
  

Nanomaterials 2020, 10, 188; doi:10.3390/nano10020188 www.mdpi.com/journal/nanomaterials 

Article 

Aromatic Hyperbranched Polyester/RTM6 Epoxy 
Resin for EXTREME Dynamic Loading Aeronautical 
Applications 
Aldobenedetto Zotti 1,†, Ahmed Elmahdy 2,†, Simona Zuppolini 1,†, Anna Borriello 1,*,  
Patricia Verleysen 2,* and Mauro Zarrelli 1 

1 Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, P.le Fermi, 1, 
80055 Portici, Naples, Italy; aldobenedetto.zotti@unina.it (A.Z.); simona.zuppolini@cnr.it (S.Z.); 
mauro.zarrelli@cnr.it (M.Z.) 

2 Department of Electromechanical, Systems & Metal Engineering, MST-DyMaLab, Ghent University, 
Technologiepark 46, B-9052 Zwijnaarde, Belgium; ahmed.elmahdy@UGent.be 

* Correspondence: borriell@unina.it (A.B.); Patricia.Verleysen@UGent.be (P.V.);  
Tel.: +39-0817768814 (A.B.); +32-9-3310430 (P.V.) 

† These authors contributed equally to this work. 

Received: 17 December 2019; Accepted: 17 January 2020; Published: 22 January 2020 

Abstract: The effects of the addition of an aromatic hyperbranched polyester (AHBP) on thermal, 
mechanical, and fracture toughness properties of a thermosetting resin system were investigated. 
AHBP filler, synthesized by using a bulk poly-condensation reaction, reveals a glassy state at room 
temperature. Indeed, according to differential scanning calorimetry measurements, the glass 
transition temperature (Tg) of AHBP is 95 °C. Three different adduct weight percentages were 
employed to manufacture the AHBP/epoxy samples, respectively, 0.1, 1, and 5 wt%. Dynamical 
Mechanical Analysis tests revealed that the addition of AHBP induces a negligible variation in terms 
of conservative modulus, whereas a slight Tg reduction of about 4 °C was observed at 5 wt% of filler 
content. Fracture toughness results showed an improvement of both critical stress intensity factor 
(+18%) and critical strain energy release rate (+83%) by adding 5 wt% of AHBP compared to the neat 
epoxy matrix. Static and dynamic compression tests covering strain rates ranging from 0.0008 to 
1000 s−1 revealed a pronounced strain rate sensitivity for all AHBP/epoxy systems. The AHBP 
composites all showed an increase of the true peak yield compressive strength with the best 
improvement associated with the sample with 0.1 wt% of AHBP. 

Keywords: thermosetting resin; polymer-matrix composites (PMCs); fracture toughness; high-
strain rate mechanical properties; hyperbranched polymers (HBPs) 

 

1. Introduction 

Epoxy resins are widely used in different application fields such as aerospace [1] (matrix in 
composites), electronics [2] (high-performance protective coatings), and structures [3,4] (anti-
corrosive coatings and structural adhesives) because of their low specific weight compared to metals, 
good mechanical properties, and high corrosion resistance. 

Epoxy resins are brittle in nature [5], and their poor impact resistance limits their use in 
advanced applications for which a high toughness is required, such as adhesives and fiber-reinforced 
polymers for aerospace [6,7]. In order to enhance their fracture toughness, fillers with different 
typologies have been employed, such as rubber particles [8], inorganic nanoparticles [9], carbon 
nanotubes [10], and hyperbranched polymers [11,12]. All these filler categories have the potential to 
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increase the toughness of epoxy resins, though they might compromise the strength to varying 
degrees. 

Hyperbranched polymers (HBPs) have been explored as novel, high potential, low viscosity 
tougheners for epoxy resins, as they increase fracture toughness properties without remarkable 
detrimental effects on other properties. Their non-branched counterparts can drastically reduce the 
Tg of the resin, deteriorate the thermal stability and storage modulus, and unavoidably limit the 
processability due to the significant increase of the matrix viscosity [13]. HBPs, on the contrary, are 
known to exhibit lower melt and solution viscosities compared to linear polymers of the same molar 
mass, mainly due to their unique structure [12]. Another important advantage of HBPs is that their 
simplified synthetic procedure enables production in large quantities, thus making their use in 
engineering applications potentially economically viable. 

Fu et al. [14] have toughened a diglycidyl ether of bisphenol A (DGEBA) resin system using a 
hyperbranched polyester (poly(trimellitic anhydride-triethylene glycol) ester epoxy-HTTE). Their 
study focused on the effect of the hyperbranched generation number on the thermo-mechanical 
properties and impact resistance of the epoxy system. The authors found an improvement of the 
impact strength with a factor of 2 to 7 for HTTE/DGEBA blends compared to the unmodified system. 
The addition of the HBP reduces the Tg of the epoxy system. However, the reduction of Tg decreases 
with the increase of the HBP generation number. Similar behavior is observed for the thermal stability 
of the nanocomposite. In some cases, HBPs are able to increase the fracture toughness and impact 
resistance of the hosting matrix without loss of thermo-mechanical properties, as demonstrated by 
Boogh et al. [15]. In their work, the addition of 5 wt% of HBP results in an increase of the critical strain 
energy release rate (GIC) from 120 J/m2 for the neat resin to 720 J/m2 for the modified one. The HBP 
addition does not lead to a decrease of both resin elastic modulus and Tg, and there are not remarkable 
changes in resin viscosity. As such, the epoxy processability is fully maintained without the 
additional use of solvents. The absence of a remarkable loss in thermo-mechanical properties could 
be attributable to the strong mechanical interaction between epoxy matrix and the reactive epoxy 
groups grafted onto the HBP. Xu et al. [16] reported an increase in curing rate for a DGEBA-based 
epoxy system loaded with hyperbranched polyester with hydroxyl end groups (HBP-OH). The faster 
curing process is ascribable to the catalytic effect of hydroxyl groups in HBP-OH and the low viscosity 
of the blend at curing temperature. In addition, the fracture toughness of the cured system with 20 
wt% of HBP-OH has been studied. The critical stress intensity factor (KIC) value is about twice the 
value of pure epoxy resin. HBPs are also employed as shell in core/shell nanoparticles. An example 
is reported by Wei et al. [17], who used an aromatic hyperbranched polyamide as shell for magnetic 
Fe3O4 nanoparticles in order to improve the dispersion within the hosting matrix. The choice of using 
an HBP as a shell is motivated by the higher surface functionality compared to their linear polymer 
counterpart. This feature is extensively used in applications where a larger interaction between filler 
and matrix is needed in order to improve the stress transfer [18] or the dispersion [17,19]. 

As mentioned above, one of the aims of toughening epoxy resins is to increase their fracture 
toughness and impact resistance. This is necessary for the use of epoxy resins in various aeronautical 
components. Since these components are typically subjected to impact loads, it is essential to study 
the high strain rate behavior of epoxy resins. Several researchers have studied the high strain rate 
tensile and compressive behaviors of epoxy resins. Gerlach et al. [20] have investigated the tensile 
and the compressive behaviors of RTM6 epoxy at strain rates up to 104 s−1. Results showed that the 
RTM6 epoxy resin is strain rate sensitive in both tension and compression. Both yield strength and 
initial modulus increased with increasing strain rates. Rio et al. [21] and Naik et al. [22] also reported 
an increase of the elastic modulus and the compressive yield strength for epoxy resins with increasing 
strain rates up to 2500 s−1. Gilat et al. [23] have studied the high strain rate behavior of untoughened 
E-862 and toughened PR-520 epoxy resins in tension and shear up to strain rates of 700 s−1. Results 
also indicated that both epoxy resins are strain rate sensitive in tension and shear. The toughened 
resin showed higher tension and shear strengths compared to the un-toughened resin at high strain 
rates. Guo et al. [24] have studied the compressive response of a silica/epoxy system at high strain 
rates up to 104 s−1. The authors demonstrated that the influence of the nanoparticle on the mechanical 
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properties of the epoxy matrix are strongly affected by both strain rate and dispersion of the 
nanoparticles. Indeed, the silica/epoxy systems exhibit a better performance when the dispersion is 
uniform, i.e., without filler clusters. Moreover, the compression stress goes up dramatically as the 
strain-rate increases. Shadlou et al. [25] have investigated the effect of strain rate on the mechanical 
behavior of epoxy reinforced with graphene nanoplatelets. Results have shown that the compressive 
modulus and strength of nanocomposites increase with increasing strain rates. Moreover, it was 
demonstrated that the effect of the nanoplatelets reinforcement decreases at higher strain rates. 

Despite the availability of several studies on the dynamic response of neat and toughened 
epoxies by different toughening particles, very few studies are available on the dynamic behavior of 
hyperbranched polymer toughened epoxy. Li et al. [26] have studied the effect of hyperbranched 
core-shell nanoparticles on the tensile and impact resistance of epoxy resin. Results showed that the 
addition of 3% hyperbranched particles can significantly improve the tensile and impact resistance 
of the epoxy resin. 

Although hyperbranched polymers have a proven potential as toughening agent for epoxy 
resins, they are generally characterized by a low Tg. This, in turn, could eventually reduce the Tg of 
the hosting matrix [13]. One possible solution to this issue is to use a hyperbranched polymer with a 
high Tg, in order to limit the reduction of the Tg of the hosting epoxy matrix. This could have a 
significant effect on the mechanical performance of the resulting epoxy blend in general, and on the 
high strain rate mechanical performance in particular. Therefore, the aim of this work is to study the 
thermo-mechanical properties and the fracture toughness performance of an aeronautical grade 
epoxy resin modified with a hyperbranched polyester characterized by a high Tg. Additionally, the 
compressive behavior of the synthesized aromatic hyperbranched polyester (AHBP)/epoxy 
nanocomposites is investigated at static and high strain rates using a conventional test machine and 
split Hopkinson pressure bar setup, respectively. 

2. Materials and Methods 

2.1. Experimental 

The epoxy matrix, RTM6, was supplied by Hexcel Composites (Duxford, UK). RTM6 is a 
premixed epoxy-amine system, composed by the tetra-functional epoxy resin tetraglycidyl 
methylene dianiline (TGMDA, Figure 1a) and two hardeners: 4,4′-methylenebis(2,6-diethylaniline) 
and 4,4′-methylenebis(2-isopropyl-6-methylaniline) (Figure 1b) [27]. RTM6 is developed for the resin 
transfer molding process, and is characterized by an epoxy equivalent weight of 116 g/eq [28] and a 
minimum viscosity of 33 mPa·s at 120 °C [29]. 

 
Figure 1. Chemical structure of (a) tetraglycidyl methylene dianiline, (b) 4,4′-methylenebis(2,6-
diethylaniline), and (c) 4,4′-methylenebis(2-isopropyl-6-methylaniline) [16]. 

The 4,4-bis(p-hydroxyphenyl)pentanoic acid (diphenolic acid), tin(II) 2-ethylhexanoate (92.5–
100%), Sn(Oct)2, and tetrahydrofuran (99.9%, THF) were purchased by Sigma-Aldrich and used as 
received. 
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2.2. Synthesis of AHBP 

AHBP synthesis was performed according to a modified procedure reported in literature [30]. 
Diphenolic acid (5.0 g) and Sn(Oct)2 (60 μL) were magnetic stirred in a three-necked round-bottom 
flask at 190 °C under nitrogen atmosphere for 3 h, to ensure the homogeneity of the mixture. Then, 
the temperature was raised up to 225 °C to trigger the polymerization and the reaction was kept 
stirring for 3 h. The crude product was dissolved in 10 mL of THF, and then the solution was poured 
in a large amount of deionized water (≈0.5 L) in order to precipitate the AHBP. Subsequently, the 
precipitate was filtered, washed with deionized water, and then dried in an oven under vacuum at 
100 °C, for a night. The obtained AHBP was characterized by a red/brown color. Figure 2 shows a 
schematization of the synthesis procedure. 

 
Figure 2. The synthesis procedure of aromatic hyperbranched polyester (AHBP). 

2.3. Preparation of Epoxy Thermoset 

To prepare the epoxy/AHBP nanocomposites, an appropriate amount of AHBP was dissolved 
in 5 mL of THF and the solution was mixed with the epoxy resin in a round-bottom flask. The solvent 
was removed by a rotavapor at 90 °C. The resulting mixture was poured in a stainless steel template, 
previously coated with a release agent (FREKOTE 70), and then cured at 160 °C, for 90 min, followed 
by a post-curing stage of 2 h at 180 °C. The cured plates were cooled down slowly in the oven 
overnight to room temperature, removed from the template, and cut to the prescribed sample 
dimensions for the programmed mechanical tests. 

Three different filler concentrations were employed: 0.1, 1, and 5 wt%. 

2.4. Characterization 

The molecular weight and its distribution were determined by a Waters Gel Permeation 
Chromatography (GPC, Waters Associates, Milford, MA, USA) 515–2410 system with THF as the 
eluent. 

Nuclear magnetic resonance (NMR) spectra were recorded on a Brucker Advance 400 MHz 
spectrometer (Milano, Italy) operating at 400 and 100 MHz for 1H and 13C, respectively. DMSO-d6 was 
used as solvent and chemical shifts (δ) are reported in ppm relatively to the residual solvent signal 
(DMSO-d6: δH 2.54, δC 39.7). For 13C-NMR a standard pulse sequence zgpg30 (Bruker library) was 
used and 1 s recycle delay, 1.2 s acquisition time, and a pulse angle of 30° were applied, attaining 
conditions close to the maximum signal-to-noise ratio and far from any saturation. Spectra were 
processed by Top Spin 3.1 software (Bruker). 

Fourier transform infrared (FTIR) spectra were recorded on a Perkin Elmer Spectrum 100 FTIR 
spectrophotometer (Milano, Italy) in the 4000–400 cm−1 region, with a resolution of 1 cm−1, using 
attenuated total internal reflectance spectroscopy (ATR). 

The rheological characterization of the AHBP/RTM6 suspension was carried out by a MRC-301 
rheometer (Anton Paar, Graz, Austria), using parallel plates PP25 with a diameter of 25 mm with a 
0.5 mm gap. Temperature ramp tests were performed in order to study the viscosity changes of the 
AHBP/RTM6 suspensions with temperature. The heating rate was set to 2 °C/min from ambient 
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temperature to the temperature associated with a viscosity value equal to 106 Pa·s. Frequency and 
deformation were fixed, i.e., 1 Hz and 0.5%, respectively. 

Tg of synthesized hyperbranched and manufactured nanocomposites were evaluated using a 
Differential Scanning Calorimeter (DSC) Q1000 by TA Instruments (New Castle, Germany), under a 
nitrogen atmosphere (50 mL/min) and a heating ramp of 10 °C/min. The samples used had a weight 
of 5 ± 0.5 mg. 

Dynamic mechanical analysis (DMA) was performed using the Q800 DMA by TA Instruments 
at a fixed frequency of 1 Hz and heating ramp of 3 °C/min. The testing configuration was the double 
cantilever mode with nominal sample dimensions of 60 × 10 × 2.5 mm3. An amplitude of 60 μm was 
considered for all the tests. 

Mode-I fracture tests were conducted using Single Edge Notched Beam (SENB) specimen. The 
test specimen was chosen according to the ASTM D5045-99 standard test method. To ensure the plane 
strain conditions, samples with nominal dimensions of 3 × 6 × 27 mm3 were employed. According to 
the ASTM standard, the crack length should be selected such that 0.45 < a/W < 0.55. The crack was 
obtained in two steps: first a sharp crack was machined with a saw, then a natural crack was initiated 
by sliding a new razor blade across the notch root. The fracture tests were performed using an Instron 
4301 equipped with a 250 N load cell at a displacement rate of 1 mm/min. 

KIC values were calculated according to the standard using the following equation: 

KIC = f(a/w)ቀ ೂௐభ/మቁ, (1) 

fቀ௪ቁ = 6ቀ௪ቁ ଵ.ଽଽି ቀೌೢቁቀଵି ೌೢቁ ൬ଶ.ଵହିଷ.ଽଷೌೢାଶ.ቀೌೢቁమ൰൨ቀଵାଶೌೢቁቀଵି ೌೢቁయ/మ , (2) 

where PQ is the load at failure, a crack length, while W and B are the specimen width and thickness, 
respectively. GIC were calculated from the stress intensity values according to the cited ASTM 
standard. Scanning electron microscopy (SEM) observations (FEI Quanta 200 FEG, ThermoFisher 
Scientific, Hillsboro, OR, USA) were performed on the nanocomposites fractured surfaces obtained 
as a result of fracture toughness tests, in order study the fracture mechanisms involved during the 
nanocomposites breakage. 

High strain rate compression experiments were carried out using the split Hopkinson 
compression bar setup of DyMaLab at Ghent University. Cylindrical samples of neat RTM6 and 
modified RTM6 resin with three AHBP concentrations (i.e., 0.1, 1, and 5 wt%) were manufactured for 
these experiments. The diameter and the height of the cylindrical samples were 8 and 4 mm, 
respectively. The setup consisted of two aluminum bars, called input and output bars, each having a 
diameter of 25 mm. Both bars were carefully aligned and allowed to move freely on horizontal 
supports. The length of the input bar was 6 m while the length of the output bar was 3.25 m. Samples 
were positioned and aligned between the two bars. During a high-speed compression experiment, a 
compressive incident wave is generated by accelerating an impactor towards the free end of the input 
bar. This compressive incident wave propagates along the input bar towards the sample. The incident 
wave is partly reflected and partly transmitted by the sample. The strain histories corresponding to 
the incident, reflected, and transmitted waves were measured by means of strain gauges attached at 
well-chosen points on the input and output bars. Using the theory presented by Kolsky [31], the time 
histories of the force, the global deformation, and velocity imposed to the sample can be derived from 
the measured waves. The amplitude of the incident wave is proportional to the velocity of the 
impactor and can be tuned: a higher impactor velocity results in a higher strain rate in the sample. 
For each material, tests were performed with impactor velocities of 8, 11, and 14 m/s. Additionally, 
the digital image correlation (DIC) technique was used to obtain full-field strain measurements 
locally on the surface of the samples. To this purpose, two high-speed cameras positioned under a 
certain angle were used to record the deformation of a speckle pattern applied to the sample surface 
prior to testing. Figure 3 shows the dynamic compression setup used. 
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Next to the dynamic compression tests, quasi-static reference tests were performed on an Instron 
5569 universal testing machine (see Figure 4) with a load cell of 50 kN. In the tests, the same sample 
geometry and boundary conditions were used as for the dynamic tests. A lubricant was also applied 
to the sample/bar interfaces to reduce friction. Both the DIC technique and displacement transducers 
were used to measure the deformation of the samples. Three different quasi-static testing speeds of 
0.2, 2, and 20 mm/min were imposed to the sample. For both reference quasi-static and high strain 
rate compression tests, the recorded DIC images were processed using the commercial digital image 
correlation software MatchID to obtain the local strains after testing. The engineering and true DIC 
strains were calculated from the developed full displacement field as average strain in an area of 
approximately 3.5 × 3.5 mm2 on the surface of the sample, following the reference Biot and Hencky 
strain measures, respectively. 

 
Figure 3. (a) Dynamic compression test sample geometry, (b) picture of the manufactured samples, 
and (c) detail of the split Hopkinson pressure bar setup used for the dynamic compression tests. 

 
Figure 4. Quasi-static setup used with digital image correlation (DIC) and displacement transducers 
with detail on sample positioning. 

3. Results and Discussion 

The need to use a high Tg polymer as toughener for epoxy resin system has driven the choice 
toward AHBP. The suitable molecular structure consisting of OH– and COOH– substituted benzene 
rings offers a double advantage: it gives more rigidity and high functionality to improve the cross-
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linking in filler/matrix system. Furthermore, AHBP can be synthesized by a one-step procedure based 
on poly-condensation of a unique functional monomer (type ABx). 

3.1. AHBP Characterization 

The weight-average molecular weight and molecular weight distribution calculated were 4065 
g/mol and 2.7, respectively. 

In the HBP structure, trisubstituted, disubstituted, and monosubstituted building blocks can be 
identified as dendritic (D), linear (L), and terminal (T) unities, respectively. The relative content of 
them can be used to calculate the degree of branching (DB), which is one of the main structural features 
for branched polymer, by following equation [32]: 

DB = (D + T)/(D + T + L). (3) 

The DB value of branched polymer is commonly determined by 13C-NMR spectroscopy where 
D, L, and T are identified by integral intensities of corresponding signals. 

The NMR analysis was conducted on both starting monomer and final polymer product. Both 
samples were dissolved in DMSO-d6 which, among the commercially used deuterated solvents, was 
the only one able to dissolve AHBP. 

The 1H-NMR spectrum of diphenolic acid is shown in Figure 5a. The three upfield signals (δ = 
1.46, 1.96, and 2.22) are attributable to CH3– and –CH2– of the aliphatic chain, respectively. The peaks 
observed at δ = 6.95 and 6.67 are associated with aromatic protons on phenolic rings. Then, at δ = 9.15 
a broad, though weak, peak appears, which is attributable to phenolic hydroxyl. Similarly, the 13C-
NMR spectrum (Figure 5b) shows signals included in the δ = 114–139 range associated with aromatic 
carbon atoms, and peaks in the δ = 27–45 range related to the aliphatic carbon atoms. The phenolic 
carbon is indicated by the peak at δ = 154.97, while the carboxylic carbon is clearly identified by signal 
at δ = 174.71. 
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Figure 5. (a) 1H and (b) 13C nuclear magnetic resonance (NMR) spectra of diphenolic acid. 

The 1H-NMR spectrum of the synthesized AHBP is reported in Figure 6a. Despite the complexity 
of the structure, the main signals are clearly visible. The broad and weak peak associated to the 
phenolic –OH is still observed but with a shifted value (δ = 8.3) due to the resonance effect of the due 
to the resonance effect of the formed ester bond with carboxyl groups. A similar behavior is observed 
for the aromatic and aliphatic protons identified by signals included in δ = 6.8–5.7 and δ = 1.5–0.5 
ranges, respectively. 

In the 13C-NMR spectrum (Figure 6b), no remarkable peaks shifts are observed compared to 
diphenolic acid. Although, a new peak associated with the ester group appears at δ = 171.34, 
indicating the polymerization that occurred. Since not all carboxyl groups take part in the 
esterification reaction, their peaks (δ = 174.06) are still present in the spectrum. Branched unities (T, 
L, and D) are identified by three signals within the 43–45 of δ-range, whose magnification is reported 
on the spectrum. Based on these assignments, DB calculated from Equation (3), was 0.57 according 
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to common values for hyperbranched polymers (less than 1) compared to DB (equal to 1) for 
dendrimers [33]. 

 
Figure 6. (a) 1H and (b) 13C NMR spectra of synthesized AHBP. 

In Figure 7 the FTIR spectra of diphenolic acid and synthesized AHBP are shown. In the 
diphenolic acid spectrum (black curve) a broad and strong band is evident, centered at 3208 cm−1, 
associated with the asymmetric –OH stretching vibrations of carboxyl groups and hydroxyl groups. 
The peak at 1701 cm−1 is associated to the C=O stretching vibration, while the peaks at 1601 and 1512 
cm−1 are both attributable to the C=C stretching vibrations in the benzene rings. In the AHBP spectrum 
(blue curve), the absence of the peak at 1701 cm−1 is noteworthy. It is replaced by a new peak centered 
at 1735 cm−1, associated with the C=O stretching vibration in the ester groups. Peaks at 1176 and 1014 
cm−1 could be assigned to the asymmetric and symmetric stretching vibrations in the C–O–C bonds, 
respectively. Para-(1,4)-benzene ring vibrations are associated with the peak at 831 cm−1. Since ester 
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groups are formed by the reaction between hydroxyl and carboxyl groups, and consequently some 
of the hydroxyl groups are removed, the shift from 3208 to 3363 cm−1 and the reduction in intensity 
of the O–H stretching vibration in the AHBP spectrum are in line with expectations. 

Table 1 resumes the peaks shown in the FTIR spectra of Figure 7. 

 
Figure 7. Fourier transform infrared (FTIR) spectra of diphenolic acid (black curve) and AHBP (blue 
curve). 

The synthesized AHBP was also characterized by thermal analysis and a Tg value of 95.09 °C 
(Figure 8) was found. It is well known that the Tg depends on the mobility of the macromolecular 
chain segments: the higher value of the filler Tg, compared to those found in literature [33,34], is likely 
attributed to the stiffness of the aromatic segments in the macromolecular chains. 

Table 1. Meaning of FTIR peaks. 

Wavenumber (cm−1) Associated With 
3366 O–H stretching vibration (hydroxyl and carboxyl groups) 
1728 C=O stretching vibration (ester group) 

1611, 1509 C=C stretching vibration (benzene ring) 
1169, 1014 C–O–C asymmetric and symmetric vibration (ester group) 

831 Para(1,4)-benzene ring vibration 

 
Figure 8. DSC curve of synthesized AHBP. 
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3.2. Nanocomposite Characterization 

3.2.1. Rheological and Thermal Analysis 

Rheological and thermal analyses were performed on uncured neat and filled epoxy systems in 
order to study the effects of the glassy hyperbranched polymer adducts respectively on viscosity and 
cure kinetic. Results are reported in Figure 9. 

At higher contents, AHBP induces an increase of system viscosity, and this effect is more 
pronounced in correspondence with the temperatures associated with the minimum viscosity of the 
hosting matrix (≈120 °C). In particular, the viscosity at 120 °C for the neat resin is about 30 mPa·s, but 
the addition of 5 wt% of AHBP raises it up to 200 mPa·s, that is about one order of magnitude greater. 

 
Figure 9. Complex viscosity vs. temperature for the neat system and for suspensions with 0.1, 1, and 
5 wt% of AHBP. 

In addition to the changes in resin viscosity, Figure 9 also provides useful indications of the 
catalytic effect of the AHBP for the hosting matrix cure. The presence of the polymeric filler induces 
a considerable acceleration of the curing process, with a reduction of gelation temperature from 197 
to 163 °C. The gelation point can be identified, at fixed heating rate, as the temperature at which 
viscosity arises above 104 Pa·s. The effect of hyperbranched polyesters on the cure kinetic of an epoxy 
resin was already studied by Xu et al. [16]: the faster curing process is ascribable to the catalytic effect 
of hydroxyl groups in the filler and to the low viscosity of the system at curing temperature. Matrix 
viscosity is one of the main parameters to be considered in several infusions based processes. It 
directly influences the process filling time and the overall final composite quality. In common 
vacuum assisted resin infusion molding (VARIM) processes, the matrix viscosity should be lower 
than 1.0 Pa·s [35]. 

Figure 10 reports the isothermal curves (70, 80, and 100 °C) relative to the system loaded with 5 
wt% of AHBP, which reveals the highest value of minimum complex viscosity (≈200 mPa·s at 120 °C). 
Isothermal rheometric tests at 120 °C are not reported as starting from this temperature the 
polymerization reaction is almost instantaneously triggered. Obtained viscosity profiles indicate that 
the system infusion time reduces sharply by increasing the temperature thus limiting the processing 
time at 100 °C for 25 min, which correspond to the time required to reach 1.0 Pa·s viscosity. 
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Figure 10. Isothermal rheological tests for the system loaded with 5 wt% of AHBP. 

Incorporation of hyperbranched polymers in a matrix can improve the fracture and impact 
toughness of the resulting epoxy nanocomposites, and likely of the corresponding fiber reinforced 
composites, but it may affect other mechanical and thermo-mechanical properties, such as the elastic 
modulus (E) and Tg, due to the introduction of soft macromolecules into the original matrix network 
[36]. In order to assess potential variations of both E and Tg, due to the AHBP loading content, DSC 
and DMA tests were performed on the manufactured AHBP filled nanocomposites and then 
compared to the corresponding value of the neat epoxy. 

In Figure 11, DSC thermograms of neat RTM6 and AHBP loaded nanocomposites are reported. 
Similarly to the neat sample, AHBP filled nanocomposites also showed a single glass transition step, 
indicating the formation of a homogeneous phase due to the good compatibility between filler and 
hosting matrix. 

 
Figure 11. DSC curves of neat and filled systems. 

As it is evident by Figure 11, low AHBP contents (i.e., 0.1 and 1 wt%) induce a negligible change 
in Tg, whereas a higher filler content (i.e., 5 wt%), provides a reduction in Tg (Tg = −12 °C), i.e., from 
225 °C for neat RTM6 to 212 °C for the 5 wt% filled samples. The same trend, but with a lower 
variation, is computed by analyzing the DMA scans and corresponding Tg values with an overall 
change of ≈4 °C for the same systems. In the case of DSC tests, whose main assumption is point-like 
sample, this reduction is reasonably related to the addition of AHBP phase characterized by its lower 
Tg (≈95 °C), which inevitably will reduce the final system Tg. 
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3.2.2. Mechanical Analysis 

DMA allows the measurement of the dynamic epoxy modulus as function of the temperature 
(Figure 12). The main results in terms of moduli at 30 °C and at 250 °C, along with the Tg for the neat 
epoxy and AHBP loaded nanocomposites, are reported in Table 2. 

Negligible changes of the storage modulus are observable at both temperatures (i.e., 30 and 250 
°C) for all filler contents, while a slight reduction of Tg is measured for the system filled with the 
highest content of AHBP (≈4.5 °C). This result, although in line with the DSC data, allows to make 
two further considerations if analyzed jointly with the trend of storage modulus. In fact, the apparent 
contradiction associated to the lowering of Tg and, at the same time, the increase of glassy and rubbery 
modulus (up to 1 wt%) could be rationalized by assuming that the level of physical entanglements 
induced by the presence of AHBP becomes significant at 1 wt% filler content. The effect of both the 
low Tg filler, tending to reduce the overall final system Tg, and the concentration of entanglements, 
acting toward a stiffening of the system, would result as balanced at lower filler concentration and 
maximized at 1 wt%. Furtherly, increasing the weight percentage (i.e., from 1 to 5 wt%), would lead 
to a coarser level of dispersion and thus a non-uniform density of entanglements weakening the 
system structure under the applied load. Therefore, the reinforcement efficiency at higher filler 
content will be lower. 

The formed entanglements among the highly rigid AHBP nanoparticles and the hosting matrix 
chains would affect the level of reinforcement with an optimal content at 1 wt% while at high filler 
content (i.e., 5 wt%) it will detrimentally affect the reinforcement efficiency. 

 
Figure 12. DMA curves of neat and filled systems. 

Table 2. Neat and filled systems DSC and DMA results. 

Sample ID TgDSC (°C) TgDMA (°C) E’ (30 °C) E’ (250 °C) 
RTM6 Neat 225.1 228.9 3246 ± 34 40 ± 2.5 

RTM6 + 0.1 wt% AHBP 223.4 225.6 3261 ± 29 41 ± 3.7 
RTM6 + 1 wt% AHBP 222.2 225.2 3340 ± 49 47 ± 5.0 
RTM6 + 5 wt% AHBP 212.9 224.4 3263 ± 37 42 ± 2.1 

Fracture toughness tests were performed according to guideline of ASTM D5045 standard. The 
SENB specimens were subjected to a three-point bending load with a constant cross-head 
displacement rate of 10 mm/min. 

The fracture toughness is substantially expressed by two parameters: KIC, which is the critical 
stress amplification factor near the edge of a crack, and GIC, which represents the energy needed to 
create two surfaces during a crack propagation. Both the KIC and GIC values are remarkably increased 
by addition of AHBP (Figures 13 and 14). Indeed, it was found that when the content of 
hyperbranched polymers is only 1 wt%, the KIC and GIC of the AHBP/RTM6 system are increased 
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achieving the values of 0.77 MPa m1/2 and 0.178 KJ/m2, from 0.62 MPa m1/2 and 0.113 KJ/m2, which 
represent the corresponding values for the neat resin, respectively. 

The highest enhancement of fracture toughness is relative to the samples loaded with 5 wt% of 
AHBP, characterized by a value of KIC and GIC of 0.86 MPa m1/2 and 0.209 KJ/m2, respectively. The 
increase of fracture performance is attributable to both a reduction of crosslinking density and a 
plasticization effect induced by the synthesized filler within the hosting matrix. 

 
Figure 13. KIC results obtained from fracture toughness tests for neat and filled systems. 

 
Figure 14. GIC results obtained from fracture toughness tests for neat and filled systems. 

The mechanism associated with the improvement of the fracture toughness behavior is clearly 
observable in the SEM images of the fracture surfaces presented in Figure 15. As a matter of fact, the 
addition of AHBP up to 5 wt% potentially induces plastic deformation of the hosting matrix under a 
severe deformation state (white arrows in Figure 15). According to this feature, the AHBP/RTM6 
system could absorb more energy when cracks occur, justifying the larger increase of critical released 
energy in forming new surfaces compared to the neat matrix, as shown in Figure 14. 
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Figure 15. SEM images of fracture surfaces of neat RTM6 and 5 wt% AHBP loaded RTM6 samples. 

3.2.3. High Strain Rate Test Analysis 

Figure 16 shows the true stress–strain behavior at different strain rates for the neat and AHBP 
epoxy resins at different filler concentrations. For each material and test condition, representative 
curves were selected and presented. At least three experiments were performed for each testing 
condition. For both the reference quasi-static tests and the high strain rate tests, the true strains 
obtained from the displacement transducers (corrected for the machine compliance) and from the 
Hopkinson bar displacement were calculated based on the engineering strain, assuming a 
conservation of volume. 

The true strains obtained from the displacement transducers were in excellent agreement with 
the strains directly obtained from the DIC up to a strain value of 0.2. Similarly, the strains obtained 
from the Hopkinson analysis (based on the strain measurements on the bars) also showed excellent 
agreement with the DIC strains up to 0.2. Moreover, it should be noted that the speckle pattern could 
not follow the deformation of the samples beyond 0.2 strain in both quasi-static and high strain rate 
tests. Consequently, the strains higher than 0.2 were based on that obtained from the Hopkinson 
analysis (for the high strain rate tests) and from the displacement transducers (for the quasi-static 
tests). The strain showed an initial increase up to a strain level of 0.06, followed by a slight reduction 
and a relatively constant strain in the range 0.06–0.15. This range was used to calculate the strain rates 
reported in Figure 16. The strain rates obtained from the tests were in the range of 0.0008–0.08 s−1 for 
the quasi-static tests, and 350–1100 s−1 for the high strain rate tests. 

The true stress-strain response for all materials can be divided into four main regions: (1) an 
initial region corresponding to the material’s viscoelastic behavior, (2) a non-linear region 
corresponding to the yielding of the material, which reaches a maximum value denoted as the peak 
yield compressive strength, (3) a strain softening region following the yielding, and (4) further strain 
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hardening until failure. For all quasi-static compression tests, the samples were loaded until failure. 
However, for all the high strain rate tests, the samples did not fail, and a recovery of the strain can be 
seen upon unloading. The maximum strain achieved in the dynamic tests is limited by the loading 
duration. Since the samples did not fracture at the end of the tests, the maximum strain reached is 
not a material property. 

It can be seen that the compressive behavior of the neat and AHBP epoxies is strain rate sensitive. 
All materials show an increase in strength with increasing strain rates. For the AHBP epoxies, also a 
slight increase in stiffness was observed. Hardly any change in the stiffness was noticed for the neat 
resin. Both Gerlach et al. [20] and Morelle et al. [37] reported similar trends for RTM6. However, 
Gerlach showed an increase in stiffness with the increase in strain rate, which seems to contradict the 
current findings. This could be attributed to the fact that the strain rate range achieved in our study 
was much lower compared to the range in Gerlach’s work. It should be noted that only for the epoxy 
with filler content of 1 wt%, a reduction in strength can be seen at a strain rate of 0.08 s−1 compared 
to that of 0.008 s−1. 

 
Figure 16. True stress–strain curves at different strain rates for (a) neat epoxy, (b) 0.1 wt%, (c) 1 wt% 
and (d) 5 wt% AHBP epoxy resins. 

Figure 17 shows the effect of strain rate on the true peak yield strength for neat and AHBP loaded 
epoxy resins with different filler contents. The true peak yield strength was calculated using the DIC 
strains, assuming a conservation of volume. All tested materials showed an increase in the true peak 
yield strength at increasing strain rates. Similar results were obtained by Rio et al. [21] for a 
comparable epoxy resin. It can be seen that the addition of 0.1% and 5 wt% AHBP to the epoxy resin 
improved the true peak yield strength at different strain rates. The addition of 1 wt% AHBP to the 
epoxy resin improved the true peak yield strength slightly at high strain rates, while it had almost no 
effect at low strain rates. Compared to other filler contents, the most significant increase in the true 
peak yield strength was observed with the addition of 0.1 wt% AHBP. Indeed, at 0.1 wt% filler 
content, the true peak yield strength increased from 113 MPa for the neat resin to 128 MPa at strain 
rate of 0.0008 s−1, and from 190 to 206 MPa at strain rate of 1000 s−1. This corresponds to percentage 
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increases of 13.2% and 8.4%, respectively, compared to the neat resin. On the other hand, a further 
increase in the AHBP content induced a reduction of the true peak yield strength compared to the 
sample loaded with 0.1 wt% of AHBP. The true peak yield strength at 5 wt% filler content decreased 
to approximately 120 MPa at a strain rate of 0.0008 s−1 and to approximately 200 MPa at a strain rate 
of 1000 s−1 compared to the respective values of 128 and 206 MPa at 0.1 wt% filler content. However, 
this still corresponds to percentage increases of about 6.2% and 5.3%, respectively, compared to the 
neat resin. Furthermore, for the 1 wt% filler content, the true peak yield strength increased to 
approximately 200 MPa at a strain rate of 1000 s−1, which corresponds to an increase of only 4% 
compared to that of the neat resin. The relative decrease in the true peak yield strength at 1 and 5 
wt% AHBP contents compared to the 0.1 wt% AHBP content is attributed to the softening effect 
associated with the addition of a relatively high AHBP content to the epoxy matrix, as explained 
earlier. In addition, since the true peak yield strength is realized at a compressive strain of 
approximately 10%, adiabatic heating effects cannot be neglected, especially at high strain rates [38]. 
Since the Tg of the AHBP is relatively low, i.e., 95 °C, the adiabatic heating could further reduce the 
strength and stiffness of the AHBPs. This, in turn, might reduce the overall yield strength in the 
resulting AHBP filled epoxy loaded at higher strain rates. 

 
Figure 17. Effect of strain rate on the peak true yield strength neat epoxy resin and different weight 
content of hyperbranched polymers (HBPs). 

4. Conclusions 

The effect of a high Tg (95 °C) hyperbranched polymer on thermal, mechanical, and fracture 
toughness properties of an epoxy resin was investigated. 

Three different filler contents were employed (0.1, 1, and 5 wt%), and no remarkable variations 
of storage modulus, studied through DMA, are reported with the addition of AHBP to the epoxy 
matrix. DMA also revealed that only the sample loaded with the highest filler content shows a slight 
reduction of Tg (≈4.5 °C). Despite the decrease of Tg, the fracture toughness is remarkably improved, 
with an increase of KIC and GIC compared to the neat matrix of about 18% and 83%, respectively. 
According to SEM observations, the improved fracture toughness performance is attributable to a 
plasticization phenomenon in the hosting matrix induced by the AHBP. Additionally, static and high 
strain rate compression tests were performed. All materials show a pronounced, positive strain rate 
sensitivity. The addition of 0.1 wt% of AHBP leads to a significant increase of the peak true yield 
strength. Indeed, compared to the neat resin, increases of 13.2% and 8.4% are observed at strain rates 
of 0.0008 and 1000 s−1, respectively. Further increasing the filler content lowered the peak true yield 
strength. Nevertheless, compared to the neat resin, still an overall positive trend in the strength is 
observed. 
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