Branch of the RAS.

4. Conclusions

In this work, derivatives of 3,5-diarylpyrazoline with various substituents (MeO,
Hal, NO2, N(Me)2) were synthesized by the reaction of isobornylchalcones and hydrazine
hydrate. All compounds were evaluated using an in vitro model of Fe2+/ascorbate-initiated
lipid peroxidation in a substrate containing laboratory mouse brain lipids. According to
in vitro studies, pyrazoline 7i containing a hydroxyl group in the 2′-position in ring A and
a catechol fragment in ring B was the most active antioxidant.

Supplementary Materials: The following are available online. Figure S1: 1H NMR (CDCl3) spectrum
of compound 7a. Figure S2: 13C NMR (CDCl3) spectrum of compound 7a. Figure S3: 1H NMR
(CDCl3) spectrum of compound 7b. Figure S4: 13C NMR (CDCl3) spectrum of compound 7b.
Figure S5: 1H NMR (CDCl3) spectrum of compound 7i. Figure S6: 13C NMR (CDCl3) spectrum of
compound 7i. Figure S7: 1H NMR (CDCl3) spectrum of compound 7j. Figure S8: 13C NMR (CDCl3)
spectrum of compound 7j. Figure S9: 1H NMR (CDCl3) spectrum of compound 9a. Figure S10: 13C
NMR (CDCl3) spectrum of compound 9a. Figure S11: 1H NMR (CDCl3) spectrum of compound 9b.
Figure S12: 13C NMR (CDCl3) spectrum of compound 9b. Figure S13: 1H NMR (CDCl3) spectrum
of compound 9i. Figure S14: 13C NMR (CDCl3) spectrum of compound 9i. Figure S15: 1H NMR
(CDCl3) spectrum of compound 9k. Figure S16: 13C NMR (CDCl3) spectrum of compound 9k.
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