
nanomaterials

Review

Nanotechnology in Cement-Based Materials: A
Review of Durability, Modeling, and
Advanced Characterization

Sen Du, Junliang Wu , Othman AlShareedah and Xianming Shi *

Department of Civil and Environmental Engineering, Washington State University, Pullman,
WA 99164-2910, USA
* Correspondence: xianming.shi@wsu.edu

Received: 20 July 2019; Accepted: 21 August 2019; Published: 28 August 2019
����������
�������

Abstract: In the context of increasing applications of various nanomaterials in construction, this
work reviews the renewed knowledge of nanotechnology in cement-based materials, focusing on
the relevant papers published over the last decade. The addition of nanomaterials in cement-based
materials, associated with their dispersion in cement composites, is explored to evaluate their effects
on the resistance of cement-based materials to physical deteriorations, chemical deteriorations, and
rebar corrosion. This review also examines the proposed nanoscale modeling of interactions between
admixed nanomaterials and cement hydration products. At last, the recent progress of advanced
characterization that employs techniques to characterize the properties of cement-based materials at
the nanoscale is summarized.
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1. Introduction

In the construction industry, cement paste, mortar, and concrete are the most commonly used
materials, due to their easiness to fabricate, low expenditure, good performance, and versatile
applications. However, the drawbacks of these cement-based materials (CBMS), such as low tensile
strength, susceptibility to cracking (if tensile stress induced by deterioration exceeds tensile strength),
and likelihood of sudden failure (due to their brittle nature), have led to multiple pathways of
degradation in the technical properties of CBMS and high costs of repairing them [1]. As the main cement
hydration product, calcium–silicate–hydrates (C–S–H) is the main phase that combines aggregates
together, forming the strength and other macroscopic engineering properties of CBMS. The size of
the basic structural unit of C–S–H lies in the nanometer range. Understanding the characteristics of
C–S–H at the nanoscale should facilitate the efficient manipulation of the physicochemical nature of
CBMS [2]. Therefore, the application of nanomaterials in CBMS, which have remarkable influence on
the modification of C–S–H, is one of the best ways to tackle the aforementioned concerns over CBMS.

Recently, the use of nanomaterials to improve the mechanical properties and durability
performances of CBMS has received considerable attention. It is believed that the improvement
effects by admixing nanomaterials in CBMS are mainly through two approaches: (1) acting as a superb
filler and (2) involving in the cement hydration [3,4]. The photocatalytic effect of nanotitanium is also
usually reported in the literature, which endows the surface of CBMS with a self-cleaning ability in the
presence of ultraviolet light [5]. However, the functionalization of cement composites by admixing
nanomaterials is outside the scope of this review. This work focuses on the enhancement of the
resistance of CBMS to physical deteriorations, chemical deteriorations, and rebar corrosion by applying
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nanotechnology. Despite the fact that nanomaterials may cause deficiencies in some properties of CBMS,
such as reduced workability due to the high water demand of these ultrafine particles, their beneficial
effects on technical properties of CBMS have been clearly demonstrated [4]. The most commonly
used nanomaterials are nanoscale spherical particles (nano-SiO2, TiO2, Al2O3, Fe2O3 etc.), nanotubes
and fibers (carbon nanotubes and carbon nanofibers), and nanoplatelets (nanoclays, graphene, and
graphite oxide) [6–8].

From the review of literature, there is an increasing usage of nanotechnology in cement paste,
mortar, and concrete, including both increased availability of newly developed nanomaterials and
greater use of nanomaterial-modified cement composites [5]. Nanotechnology in the CBMS mainly
includes two directions: developing new products which are engineered at the nanometer scale for
the concrete industry; characterizing and understanding the materials at the nano- (and sometimes
micro-)scale through the use of atomic modeling and advanced characterization techniques [2,9,10].
The application of nanotechnology in CBMS in the last decade has seen increased and more-informed
utilization of nanomaterials. Given the enormous amount of work done in this field, a comprehensive
review on this topic would require much more space than a single article. Moreover, there may exist
a substantial difference between the laboratory studies from academic literature and the realities
of producing the cement composites used in the field [5]. In the construction industry, the real
concern from practitioners and decision-makers is the cost-effectiveness of admixing nanomaterials in
improving the technical properties of CBMS.

In this context, this review begins by considering the dispersion of nanomaterials in CBMS and
what measures can be taken to improve their dispersion abilities, which is the principal factor that
affects their successful applications in cement composites. Then, we present a summary on the effects
of nanomaterials on the improvement of CBMS when subjected to physical deteriorations (shrinkage,
thermal cracking, freeze–thaw damage, and abrasion), chemical deteriorations (sulfate attack, acid
attack, alkali-aggregate reaction, and thermal degradation) and corrosion (for steel reinforcement
concrete). At last, we review the underlying mechanisms for these improvements; mainly through two
approaches, i.e., modeling the nanoscale interactions between C–S–H and admixed nanomaterials and
applying advanced nanoscopy characterization techniques that are most frequently used by researchers
(Figure 1).

Figure 1. Overview of the sections in this review article, mainly based on the relevant papers published
in the last decade.

2. Dispersion of Nanomaterials in CBMS

The type and dosage of nanomaterials and the associated nanotechnology investigated in academic
literature may differ from the realities in practice [5]. A main issue that hinders the application of
nanomaterials in CBMS is their dispersion, which is crucial for the effectiveness of unlocking the
potential of the admixed nanomaterials and improving the properties of the cement composites.
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Thus far, there has not been a method that is widely accepted to quantify the dispersion level of
nanomaterials in the cement matrix. Most of the studies adopt an indirect method, which measures
the mechanical properties of CBMS to reflect if there is any agglomeration of nanomaterials in the
cement composites. This is based on the fact that the poorly dispersed nanomaterials present in the
matrix tend to agglomerate, forming flocs, clusters, or bundles due to the attractive van der Waals
force, some of which act as defects in the matrix and thus degrade the mechanical properties of cement
composites [11–13]. For instance, carbon nanotube (CNT), featuring a hydrophobic nature, is difficult
to disperse uniformly in cement composites [5,11]. A study by Rocha and Ludvig [11] demonstrated
that there was an optimal dosage of 0.05 wt% for CNT to be incorporated in the cement matrix, beyond
which aggregation of CNT may occur, resulting in a reduced gain in the mechanical properties of
cement paste. In this study, CNT was not functionalized by surface treatment, but dispersed in a
non-aqueous isopropanol media with the aid of ultrasonication for 2 h.

Generally, there are two methods that functionalize CNT to promote its dispersion and prevent
its aggregation, namely, covalent and noncovalent methods [13,14]. The covalent functionalization
method involves inducing chemical functional groups on the side walls of CNT, thereby improving the
adherence of CNT to the cement matrix. As a result, a good dispersion of CNT in cement composites
can be achieved. However, some authors [15] have suggested that the induced functional groups can
reduce the mechanical strengths of CNT, thus negatively affecting the performance of the composites.
As such, the noncovalent functionalization method that treats the surface of CNT with surfactant
(e.g., superplasticizer) or uses other nanomaterials along with CNT has become popular [14,16,17].
Meng et al. [13] have demonstrated that the polycarboxylate ether (PCE) superplasticizer can improve
the dispersibility of CNT and reduce its aggregative tendency in water. In their study, one specific
superplasticizer, namely cyclodextrin-modified polycarboxylate superplasticizer (PACD), was used
as surfactant to disperse multiwalled CNT (MWCNT). Figure 2 illustrates the dispersion mechanism
of MWCNT with the aid of PACD, which exhibits a dual effect of steric hindrance and electrostatic
repulsion that both preclude CNTs from approaching each other. By using the sol–gel method,
Stynoski et al. [18] functionalized CNT with nanosilica and reported that the dispersion stability was
significantly improved.

Figure 2. Dispersion mechanism for multiwalled carbon nanotube (MWCNT) with
cyclodextrin-modified polycarboxylate superplasticizer (PACD). Reproduced from [13], with permission
from John Wiley and Sons, 2019.

Superplasticizer has been widely used as dispersing agent for nanomaterials in CBMS [12,19–21].
Pérez-Nicolás et al. [12] analyzed the zeta potential of nanomaterial dispersions and reported that a
specific type of superplasticizer (naphthalene-based) exhibited good capability to disperse nano-TiO2
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in water through mechanically stirring for 20 min. The zeta potential test indicated that the largest
negative value can be observed for the combination of this specific superplasticizer and nano-TiO2,
resulting from the electrostatic repulsions. Qian and Schutter [20] studied the compatibility between
PCE superplasticizer and nanoclay. They found that there was an optimal dosage of PCE which showed
a beneficial effect on the dispersion of nanoclay in the cement paste and prevented the occurrence of
agglomeration given a constant amount of nanoclay. In terms of the thixotropy and yield stress of the
cement paste, the combination of 0.2 wt% PCE and 0.5 wt% nanoclay exhibited the best performance.

In addition to using superplasticizer as a surfactant to disperse nanomaterials in CBMS,
ultrasonication is another method that is usually used to improve the distribution of the
nanomaterials [22–24]. By comparing the effect of mechanical stirring and ultrasonication on the
dispersion of nano-TiO2 in cement mixes, Yousefi et al. [22] evaluated the photocatalytic properties of
different cement samples. Their study showed that a high level of agglomeration of nano-TiO2 would
be observed if no ultrasonication was applied. Moreover, the photocatalytic properties of the cement
sample were better when the nano-TiO2 was dispersed by ultrasound.

3. Nanotechnology for CBMS to Overcome Physical Deteriorations

In practice, the durability of CBMS can be affected by vulnerability to damages induced by external
loading in combination with environmental effects, such as abrasive/erosive actions, moisture and
temperature fluctuations, and freeze–thaw cycles [25]. Therefore, it is imperative to make modifications
in the current concrete technology for making the concrete a more durable and sustainable product,
which can perform more cost-effectively and reliably [26]. Nanomaterials with an ultrafine size show
unique physical and chemical characteristics, and their presence in fresh CBMS can induce properties
that are different from those of the conventional cement composites [27]. In fact, nanomaterials can be
employed in the CBMS for significantly enhancing the resistance to crack initiation and restraining the
crack propagation, which are the main results from the physical distresses or damages of CBMS, such
as shrinkage, freeze–thaw damage, and abrasion [28]. This section explores the effects of admixing
nanomaterials in CBMS on mitigating the physical degradations of CBMS.

3.1. Shrinkage

If shrinkage is restrained in concrete (or other cementitious composites), then the restrained
shrinkage will create tensile stress, which can cause cracks in concrete if the local stress exceeds the
local strength [29]. Usually, the total shrinkage of CBMS measured can be the joint outcome of drying
shrinkage, plastic shrinkage, and autogenous shrinkage. The total shrinkage of CBMS can be reduced
by the addition of nano-TiO2, nano-CaCO3, nanosilica, and carbon nanofiber [30–32]. Yang et al. [30]
analyzed the effect of incorporating nano-TiO2 on the total shrinkage of the alkali activated slag paste.
In their study, the accelerated cement hydration process and a denser microstructure were observed
due to the admixed nano-TiO2, contributing to the reduction of the amount of mesopores (featuring a
size of 1.25–25 nm). Hence, nano-TiO2 remarkably reduced the total shrinkage of the paste, which
is considered a reflection of the amount of mesopores. Note that nano-TiO2 mainly works through
the nucleation effect, i.e., providing nucleation sites for the accumulation of hydration products and
thus regulating the hydration of cement. Similar conclusions were also drawn by Liu et al. [31], who
compared the early age (12 h) shrinkage between a cement paste containing nano-CaCO3 and the
reference paste and suggested that there was an optimal content for the nano-CaCO3. At the dosage
of 1 wt%, the addition of nano-CaCO3 facilitates the early hydration of the cement, thus exhibiting a
reduction effect on the early age shrinkage.

Drying shrinkage occurs as concrete dries. In producing the concrete, the mixing water is usually
added beyond the amount required for cement hydration in order to endow concrete with desirable
workability for construction. When the concrete is exposed to ambient conditions, the excess water
will evaporate and cause drying shrinkage [29]. From the literature, there is a contradictory conclusion
about the effect of adding nanomaterials on the drying shrinkage of CBMS. Some nanomaterials,
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including nano-TiO2, synthetic nanofiber, and graphene oxide (GO), could reduce the drying shrinkage
of cement composites [29,33–35]. Studies undertaken by Duan et al. [33] and Zhang et al. [34] have
shown that the admixing of nano-TiO2 into CBMS can mitigate the drying shrinkage by forming a
compact microstructure with less cracks and reducing water loss through the pore-refining effect and
the hydrophilicity-increasing effect, as indicated in Figures 3 and 4, respectively. Figure 3 shows that
the amount of unreacted phases is reduced, whereas the size and amount of the hydration products
are increased after 5 wt% nano-TiO2 is admixed into the composites. The decreased porosity and
denser microstructure can also be observed, resulting in the improved resistance to drying shrinkage.
Moreover, more capillary pores, especially those with a relatively large size, can be filled with water
in the cement paste containing an optimal content of 3 wt% nano-TiO2, as shown in Figure 4. As a
result, the water loss is reduced due to the increased hydrophilicity of the cement paste, which thereby
mitigates the drying shrinkage. Lee and Won [29] have reported that the structural nanosynthetic
fiber would lower the drying shrinkage by controlling the initial cracking of cement composites [29].
The effect of GO, which is a graphene-based nanomaterial, on the drying shrinkage of the cement
paste has been investigated by Lu et al. [35]. Their study suggested that GO could mitigate the
drying shrinkage of cement composites through the densified microstructures and reduced amount of
capillary pores.

However, Gao et al. [36] reported that nano-SiO2 and nano silica carbide can aggravate the drying
shrinkage when admixed in cement composites. This is mainly due to the water adsorption effect of
these nanoparticles, which could absorb free water from the capillary pores in concrete. Figure 5 shows
the continuous evaporation of surface water from the concrete containing nanoparticles after stopping
the wet curing. Hence, the drying shrinkage of concrete was accelerated resulting from the increasing
difference in the relative humidity between the concrete surface and its interior.

Figure 3. Formation of the microstructures in the cementitious material with or without nano-TiO2

(grey part: Unreacted particles; red part: Inner products; yellow part: Outer products; white part:
Pores). Reproduced from [33], with permission from Elsevier, 2019.
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Figure 4. The sketch of the filling of water in the capillary pores before and after the addition of
nano-TiO2 in the cement composite. Reproduced from [34], with permission from Elsevier, 2019.

Figure 5. Force simulation of air-liquid meniscus. Reproduced from [36], with permission from
Elsevier, 2019.

The autogenous shrinkage of CBMS usually occurs as a result of self-desiccation during the
hydration process, which is mainly generated at early ages and proportional to the amount of the fine
pores [37]. For high performance concrete, autogenous shrinkage becomes more prominent and is a
dominant factor for the cracking control [38]. Cement composites reinforced with nanomaterials, such
as CNT, nano-MgO, nano smectite based clay, exhibit lower autogenous shrinkage compared with
those without nanomaterials [37–39]. Konsta-Gdouto et al. [37] investigated the effect of the dispersion
of CNT on the autogenous shrinkage and indicated that the admixed CNT can decrease the porosity of
the cementitious matrix. Their study revealed that the volume fraction of the fine pores, whose size in
diameter is less than 20 nm, was apparently reduced by the addition of fine CNT. There was a close
relationship between the number of fine pores and the autogenous shrinkage of the cement paste,
both of which were reduced by the admixed CNTs. Polat et al. [39] analyzed the effect of admixed
nano-MgO on the autogenous shrinkage of cement paste and reported that the autogenous shrinkage
of the cement composite can be compensated by the expansion effect of nano-MgO, which can react
with water to form expansive products. Similar conclusions were also drawn in another study [38],
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in which the admixed nano-MgO exhibited long-term expansive effects due to its slow reaction rate
in concrete.

3.2. Freeze–Thaw Damage

Damage due to the freeze–thaw cycles is one of the major deterioration pathways of concrete in
cold climates [40]. There are several main theories that are being widely accepted for explaining the
freeze–thaw damage of cement composites, including the hydraulic pressure theory, crystallization
pressure theory, and osmotic pressure theory [41]. Generally, the frost damage of CBMS results from
the pressure induced by the volume increase associated with water turning from liquid phase to solid
phase and by the water migration in the capillary pores [42]. The pressure will introduce stress in
the internal microstructure of the concrete, which causes cracking if it exceeds the local strength of
the concrete.

With the addition of nanomaterials, including nanosilica, nanoalumina, nanokaolinite clay, and
GO, better resistance to freeze–thaw damage (i.e., frost damage) of CBMS can be observed, attributable
to the denser and more compacted microstructure [40–45]. Gonzalez et al. [42] investigated the effect
of admixing nanosilica on the damage of concrete subjected to freeze–thaw cycles. This study showed
that the nanosilica in the concrete would act as a supplementary cementitious material (SCM), which
can react with portlandite (a main product of cement hydration) to form additional C–S–H. As a
result, the paste and the interface transition zone (ITZ) between the aggregate and paste were both
improved. In addition, a refined pore structure in concrete was observed, and this translates to a
limited intrusion of water and thus less water available for participating in the freeze–thaw damage.
Therefore, the incorporation of nanosilica in concrete was able to reduce the frost damage. Similar
conclusions were also drawn by Quercia et al. [43], who analyzed the effect of the nanosilica addition on
the durability performance of concrete and demonstrated that the incorporation of 3.8 wt% nanosilica
improved all durability indicators, including the freeze–thaw resistance. In addition, the highly stiff
and small-size C–S–H gel generated due to the pozzolanic activity of nanosilica contributes to the
densification of the microstructure and thus the improved frost resistance. Admixing GO in cement
composites, Mohammed et al. [45] tested the weight loss of samples after exposure to 540 freeze–thaw
cycles. The nitrogen absorption test uncovered that the GO in the cementitious matrix mainly exhibited
the modification effect of the pore structures, which remarkably reduced the amount of mesopores.
Because water freezes more difficultly in small pores than in large pores, this caused a weight loss of
only 0.25% after 540 cycles in the samples containing GO (vs. 0.8% for the control samples).

3.3. Abrasion/Erosion

Abrasion resistance is one of the key considerations for concrete, especially when concrete is
exposed to abrasive forces in some specific applications, such as on the pavement surface, in the dam
structure, or in the bridge footing [46]. The abrasion of concrete is usually caused by the scraping,
rubbing, skidding or sliding of objects on the surface of concrete [47]. Nanomaterials, such as nano-TiO2,
nano-SiO2, and nanosilica carbide, have been explored in various studies to enhance the resistance of
concrete to abrasion [36,48]. Gao et al. [36] investigated the effect of nanosilica on the wear resistance
of fly ash concrete and suggested that there was an optimal dosage for nanosilica to exhibit the
beneficial influence. At the content of 2 wt%, nanosilica can reduce the wear loss of the concrete by
75%, when compared with the reference concrete. This is attributed to the pozzolanic reaction and
microaggregate filling effect of the nanosilica, which improve the distribution of cementitious particles
and the orientation degree of Ca(OH)2 in the cement composite. As a result, a denser texture formed,
which leads to improved abrasion resistance. Similar conclusions were drawn in a study conducted
by Li et al. [48], who reported the enhancement of abrasion resistance of concrete due to the addition
of nano-TiO2. They interpreted the mechanism of this improvement as follows. If nano-TiO2 was
dispersed in the cement matrix uniformly, the growth of hydration products would be controlled to
accumulate on the nanoparticles due to their nucleation effect, resulting in a more homogeneous and
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compact cement matrix. As a result, the abrasion resistance of concrete was significantly improved by
the admixed nano-TiO2.

4. Nanotechnology for CBMS to Overcome Chemical Deteriorations

When concrete is exposed to environmental conditions, it can be considerably affected by the
chemical deteriorations during its service life [49]. This section presents the nanotechnology for
CBMS subjected to chemical distresses or chemical pathways compromising their durability, including
alkali–aggregate reactions, sulfate attack, acid attack, and thermal degradation [4,9].

4.1. Alkali-Aggregate Reactions

Alkali–aggregate reactions (AARs) occur when there are active phases in the aggregate and the
alkalinity in the pore solution exceeds the threshold value. Generally, if the active phases are from
amorphous silica aggregate, the reaction can be classified as an alkali–silica reaction (ASR). While the
active phases are sourced from dolomitic limestone aggregate, they can cause the alkali–carbonate
reaction (ACR) in concrete [50]. The products generated in AARs are typically expansive and will
cause cracking in concrete if the tensile stress due to the expansion exceeds the local tensile strength
of the concrete. From the literature, there are several factors, including water content, alkali content,
aggregate activity, and temperature, which influence the degree of AARs [51]. Multiple studies indicate
that the pozzolanic reaction, which consumes the Ca(OH)2 in concrete and thus reduces the alkalinity
of the pore solution, can mitigate the effect of ASR [52–54]. As a result, the use of nanomaterials to
accelerate the pozzolanic reaction will eventually contribute to the control of AARs. Aly et al. [55] used
glass powder to replace cement (up to 40%) as the active phase in the cement matrix and tested the
ASR of cement composites when 3 wt% nanosilica was admixed. The ASR test results indicated that
no damaging effect can be detected. Moreover, the differential thermal analysis/thermogravimetric
analysis and X-ray diffraction result demonstrated a reduction in the content of Ca(OH)2, which was
attributed to the pozzolanic activity of nanosilica. As a result, the alkalinity in cement composites
containing nanosilica was decreased to a value below the threshold, thereby preventing the occurrence
of ASR.

4.2. Sulfate Attack

In the field, sulfate attack can significantly undermine the durability of concrete structures.
Generally, sulfate attack can form expansive compounds, as a result of a series of chemical reactions
that occur between the aggressive sulfate ions and hydrates in the cement paste. The expansion effect
of the sulfate attack in concrete results in cracking, strength loss, and softening of the cementitious
matrix in the long term [49]. Some effective measures to mitigate the damages caused by sulfate
attack include: reducing the permeability of concrete, lowering water-to-cementitious materials ratio,
increasing the content of cement, or forming well-compacted microstructure [56].

Based on recent studies [57–59], nanosilica can improve the resistance of concrete to sulfate
attack by utilizing its densification effect on the microstructure, which slows down the penetration
of sulfate ions and water into the concrete. Ghafoori et al. [60] compared the effect of nanosilica and
microsilica on the expansion of cement mortars under sulfate attack. Their study indicated that the
addition of nanosilica significantly reduced the expansion of mortars. When nanosilica was dispersed
uniformly in the matrix and no agglomeration was observed, it outperformed microsilica at the same
dosage. Similar conclusions were also obtained by Arel and Thomas [61], who demonstrated that
the addition of nanosilica reduced the expansion of cement mortar after 23 weeks of exposure to a
sulfate environment, more so than the addition of microsilica. The reduced porosity and improved
microstructure of samples containing nanosilica was attributed to both the nanofiller effect and the
pozzolanic nature of nanosilica. When considering the relationship between the addition dosage and
the capability of mitigating sulfate-induced expansion, nanosilica would be the most effective one
when compared with microsilica, fly ash, or ground granulated blast furnace slag [49].
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4.3. Acid Attack

It is known that concrete deteriorates under acidic environments due to chemical attack. In
the field, the acidic environments that can impose deleterious effects on the concrete components or
structures mainly include ground water, industrial effluent, and acid rain [62]. Previous studies have
discussed the mechanism of acid attack (i.e., acid corrosion) of CBMS. In the case of sulfuric acid, the
deterioration of CBMS exposed to acid is mainly due to the presence of H+ and SO4

2− ions, which
can lead to the dissolution of hydration products and the formation of expansive compounds [63–66].
The nanomaterial, such as calcined nanokaolinite clay (NKC), has been reported by Fan et al. [67] to
improve the resistance of the cement mortar to acid solution exposure. In their study, cement mortar
samples with or without NKC were submerged in a sulfate and nitric acid solution, which exhibited
a pH value of 1.5. After exposure, the mass loss and residual compressive strength were measured.
There was an optimal dosage of NKC that exhibited the beneficial influence on the improvement in
the acid resistance of the cement mortar. At the dosage of 3 wt%, NKC reduced the mass loss and
compressive strength loss of mortar samples by 19% and 17%, respectively, when compared with the
control mortar samples without the addition of NKC after 60 days of exposure to the acid solution.
Moreover, back-scattered electron microscopy images revealed that the C–S–H gel was decalcified due
to the presence of H+ and an expansive CaSO4·2H2O crystal was formed due to the presence of SO4

2−

in the cement mortar sample with no addition of NKC (Figure 6a). Figure 6c demonstrates that there
was a greater amount of C–S–H gel in the sample with 3 wt% NKC addition, which was attributed to
the filling effect and high activity of NKC, resulting in improved resistance to the acid attack.

Figure 6. Microstructure of cement composite after acid solution corrosion: (a) No nanokaolinite clay
(NKC) addition; (b) 1% NKC addition; (c) 3% NKC addition; (d) 5% NKC addition. Adapted from [67],
with permission from Elsevier, 2016.

4.4. Thermal Degradation

For structural concrete, the nonflammable nature and elevated-temperature resistance of CBMS
can protect the reinforced rebar. However, exposure to an elevated temperature imposes a detrimental
effect on the properties of CBMS, in which both chemical and physical transformations occur under
thermal exposure. Nanomaterials, such as nanosilica, nanoalumina, nanoclay, CNT, GO, and graphene
sulphonate nanosheet (GSNS), have been demonstrated to have the potential to impede the thermal
degradation of CBMS [14,68–77]. A study aimed at using low-cost nanomaterials in the cement paste,
has synthesized nanosilica from the rice husk ash and investigated its effect on the thermal resistance
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of cement pastes [69]. The study showed that there was an optimal dosage for the nanosilica which
is beneficial in compensating the negative effect of elevated temperatures on the properties of the
cement paste. Scanning electron microscopy (SEM) micrographs indicated that the inclusion of 1 wt%
nanosilica in the cement paste exhibited the microfiller effect and pozzolanic activities, which were
reflected in the dense and compact microstructure. As a result, the residual compressive strength of the
cement paste fired at elevated temperatures (up to 800 ◦C) was noticeably increased due to the addition
of nanosilica. Similar conclusions were also drawn by Horszczaruk et al. [71], who analyzed the effect
of temperatures, which ranged from 20 ◦C to 800 ◦C, on the thermal resistance of cement mortar
incorporating nanosilica (in the amount from 1 wt% to 5 wt%). Both SEM and optical microscopy
observations showed that, up to 3 wt%, the inclusion of nanosilica can produce additional C–S–H
through the pozzolanic reaction, which contributed to the improvement in the microstructure and
exhibited the ability of bridging cracks after exposure to elevated temperatures. Hence, the admixed
nanosilica improved the thermal resistance of cement mortar, especially at temperatures up to 200 ◦C.

Heikal et al. [70] reported that the incorporation of 1 wt% nano-Al2O3 has an accelerating effect on
the hydration of cement paste through acting as a nanofiller, thus resulting in a better firing resistance
up to 1000 ◦C than other pastes. The densification and compaction of the microstructure due to the
addition of nano-Al2O3, have also been observed. Irshidat and Al-Saleh [72] investigated the effect of
the addition of nanoclay on the thermal performance of the cement mortar, with the study showing
higher residual compressive strength at 200 ◦C and higher residual flexural and tensile strengths at
400 ◦C, when the optimal dosage of nanoclay (2% by weight of cement) was admixed to modify the
mortar. The presence of nanoclay was observed to cause the reduction in the density and width of the
hairline cracks generated during the elevated temperature exposure.

Reducing the cost of nanomaterial production was taken into consideration in a study conducted
by Sikora et al. [14], in which the authors synthesized both CNT and nanosilica from recycled
substrates Specifically, they prepared the CNT/nanosilica core/shell structures and analyzed the effects
of the elevated temperature on the cement pastes containing the obtained core–shell nanostructure.
Transmission electron microscope (TEM) observations confirmed that the surfaces of CNT were
successfully covered by a shell of nanosilica (Figure 7), which can not only improve the bond between
the CNT and cement paste but also protect the CNT from calcination during heating, resulting in
an extended temperature range that CNT can exhibit positive influence on the paste. Hence, the
samples containing CNT/nanosilica exhibited compressive strength retention up to 600 ◦C, while
pristine CNT-incorporated samples exhibited gradual strength loss after exposure to 450 ◦C. Studies
undertaken by Zhang et al. [76] and Amin et al. [77] have reported that when CNT is incorporated
in cementitious composites, it does not improve or impede the cement hydration but can act as a
channel to assist in the release of high-pressure steam caused by high temperatures or work as bridges
between hydration products and cracks. Mohammed et al. [74] analyzed the effect of GO on the
high-temperature performance of concrete and suggested that, due to modification of the pore structure
by GO, the amount of capillary pores was reduced and the amount of gel pores was increased, resulting
in a more compatible thermal deformation and better cracking resistance. As a result, the residual
compressive strength of the GO-modified samples was 70% of the original value, while the counterpart
for the reference samples was only 35% after being exposed to high temperatures. In addition to GO,
GSNS, another type derivative of graphene, was investigated for its effect on the mechanical properties
of concrete during high temperature exposure [68]. The study found that the sulfonic groups in GSNS
can participate in the reaction with hydration products, resulting in covalent bonding between GSNS
and matrix. Therefore, an enhanced residual strength of concrete during exposure to temperatures up
to 1000 ◦C can be achieved, as a result of the improved microstructure.
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Figure 7. TEM images of (a) CNT and (b,c) CNT/nanosilica. (The average thickness of the shell of
nanosilica is 5 nm). Adapted from [14], with permission from Elsevier, 2019.

5. Nanotechnology in Reinforced Concrete

Corrosion of the reinforcing streel in concrete is considered a significant contributor to deficiencies
in reinforced concrete (RC), which result in (often premature) failure of civil infrastructure in the United
States and worldwide [78]. Generally, the embedded steel is protected by the alkaline solution in the
pores of the concrete, through formation of a passive oxide/hydroxide layer on the surface of steel
rebar [79]. However, this passivation of steel rebar can be disrupted by the reduction in alkalinity (due
to carbonation or acid attack) or the presence of excessive chloride ions [78]. For instance, when exposed
to chloride anions at a concentration higher than the depassivation threshold, the Cl-containing parts
in the oxide film on rebar are destroyed and washed away, forming active pits, which act as corrosion
initiation sites [80]. The corrosion products are expansive and thereby can cause the cracking and
spalling in concrete. This, coupled with the reduction in the cross-section area of the rebar, could result
in the highly unpredictable failure of RC structures [78]. In order to mitigate the corrosion of steel
rebar, several basic approaches are widely used: improving the transport properties of the embedding
concrete, use of a coating for reinforced steel, and cathodic protection [81]. Recently, nanotechnology
has been employed in combination with the conventional countermeasures of rebar corrosion to
enhance the long-term durability of RC in corrosive environments.

5.1. Nanomaterials Addition

The admixing of nanomaterials, including nanosilica, nano-CaCO3, CNT, and carbon nanofiber,
can increase the resistance of the CBMS to rebar corrosion [82–86]. The presence of nanosilica and
nano-CaCO3 in fly ash concretes decreases the total capillary porosity and the diameter of pores, thus
reducing the water permeability and chloride diffusivity, and ultimately lowering the corrosion rate of
the embedded rebar [82]. It should be noted that although the addition of the nanosilica or nano-CaCO3

could reduce the amount of calcium hydroxide present in the fly ash concrete and thereby reduce the
alkalinity of the concrete pore solution, the benefits of nanomodification to the transport properties of
the concrete were more significant. The overall result was thus mitigated rebar corrosion by chlorides.
Another study also reported that the inclusion of nanosilica in concrete could delay the initiation of
corrosion and lower the corrosion rate indicated by increased polarization resistance of steel rebar in
concrete [86]. Furthermore, the incorporation of CNT and carbon nanofiber in the reinforced cement
composite delays the onset of active corrosion of rebar and reduces the corrosion rate of rebar, which
results from the reduced porosity of the matrix and the controlled coalescing process of cracking [83].

Other than serving as admixtures in fresh concrete, nanoparticles have been also explored
for their application in rehabilitation of old concrete. A novel method, named the electrokinetic
nanoparticles (EN) treatment, is designed to inject the electrically charged nanomaterials (nanosilica
and nanoalumina) into aged concrete and move them towards the reinforced rebar by applying an
electric field, as illustrated in Figure 8 [87]. In addition to rehabilitating the cracked concrete, this
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treatment is also effective in mitigating the reinforcement corrosion, which can be attributed to the
reduced chloride content, improved microstructure, and additionally generated C–S–H.

Figure 8. Concept of the nanoparticles transport into the capillary pores and the electrokinetic
nanoparticles treatment circuit. Reproduced from [87], with permission from American Society of Civil
Engineers, 2019.

5.2. Nanomaterials Coating

As a coating material, epoxy has been widely used to protect the steel rebar in RC from corroding
and to improve the anticorrosive performance of the steel reinforcement. However, due to the porous
and hydrophilic nature of epoxy, it cannot protect the steel reinforcement for a long term [79,88]. Adding
nanomaterials into epoxy is a feasible approach to improve the performance of epoxy as a coating on the
steel rebar. One study first dispersed the polyaniline–camphor sulfonate (PANI-CSA) in epoxy and then
coated the steel rebar with the obtained homogeneous epoxy/PANI-CSA self-healing nanocomposite
(Figure 9). The coated steel rebar still exhibited a protective passive layer even after the corresponding
concrete was exposed in the chloride-laden environment up to one year [79]. In comparison, the
epoxy-coated rebars only showed a similar performance within 130 days. The improvement of
nanomodified coating was attributed to the uniformly distributed nanoparticles in the epoxy, making
it a more effective coating against the ingress of detrimental species. Similar studies indicated that the
epoxy coating that contains nano-Fe2O3, halloysite nano clay, or nano-ZrO2 can significantly improve
the corrosion resistance of the coated steel immersed in a NaCl solution [88,89]. An enhanced coating
barrier, which results from the addition of nanomaterials and makes water and ionic species difficult to
transport, was thought to mainly account for this improvement in the anticorrosive performance of the
epoxy coating [88].
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Figure 9. TEM images of (a) epoxy and (b) epoxy/polyaniline–camphor sulfonate (PANI-CSA)
nanocomposite coatings. Reproduced from [79], with permission from Elsevier, 2019.

6. Nanoscale Modeling in CBMS

In the context of engineering, concrete is a heterogeneous composite material in which aggregates
are surrounded by cement paste. The cement paste is a porous solid composite which mainly contains
semicrystalline C–S–H together with calcium hydrates [90]. So far, the nanostructure of C–S–H has
been extensively studied, with the suggested models ranging from colloidal to “layer-like”. Several
crystalline structures, including Tobermorite, Jennite, Clinotobermorite, and Foshagite, have been
also reported to simulate the structure of C–S–H [2,91–95]. Furthermore, the C–S–H that features low
density or high density tends to be generated in the cement hydrates under different curing conditions
and with or without specific nanomaterials [96,97]. Zhu et al. [98] demonstrated that the addition of
nano-SnO2 can promote the generation of high-density C–S–H and reduce the amount of low-density
C–S–H found in cement composites. With the addition of nanomaterials, there has been increasing
interest in the nanoscale modeling of the hydration process and the interaction between the admixed
nanomaterials and hydration products in CBMS. For instance, Liu and Shi [99] conducted molecular
dynamics (MD) simulations to computationally investigate the nanoscale interactions between NaNO2

(corrosion inhibiting admixture), water molecules, nanoparticles (Al2O3, Fe2O3, SiO2, and TiO2), and
representative minerals in hydrated cement (ettringite, Friedel’s salt, jennite, kuzelite, portlandite,
and tobermorite).

Nanosilica in cement composite can react with Ca(OH)2 to generate additional C–S–H, which
exhibits higher rigidity than the one that forms in the pure cement paste [100]. In fact, the volume fraction
of high-stiffness C–S–H can be as high as 50% in the cement composite containing nanosilica [101].
Moreover, the average chain length of C–S–H gel is also increased by the addition of nanosilica [101,102].

Featuring an isolated individual sheet structure, graphene and GO have been added into the
cement composite to study the interaction mechanisms between C–S–H and the admixed graphene
or GO [103–106]. Alkhteb et al. [103] investigated the interfacial strength between C–S–H and
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functionalized graphene nanoplatelets in cement composites. In their work, a molecular structure
of C–S–H that features short silica chains was adopted to reflect the realistic values of Ca/Si ratio
and density of C–S–H (Figure 10a). Figure 10b shows the atomic model for the interface between
the proposed C–S–H and graphene in the pullout test. Test results indicated that the functionalized
graphene improved the interfacial strength and thus increased the overall mechanical properties of the
cement composites.

Figure 10. Atomic model for (a) calcium–silicate–hydrates (C–S–H) and (b) graphene C–S–H hybrid
nanocomposite interfacial pullout. Reproduced from [103], with permission from American Society of
Civil Engineers, 2019.

Fan et al. [104] modeled the interface between C–S–H and GO and studied the stress transferring
mechanism. They used the tobermorite structure as the base structure of C–S–H, while the GO structure
featured functional groups (including epoxy and hydroxyl) distributed randomly on the carbon plane.
With these assumptions, the nanostructure of the C–S–H containing GO can be illustrated in Figure 11a,
in which an interface exists resulting from the reaction between the oxygen atoms of the GO sheet and
the calcium atoms from the C–S–H. Pull-out tests (Figure 11b) were carried out in a realistic manner
and the results showed that the shear strength of the GO/C–S–H interface can be as high as 647 MPa,
which indicated a strong interfacial bonding strength between the GO and C–S–H.

Hou et al. [105] also simulated the C–S–H substrate based on the tobermorite structure and
studied the interaction mechanisms between GO and cement hydration products. It was found that
the functional hydroxyl groups in GO can accept hydrogen-bonds of interlayer water molecules in the
C–S–H (Figure 12a). Additionally, the Ca2+ and Al3+ ions present in the hydrates can bridge the oxygen
atoms in silicate chains and hydroxyl groups in GO, forming a longer silicate chain and facilitating the
crack-bridging effect of GO, as shown in Figure 12b. A recent study conducted by Hou et al. [106]
has indicated that the hydroxyl and carboxyl groups in GO can act as oxygen sites to connect the
H-bond and neighboring ions, resulting in an improved resistance to the transport of fluid in gel pores.
Moreover, the carboxyl groups in GO exhibited the ability to root on the C–S–H deeply, which further
impedes the connectivity of the transport channels for water molecules and ions.

Simulating C–S–H gel with the most used Tobermorite model, Lushnikova and Zaoui [95] inserted
CNT into the hole in C–S–H and studied the improvement mechanism. Figure 13 shows the interaction
between the inserted CNT and the C–S–H. CNT was located at a position where the CNT was kept
at a distance of 2 Å away from the surrounding C–S–H gel. This distance was observed to allow the
oxygen atoms in the C–S–H be attracted to the structure of CNT, contributing to the generation of new
morphology. These newly formed products, along with the admixed CNT, gave the C–S–H improved
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mechanical properties, such as increased bulk modulus, shear modulus, plane stress, and Young’s
modulus, thereby improving the performance of the cement/CNT composites. With the aid of finite
element method, a multiscale modeling approach can be used to evaluate the nonlinear constitutive
behavior of the CNT reinforced concrete from the nanoscale to the mesoscale [107]. In this proposed
model, the structure of C–S–H and the porosity can be considered as parameters to reflect any changing
nanoscale characteristics of concrete at the nanoscale.

Figure 11. Illustration of (a) graphene oxide (GO)/C–S–H composite and (b) pull-out simulation at the
nanoscale. Reproduced from [104], with permission from Elsevier, 2019.
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Figure 12. Molecular structure of the (a) GO/C–S–H; (b) oxygen–calcium–oxygen bond (O–Ca–O) and
oxygen–aluminum–oxygen bond (O–Al–O) connecting the neighboring GO and C–S–H. The ball-stick
styles represent the composite model. Oxygen, calcium, carbon, silicon, hydrogen, and aluminum atoms
are represented by red, green, gray, yellow, white, and purple balls, respectively. The hydroxyl, C–C,
and silicate bonds are represented by white-red, gray, and yellow-red sticks, respectively. Reproduced
from [105], with permission from Elsevier, 2019.

Figure 13. Snapshot of the CNT/C–S–H system: (a) CNT’s insertion into the hole of C–S–H and (b)
formation of new morphology. Reproduced from [95], with permission from Elsevier, 2019.

7. Characterization of CBMS at Nanoscale

The performance of CBMS is strongly influenced by the properties of their micro- and
nanostructures [108]. Alteration of these microscopic structures of CBMS due to the addition of
nanomaterials raises the need for special instruments and methodologies to characterize the resulting
nanocomposites and interfaces. This section presents the advanced methods employed to characterize
the properties, chemistry, and morphology of CBMS at the nanoscale.
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7.1. Mechanical Characterization

One powerful technique used to assess the mechanical properties of cementitious materials
at the nanoscale is nanoindentation [109]. Nanoindentation is conducted by introducing a
gradually-increasing force via the indenter tip. When the tip penetrates to a certain depth, the
unloading phase initiates until the sample is completely unloaded. Several material properties can be
obtained by the nanoindentation test, such as hardness and elastic modulus [110,111]. Hu et al. [112]
used nanoindentation to show that the addition of CNT at 0.2 wt% increased the fraction of dense
C–S–H in the cement matrix and increased the composite’s compressive strength. Nanoindentation
also enabled researchers to identify two types of C–S–H existing in the hardened cement paste [108].
The mechanical properties of C–S–H with low density was significantly affected by calcium leaching,
unlike the dense C–S–H zone where the calcium leaching effect was negligible. Moreover, while
the macroscopic creep properties of cementitious material can only be caused by long-term loading,
nanoindentation is capable of capturing representative creep properties of cementitious material in
minutes. Researchers hypothesized that nanoindentation facilitates the application of much higher
stresses than the macroscopic creep experiment [113]. Nevertheless, researchers have reported several
difficulties associated with conducting nanoindentation, such as producing samples with a flat surface
to ensure a constant indentation depth. In addition, the samples must be preserved in a vacuum
storage to prevent carbonation due to the airborne CO2, which is difficult to ensure [1].

7.2. C–S–H Structure Characterization

Characterization of the structure of C–S–H at the nanoscale is crucial to understand and then
enhance the behavior and properties of CBMS at the macroscale. To investigate the structure of
hydration products at the nanoscale, several tools are used, including the nuclear magnetic resonance
(NMR). NMR provides an insight on the nanostructure of C–S–H in hydration products. A typical
NMR spectrograph presents the type and relative amount of bonds that formed in the material for the
scanned atom. In the C–S–H characterization, silicon 29Si is typically used and the bonding is reported
as Qn where n represents the number of oxygen-bonded silicon atoms to one silicon atom [114–116].
The n value ranges between zero for the free silicon atom and four for the fully polymerized silicon [113].
Silicon bonds are influenced by the interlayers water content and hence, NMR can be used indirectly
for identifying the interlayers water content in C–S–H samples [114]. The evolution of C–S–H gel can
also be monitored by NMR to provide a comprehensive understanding of the hydration process at
different ages. The 29Si NMR spectra of the hydration of tricalcium silicate (C3S) in the dilute system
revealed that Q0 was decreasing steadily, which reflects a continuous increase in the hydration degree
of C3S [117]. Conversely, Q2 showed a continuous increase over time, reflecting the formation of long
silicate chains. In addition, Bae et al. [118] used 29Si and 27Al NMR to analyze the chemical composition
of hydration products of the C3S-high volume fly ash (HVFA) system. Results showed that the C–S–H
resulting from the C3S-HVFA system experienced higher degree of silicate polymerization. Specifically,
the silicate chain length was four times longer than the corresponding C–S–H resulting from the pure
C3S system. 27Al NMR spectra confirmed the presence of Al in the C–S–H resulting from the C3S-HVFA
system, where Al substituted Si at the C–S–H bridging tetrahedral sites. Xu et al. [24] employed both
29Si and 27Al NMR to shed light on the chemical bonds of cement pastes incorporating 0.02 wt% GO.
Along with other characterization results, the NMR examination suggested that “GO can attract Ca
cations to produce jennite-like hydrates near the GO nanosheets” and “increase the polymerization of
the hydrates”.

Another widely used technique to explore micro- and nanostructures of hydration products
is the small angle neutron scattering (SANS). A basic SANS experiment is conducted by sending a
neutron beam to the sample and measuring the small-angle scattering intensity on a two-dimensions
detector [119–121]. Using SANS, Chiang et al. [122] developed an analytical model that describes the
structures of C–S–H. SANS can also be used to investigate the influence of CaCl2 on the hydration



Nanomaterials 2019, 9, 1213 18 of 29

kinetics and the nanostructure of cement paste [120]. Results indicated that CaCl2 accelerated the
hydration process, while it also increased the drying shrinkage of cement paste samples.

Quasielastic neutron scattering (QENS) is yet another advanced tool used in the characterization
of materials at the nanoscale. Unlike SANS, QENS is one type of inelastic neutron scattering where
the neutron beam is scattered due to dynamic interaction with the sample. Li et al. [123] investigated
the state of water existing in the C–S–H gel with different water contents using QENS. Results were
valuable in describing the transport regime of water in the C–S–H gel pores, which was in correlation
with the water content and temperature.

7.3. Imaging Characterization

It is crucial to have a clear vision of the interactions between nanomaterials and hydration products
at the nanoscale in order to obtain a clearer understanding of the nanomodification mechanism in
CBMS. This section presents several imaging techniques that utilize different approaches to deliver
high resolution images at the nanoscale.

The atomic force microscope (AFM) is widely used as an imaging tool at the nanoscale. AFM
operates by applying force on the material, by using a sharp probe which is fixed on a cantilever
arm [124]. By measuring the vertical and lateral deflection of the cantilever arm via an optical lever,
the image is constructed [125–127]. AFM facilitated the investigation of the dispersion of MWCNT
in the cement paste [128]. Furthermore, AFM can be used to characterize the morphology of the
Portland cement paste containing graphene nanoplatelets at the early age of the hydration process [103].
AFM can also be used to investigate the nanoroughness of cement paste samples with admixed SiO2

nanoparticles. It was illustrated that the addition of nano-SiO2 increased the surface roughness of
the hardened cement paste and facilitated the formation of larger particles of C–S–H in the cement
paste [129,130]. However, the AFM results revealed that the cement paste with admixed nano-TiO2

showed much lower nanoroughness than the reference cement paste (Figure 14) [131]. Researchers have
pointed out that AFM has a relatively long scanning time which can be considered as a drawback [132].

Figure 14. Atomic force microscope images of (a) height image of the conventional cement paste,
(b) height image of the cement paste mixed with nano-TiO2, (c) phase image of the conventional
cement paste, (d) phase image of the cement paste mixed with nano-TiO2. Reproduced from [131], with
permission from American Chemical Society, 2019.
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Another technique that offers high-resolution images of the material’s nanostructure is the
transmission electron microscopy (TEM). Unlike AFM, TEM operates by transmitting a beam of
electrons to penetrate through the material and construct an image [133,134]. It should be noted
that images obtained only from TEM are not reliable to characterize the tested materials, and hence,
TEM results are usually coupled with data from other characterization techniques for better results
interpretation [1]. TEM was used to explore the effect of curing temperature on the chemical and
mechanical properties of the oil-well cement paste with a high silica content [135]. Generally, neither of
the paste samples cured at 200 ◦C or 175 ◦C exhibited a crystalline morphology in the C–S–H. However,
Li et al. [129] found that the addition of nano-TiO2, nano-SiO2, CNT, and GO to the cement paste
yielded a C–S–H with more crystalline nanostructure (i.e., short range order), as illustrated by the TEM
images in Figure 15.

Figure 15. TEM images of the C–S–H incorporate different nanomaterials: (A) 2% nano-TiO2, (B) 2%
nano-SiO2, (C) 0.5% GO, (D) 0.5% CNT. Reproduced from [129], with permission from John Wiley and
Sons, 2019.

The helium ion microscopy (HIM) is another advanced imaging tool that can be used to examine
hydration products at the nanoscale. HIM operates similar to TEM, except that electrons are replaced
by Helium ions which induce less scattering when they infiltrate the solid bodies. Consequently, the
imaging resolution is highly improved [136,137]. HIM was applied on a sample of alkali-activated
ground-granulated blast furnace slag (GGBFS) cement paste to explore the morphology of this material
at micro- and nanoscales [138]. The high-resolution images resulting from HIM revealed two types of
heterogeneous calcium–aluminate–silicate–hydrate (C–A–S–H) gel in the paste. The inner product
of the C–A–S–H gel showed a foil-like morphology whereas the outer product possesses a spherical
morphology, as shown in Figure 16. However, there are several drawbacks of HIM reported, such
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as high cost and relatively low material contrast, which make it difficult to detect the edges of the
material phases [139].

Figure 16. Helium ion microscopy (HIM) image of a foil-like C–A–S–H gel covering a ground-granulated
blast furnace slag (GGBFS) particle: (a) low magnification and (b) high magnification of the selected area
in (a). The background shows globules of the C–A–S–H gel. Reproduced from [138], with permission
from Elsevier, 2019.

7.4. Pore Structure Characterization

The pore structure of hydration products at the nanoscale contributes significantly to the durability
and service life of CBMS such as concrete [140,141]. One of the common methods of characterizing the
pore structure in the porous media is mercury intrusion porosimetry (MIP), which is simply applied
by pressurizing a nonwetting liquid, mercury, into the porous media [142,143]. In order to study
the pore structures at the nanoscale, a high pressure is required to drive the liquid mercury inside
pores. To capture pores at a minimum size of 3 nm, the maximum applied pressure can be as high
as 414 MPa [144]. Furthermore, MIP can be used to study the average pore diameter and pore size
distribution of cement pastes incorporating nano-TiO2 and nano-SiO2 [145]. In comparison with
conventional cement paste, the addition of nanoparticles was found to reduce the average pore size to
the range of 20–50 nm, which is considered adequate for resisting chloride ingress. Although MIP is
widely used as a pore characterization technique, researchers have reported several drawbacks such as
the failure of MIP to detect isolated pores and the high pressure required to detect gel pores of C–S–H
in hydration products [142].

Another valuable nondestructive tool that can be used to characterize the pore network of
hydration products at the nanoscale is the nano x-ray computed tomography (nano-CT), which uses
a stack of x-ray images to build the three-dimensional (3D) image of the tested sample [146]. Using
nano-CT to explore the pore network in a leached cement paste sample, it was illustrated that the pore
connectivity at the nanoscale is much higher than that at the micro scale [147]. Wang and Dai [146]
used nano-CT to obtain critical information on the pore structure of the cement paste sample, such
as pore volume, connectivity, and permeability, which can be used in concrete service life prediction
models. Nevertheless, the image resolution can be affected by the radiation damage and unstable
sample positioning which consequently affect the constructed 3D images [148,149].

Wenzel et al. [150] modified TEM using the focused ion beam (FIB) technique to visualize the
pore structure of the hardened cement paste. The resulted images revealed a honeycomb structure
of gel pores with a diameter up to 50 nm (Figure 17). Although the TEM–FIB technique provides a
valuable understanding of the pore structure of hydration products, it does not provide a quantitative
information on the characteristics of the pore structure of the cement composite.
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Figure 17. TEM image of the pore network in the C–S–H. Reproduced from [150], with permission
from Elsevier, 2019.

8. Concluding Remarks

Nanotechnology is an effective approach to improve the durability performances of cement-based
materials. This work provides a comprehensive overview with regard to the current knowledge on
multiple dimensions of the effect of nanomaterials on CBMS, based mainly on the papers published
over the last decade. Some key findings from the review are concluded as follows.

• Dispersion of nanomaterials in CBMS plays an important role in ensuring the effectiveness of
nanomaterials to mitigate the deteriorations of cement composites. Common applied approaches
to disperse nanomaterials include the use of surfactant, application of ultrasonication, and
functionalization of nanomaterials.

• Physical deteriorations of CBMS including shrinkage, freeze–thaw damage, and abrasion can be
reduced by the admixed nanomaterials, resulting from a denser and less permeable mixture.

• Adding the optimal type and dosage of nanomaterials is an effective approach to improve the
resistance of CBMS to chemical deteriorations, such as sulfate attack, acid attack, alkali-aggregate
reactions, and thermal degradation.

• Admixing nanomaterials in fresh concrete, electrically injecting nanomaterials into aged concrete,
and coating the rebar with nanomodified epoxy coating are among practical and effective
approaches to improve the resistance of reinforced concrete against rebar corrosion.

• Modeling of the interactions between C–S–H gel and the admixed nanomaterials can facilitate
a mechanistic understanding of the relationship between the nanostructure and the properties
of CBMS.

• Nanoindentation is a powerful technique used to characterize the nanoscale mechanical properties
of cement composite, while MIP is usually suitable for characterization of the pore structure. The
most adopted techniques for the nanoscale imaging and C–S–H structure characterizations of
CBMS are AFM, TEM, and HIM, and NMR, SANS, and QENS, respectively.

There are some knowledge gaps or remaining challenges that need to be addressed before
widespread adoption of nanomaterials in the construction practices.

• A gap exists between the academic research at the laboratory scale and the realistic engineering
applications. It is important to adapt the nanotechnology to meet the requirements and constraints
of the traditional practices generally adopted by the construction industry [2].
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• The cost-effectiveness of nanomaterials must be evaluated before their use in CBMS, and this
should be done from a life-cycle perspective. Despite the seemingly high initial cost of most
nanomaterials, nanomaterials can greatly improve the durability and service life of CBMS, resulting
in much lower costs during the use phase of CBMS (e.g., those for monitoring, maintenance, and
repair). Nanotechnology will likely result in a competitive life-cycle cost for many constructions
using CBMS.

• Although nanotechnology exhibits the potential for great innovations in the construction industry,
potential health risks should be assessed and addressed for practitioners to ensure appropriate
use of nanomaterials by the industry.

Looking to the future, nanotechnology will continually play a powerful role in advancing
cement and concrete technology and unlocking the potential of conventional and unconventional
cementitious materials. It will help to establish the aforementioned fundamental understanding of the
effect of nanomaterials in CBMS from the bottom up, through the use of multiscale modeling of the
hydration process, rheological behavior and deterioration processes, and through the use of advanced
characterization methods (e.g., TEM, SAXS, NMR, and nanoindentation). Furthermore, the addition of
nanomaterials (e.g., modification by nanosilica, graphene oxide, and carbon nanofiber) will enable
the regulation and manipulation of hydration products and their microstructure in cement-based
materials, to achieve their desirable properties and life-cycle performances.
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39. Polat, R.; Demirboğa, R.; Karagöl, F. The effect of nano-MgO on the setting time, autogenous shrinkage,
microstructure and mechanical properties of high performance cement paste and mortar. Constr. Build.
Mater. 2017, 156, 208–218. [CrossRef]

40. Behfarnia, K.; Salemi, N. The effects of nano-silica and nano-alumina on frost resistance of normal concrete.
Constr. Build. Mater. 2013, 48, 580–584. [CrossRef]

41. Fan, Y.; Zhang, S.; Wang, Q.; Shah, S.P. Effects of nano-kaolinite clay on the freeze–thaw resistance of concrete.
Cem. Concr. Compos. 2015, 62, 1–12. [CrossRef]

42. Gonzalez, M.; Tighe, S.L.; Hui, K.; Rahman, S.; de Oliveira Lima, A. Evaluation of freeze/thaw and scaling
response of nanoconcrete for Portland Cement Concrete (PCC) pavements. Constr. Build. Mater. 2016, 120,
465–472. [CrossRef]

43. Quercia, G.; Spiesz, P.; Hüsken, G.; Brouwers, J. Effects of amorphous nano-silica additions on mechanical
and durability performance of scc mixtures. In Proceedings of the 1st International Congress on Durability
of Concrete, Trondhelm, Norway, 18–21 June 2012; pp. 18–21.

44. Salemi, N.; Behfarnia, K. Effect of nano-particles on durability of fiber-reinforced concrete pavement. Constr.
Build. Mater. 2013, 48, 934–941. [CrossRef]

45. Mohammed, A.; Sanjayan, J.G.; Duan, W.H.; Nazari, A. Graphene oxide impact on hardened cement
expressed in enhanced freeze–thaw resistance. J. Mater. Civ. Eng. 2016, 28, 04016072. [CrossRef]
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