Supplementary Materials: Chemically Roughened, Sputtered Au Films with Trace-Loaded Manganese Oxide for both On-Chip and Off-Chip High Frequency Supercapacitors

Pai Lu *, Haitao Xue, Wentao Liu, Zhongbao Feng and Qiang Sun

Calculation:

Three electrode measurement:

The areal specific capacitance (C_A) based on CV is calculated by:

$$C_A = \frac{\int i(V) dV}{2A\Delta V}$$

where $\int i(V) dV$ is the integrated area of the CV curve, and A, ΔV, ν, are the electrode area, working potential range, scan rate.

Two electrode full cell measurement:

The areal specific capacitance (C_A) is calculated by:

$$C_A = -\frac{1}{2\pi f Z'' A}$$

The resistor-capacitor time constant (τ_{RC}) is calculated by:

$$\tau_{RC} = -\frac{Z'}{2\pi f Z''}$$

The real or imaginary areal specific areal capacitance (C', C'') are calculated by:

$$C' = -\frac{Z''}{2\pi f |Z|^2 A}$$

$$C'' = -\frac{Z'}{2\pi f |Z|^2 A}$$

τ_0 is derived from the frequency at maximum C''

$$\tau_0 = \frac{1}{f_0}$$

where f is the frequency, A is the electrode area, Z' and Z'' are the real and imaginary impedance, f_0 is the frequency at maximum C''.

Nanomaterials 2021, 11, 257. https://doi.org/10.3390/nano11020257

www.mdpi.com/journal/nanomaterials