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Abstract: Fast self-reported eating rate (SRER) has been associated with increased adiposity in
children and adults. No studies have been conducted among high-school students, and SRER has
not been validated vs. objective eating rate (OBER) in such populations. The objectives were to
investigate (among high-school student populations) the association between OBER and BMI z-
scores (BMIz), the validity of SRER vs. OBER, and potential differences in BMIz between SRER
categories. Three studies were conducted. Study 1 included 116 Swedish students (mean ± SD
age: 16.5 ± 0.8, 59% females) who were eating school lunch. Food intake and meal duration were
objectively recorded, and OBER was calculated. Additionally, students provided SRER. Study 2
included students (n = 50, mean ± SD age: 16.7 ± 0.6, 58% females) from Study 1 who ate another
objectively recorded school lunch. Study 3 included 1832 high-school students (mean ± SD age:
15.8 ± 0.9, 51% females) from Sweden (n = 748) and Greece (n = 1084) who provided SRER. In Study 1,
students with BMIz ≥ 0 had faster OBER vs. students with BMIz < 0 (mean difference: +7.7 g/min or
+27%, p = 0.012), while students with fast SRER had higher OBER vs. students with slow SRER (mean
difference: +13.7 g/min or +56%, p = 0.001). However, there was “minimal” agreement between
SRER and OBER categories (κ = 0.31, p < 0.001). In Study 2, OBER during lunch 1 had a “large”
correlation with OBER during lunch 2 (r = 0.75, p < 0.001). In Study 3, fast SRER students had higher
BMIz vs. slow SRER students (mean difference: 0.37, p < 0.001). Similar observations were found
among both Swedish and Greek students. For the first time in high-school students, we confirm the
association between fast eating and increased adiposity. Our validation analysis suggests that SRER
could be used as a proxy for OBER in studies with large sample sizes on a group level. With smaller
samples, OBER should be used instead. To assess eating rate on an individual level, OBER can be
used while SRER should be avoided.

Nutrients 2021, 13, 880. https://doi.org/10.3390/nu13030880 https://www.mdpi.com/journal/nutrients

https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-1443-3128
https://orcid.org/0000-0002-0851-6998
https://orcid.org/0000-0002-2461-1928
https://orcid.org/0000-0003-3648-9533
https://orcid.org/0000-0003-2464-1825
https://orcid.org/0000-0001-6834-5548
https://orcid.org/0000-0001-8449-1705
https://orcid.org/0000-0002-2846-7820
https://doi.org/10.3390/nu13030880
https://doi.org/10.3390/nu13030880
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nu13030880
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu13030880?type=check_update&version=2


Nutrients 2021, 13, 880 2 of 19

Keywords: eating rate; obesity; eating quickly; fast eating; eating speed; objective measures; self-
reported; validation; high-school students; adolescents

1. Introduction

Obesity is associated with severe health problems such as heart disease [1], diabetes
mellitus type 2 [1], depression [2], and some cancers [3]. Together, they are among the lead-
ing causes of premature death in the world, while at the same time being preventable [4].
An estimated 2 billion people now suffer from obesity [5] and the associated economic
costs have been compared to the cost of smoking, armed violence, war and terrorism
combined, or approximately three percent of the global GDP [6]. The direct cause of obesity
is overconsumption of energy from food in relation to the energy demands of the body [7].
However, the causes of overconsumption of energy are multifactorial [8,9].

Interestingly, various eating behaviors have been shown to increase energy intake
and adiposity in humans [10–12]. For example, experimental studies suggest that a fast
eating rate causes increased short-term food intake vs. a slow eating rate (random-effects
standardized mean difference: 0.45 [13]). Moreover, objectively measured eating rate is a
stronger explanatory variable for how much food high-school students eat during school
lunch vs. subjective variables, such as changes in perceived fullness, as well as tastiness [14].
Objectively measured eating rate has also been shown to be associated with increased BMI
and body fat among 4.5-year-old Singaporean children [15], as well as to moderate the
association between important childhood obesity risk factors and adiposity outcomes at
the age of 6 years [16].

A growing number of epidemiological studies have found a consistent association
between self-reported fast eating rate and obesity (pooled odds ratio of 2.15 vs. slow
eaters), as well as increased BMI (pooled mean difference in BMI = +1.78 kg/m2 vs. slow
eaters [17]). Additionally, a randomized controlled trial in young people with obesity has
shown benefits in training participants to eat slower and to take smaller food portions
in treatment outcomes (i.e., 0.24 standard deviation score lower for both BMI and body
fat vs. standard care after 18 months of follow-up [18]), suggesting that the association
between faster eating rate and increased BMI might be causal. It should also be noted that
disturbed eating speed is associated with eating disorders, either with excessively slow
eating rates reported in anorexia nervosa or faster than normal eating rates in binge-eating
disorder patients [19]. Furthermore, it has been proposed that long-term disturbance
in eating behavior pattern is one of the causal factors for the development of eating
disorders [20], with various clinical programs currently providing eating behavior training
during treatment.

However, criticism has been raised against self-reported measures of dietary intake [21–23],
and similar concerns exist regarding self-reported measures of eating rate. In the epidemio-
logical literature related to eating rate and health outcomes, simple questionnaires asking
people to estimate how fast they eat in comparison to “others” are used. Surprisingly, few
studies have been conducted to investigate the concurrent validity of such questionnaires
vs. objectively measured eating rate.

To date, three studies with relatively small sample sizes (n = ~60–80) have validated
self-reported eating rate categories vs. objectively measured eating rate [24–26]. The
results of these studies indicate that self-reported eating rate categories can differentiate
groups with high vs. low objectively measured eating rate, while categorization on an
individual level should be avoided due to “minimal” categorical agreement. All three of
the above-mentioned studies were conducted in laboratory environments. No comparisons
between objective and subjective eating rate have been performed in “real-life” situations,
nor among high-school students. Therefore, the generalizability of these results can be
questioned, and proper validation of self-reported eating rate is needed in such contexts.
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Additionally, no studies have been conducted in Swedish or Greek populations.
The epidemiological self-reported literature on eating rate is also location specific, as it
has previously included predominantly Japanese populations (for example 18-year-old
women [27], 29- to 39-month-old children [28] and middle-aged men and women [29]),
as well as middle-aged women in New Zealand [30], Dutch adults [24], Singaporean
adults [31] and South Korean adults [32]. Thus, data across additional regions and target
populations are also needed to clarify the generalizability of past findings.

Aims

The aims of our three studies (Study 1. Single school lunch study, Study 2. Repeated
school lunch study, and Study 3. BigO cohort study) were:

Study 1. To investigate the association between objective eating rate, BMI z-scores,
food intake and weight categories among high-school students, as well as to determine
whether self-reported eating rate categories can distinguish groups of different objectively
measured eating rates.

Study 2. To assess the concurrent validity of self-reported eating rate categories vs.
objective eating rate categories, and to assess the test–retest reliability of both subjective
and objective eating rates across repeated measures from the same high-school students.

Study 3. To distinguish differences in BMI z-scores among self-reported eating rate
categories in larger populations of Swedish and Greek high-school students and to estimate
its relation to BMI z-scores.

2. Materials and Methods
2.1. Study Design

A cross-sectional study design was used in studies 1 (the single school lunch study)
and 3 (the BigO cohort study), while a repeated-measures, within-subject study design was
used in Study 2 (the repeated school lunch study).

2.2. Setting

Studies 1 and 2 were conducted in the school lunch canteen environment at Interna-
tionella Engelska Gymnasieskolan Södermalm (IEGS) (Stockholm, Sweden). The studies
were part of the multinational EU project SPLENDID, with the aim to develop systems for
early detection and interventions for childhood obesity in school children [33,34]. IEGS is a
high school located in the central area of Stockholm, Sweden. Recruitment took place dur-
ing February 2015, December 2015, and April 2017 (see Figure 1 for the complete timeline
for studies 1 to 3). Study 2 included a subset of Study 1 subjects coming back for a repeated
meal in the same school environment during February and March 2016 (2–3 months after
their initial meal). The third study used data from a separate multinational EU project BigO
(Big data against childhood obesity, [35]). In the BigO project, a smartphone application was
developed for school children and adolescents to gather data related to the development
of childhood obesity. Data collection was supported through school-supported actions
between March 2018 and June 2020. Presentations of the BigO project were conducted in
selected schools in Sweden and in Greece, in collaboration with the local school personnel
at each school.
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2.3. Participants

In Study 1, students from six classes (187 students) at the IEGS high school were
invited to participate in monitored school lunches. The outcome dataset with unique
participants (non-repeated meals) included 15 students from 2015 (pilot meals), 97 students
from December 2015 and early 2016 (this was the year when most of the data collection
took place) and another 2 students from 2017 (students that did not participate in the
preceding years). It is important to note that Study 1 only included unique participants,
i.e., for students that participated in more than one year, only one meal (mainly the late
2015/early 2016 meal, secondly the early 2015 meal, and lastly the 2017 meal) was included
in the dataset for Study 1.

In Study 2, students from four out of the six previously invited classes (in the late 2015
data collection) were invited to participate once again, with a subset of 50 students finally
providing repeated meals two to three months later (February and March 2016).

For Study 3, the BigO project [35] supported the non-discriminative, large-scale,
spontaneous recruitment of students (in this case aged 15–18 years) from different European
countries, with the main volume of data collection taking place in Sweden and Greece. In
Sweden, data collection included 748 students from two high schools, one in Stockholm
(IEGS, n = 613) and one in Uppsala (NTI Gymnasiet, n = 135). In Greece (included students
in total = 1084), data collection focused on three cities, Athens (Ellinogermaniki Agogi high
school, n = 230), Larissa (Ekpaideutiria Mpakogianni, n = 111) and Thessaloniki (across
16 public and private high schools, n = 439). An additional 304 high-school students who
participated in a multidisciplinary, personalized intervention program for the management
of overweight and obesity (Out-patient Clinic for the Prevention and management of
Overweight and Obesity in Childhood and Adolescence, First Department of Pediatrics
“Aghia Sofia” Children’s’ Hospital, Athens, Greece) also contributed data.

In all cases, irrespective of the country where the data collection took place, local
school administrators, teachers and clinicians handled the consent process and final study
recruitment, with the remote support of the BigO researchers. All data collection in
schools was supported through school-sponsored projects with subjects relevant to lifestyle
monitoring, as well as to citizen science [36]. As a rule, the recruitment efforts in schools
targeted the whole school population through school-wide project advertisements, but
the specifics differed across schools due to local educational requirements and schedules.
Out of these populations, 1909 of the consented students activated the BigO app in their
personal smartphones (Android and iOS platforms were supported). Furthermore, 96%
(1832) provided answers to the self-reported eating rate questionnaire that is analyzed in
Study 3, as well as provided self-reported estimates about their weight and height that
were the basis of their BMI z-score calculation (using 2007 World Health Organization
reference charts).

All the presented studies aimed at “real-life”, all-inclusive student population analy-
sis. Thus, recruitment took place in a non-discriminatory fashion, meaning that no inclu-
sion/exclusion criteria existed more than being part of the included schools, be willing to
take part in the study procedures, and providing informed consent.
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2.4. Data Sources/Measurements

BMI z-scores calculations: During studies 1 and 2, study personnel weighed and
measured the height (by use of a weight and height scales, Seca, Chino CA 91710, USA) of
each student before taking part in the school lunch measurements. These measurements,
together with students age and sex, enabled calculation of BMI z-scores. The BMI z-scores
were derived from an online calculator (https://apps.cpeg-gcep.net/who2007_cpeg/ [37],
accessed on 8 March 2021) that used the WHO reference charts for child growth [38].
Students were later categorized in two groups: (a) students with BMI z-scores < 0, and
(b) students with a BMI z-score ≥ 0, in order to compare the results to those obtained in a
previous study among children that used a similar categorization scheme [15].

Meal procedure at school: Upon arrival to the school lunch canteen environment,
students were equipped with a portable food scale (Mandometer version 4 during early
2015 and Mandometer version 5 in the data collection that took place in the later part
of 2015, early 2016 and 2017 [39]), a mobile phone, as well as a questionnaire in paper
format. The food scale was used to record food mass intake in grams (accounting for food
additions and leftovers). In the lunchroom environment, digital cameras (GoPRO) were
placed in each corner of the room to assess each student’s meal duration. The food mass
intake (g) was later divided by the meal duration in minutes (established from the video
recordings) to calculate the objective eating rate (g/minute) of each individual student. The
questionnaires were used to assess the subjective eating rate of each student. The groups
of slow, medium, and fast self-reported eating rate categories were used in accordance
with previous literature (see the paragraph below for specific questions used as well as the
available answers) [17].

The BigO data: During Study 3, each participant was asked to provide an estimation of
their current weight and height during the initial registration in the BigO app. Afterwards,
they were requested to fill in an eating rate questionnaire item: “How fast do you eat in
comparison to others?”. The user could then select one of five options: “Much slower than
others”, “Slower than others”, “similar to others”, “Faster than others” or “Much faster
than others”. Students who self-reported eating “Much slower than others” and “Slower
than others” were later merged into the eating rate category “Slow” and those reporting
eating “Faster than others” or “Much faster than others” were categorized as “Fast” in a
similar fashion as in previous literature [17], while students reporting eating similar to
others were labeled as “intermediate”.

2.5. Served Food

During studies 1 and 2, students were offered a standardized buffet lunch meal in their
natural school canteen environment that included potatoes, beef patties, celery patties, fish
(pollock), cream sauce, vegetables (such as sliced carrots, cucumber, lettuce, sprouts, olives),
crisp bread, cottage cheese and jam, all ad libitum. Water and milk were also available
ad libitum during the lunch. This type of buffet meal is typical for Swedish schools and
is served in IEGS daily. The study setup has previously been described in greater detail;
see [14,40].

2.6. Study Size

Since both EU projects (SPLENDID and BigO) were novel health technology projects,
the sample sizes in studies 1–3 were determined by the available students during each
round of recruitment for the development of the technology. Therefore, post hoc power
analyses were conducted with different aims and main outcomes in mind. In Study 1, 100%
power was achieved for the primary ANOVA outcome analysis of group level differences
in objective eating rate between the three groups of self-reported eating rate (effect size
f = 0.742, alfa error probability = 0.05, total sample size = 114, and three groups). In Study
3, 98.7% power was achieved in the primary ANOVA outcome analysis of differences in
BMI z-scores among the self-reported eating rate categories (effect size f = 0.105, alfa error

https://apps.cpeg-gcep.net/who2007_cpeg/
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probability = 0.05, sample size = 1832, and three groups). G*Power 3.1.9.7 was used for
post hoc power analyses [41].

2.7. Statistics

For Study 1, Pearson’s correlation was used to assess the association between objective
eating rate and objective food mass intake. One-way analysis of variance (ANOVA) was
used for both objective and subjective eating rate category differences (slow, intermediate,
and fast) in objective food mass intake. Bonferroni post hoc test was conducted to assess
specific group level differences. Independent sample t-test was used to assess group level
differences in objective eating rate among the two weight categories (BMI z-scores < 0 vs.
BMI z-scores ≥ 0).

Cohen’s weighted kappa analysis was used for categorical eating rate agreement [42],
i.e., for agreement between self-reported vs. objective eating rate categories in Study 1, for
agreement between self-reported eating rate categories during lunch 1 vs. self-reported
eating rate categories during lunch 2 (in Study 2) and for objective eating rate categories
during lunch 1 vs. objective eating rate categories during lunch 2 (in Study 2). Furthermore,
Pearson’s correlation was used for test–retest reliability analysis in Study 2 (eating rate
during repeated school lunch meals among the same subjects), while a publicly available
spreadsheet was used for the calculation of other test–retest reliability measures (i.e., the
systematic change in mean and the typical error of measurement) [43,44].

In Study 3 (BigO cohort), ANOVA was used for all statistical tests between the different
groups of self-reported eating rate categories (slow, intermediate, and fast), with Bonferroni
post hoc tests conducted to assess specific group level differences when the overall ANOVA
model was significant.

The variance explained in the dependent variable was examined by partial eta squared
statistics in all ANOVA analyses. For correlation analyses, a correlation coefficient of 0.0–0.1
was interpreted as “trivial”, 0.1–0.3 “small”, 0.3–0.5 “moderate”, 0.5–0.7 “large”, 0.7–0.9
“very large”, and 0.9–1 as “nearly perfect” [45]. For categorical agreement analyses, a
Cohen’s weighted Kappa value of 0–0.20 was interpreted as “No agreement”, 0.21–0.39
“Minimal agreement”, 0.40–0.59 “Weak agreement”, 0.60–0.79 “Moderate agreement”,
0.80–0.90 “Strong agreement”, and above 0.9–1 as “Almost perfect agreement” [46].

IBM SPSS statistical software version 27 was used for all statistical tests in studies 1–3
and p < 0.05 was used as the threshold for statistical significance.

2.8. Bias

BMI z-scores were used in all analyses instead of BMI to consider the natural growth
occurring among adolescents (i.e., BMI z-scores takes into account age and sex in addition
to weight and height [47]). In Study 3, in addition to the total population-level analysis,
students were also split into separate groups based on their country (Sweden and Greece)
to assess potential differences in self-reported eating rate within each country. A similar
procedure was also done for the students who were participating in a personalized multi-
disciplinary management of obesity in Athens, Greece (n = 304, mean BMI Z-score: 2.19,
standard deviation: 0.89).

3. Results
3.1. Participants

For specifics on number of students at each stage of studies 1–3, see Figure 2 below.
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3.2. Descriptive Data

For descriptive statistics related to the included students in studies 1–3, see Table 1.

Table 1. Descriptive statistics for the included participants in studies 1–3.

Study 1.
Single School Lunch

Study

Study 2.
Repeated School

Lunch Study

Study 3.
BigO Cohort

Study

Number of subjects 114 50 1832
% females 58.8% 58.0% 51.1%

Age, y 16.5 ± 0.8 16.7 ± (0.6) 15.8 ± 0.9
BMI, kg/m2 21.4 ± 3.1 21.6 ± 3.4 23.1 ± 6.0

BMIz 0.04 ± 1.0 0.08 ± 1.0 0.47 ± 1.4
% with BMIz < 0 45.6% 44.0% 39.6%

% with BMIz ≥ 0 and ≤ 1.96 50.9% 52.0% 46.3%
% with BMIz > 1.96 3.5% 4.0% 14.1%

Weight, kg 62.0 ± 11.7 61.8 ± 11.8 66.6 ± 18.0
Height, cm 170.1 ± 9.8 168.7 ± 8.9 169.9 ± 10.1

BMI = body mass index, BMIz = BMI z-scores, cm = centimeters, kg = kilogram, and y = years. Data are presented
as the mean ± standard deviation, if not otherwise specified.

3.3. Main Results
3.3.1. Study 1. Single School Lunch Study
Association between Objective Eating Rate and Objective Food Mass Intake (g)

There was a significant “large” correlation (Pearson’s r = 0.667, p < 0.001) between
eating rate (g/min) and food mass intake (g) during the school lunch (see Figure 3A).

Association between Objective Eating Rate (g/min) and BMI z-Scores

There was also a significant “moderate” correlation (Pearson’s r = 0.310, p = 0.001)
between objective eating rate (g/min) and BMI z-scores during the school lunch (see
Figure 3B).

Objective Food Mass Intake among Objectively Established Eating Rate Categories

There was a significant difference in objectively measured food mass intake (g) be-
tween the objectively established eating rate categories [F(2, 111) = 30.578, p < 0.001, partial
η2 = 0.355]. Post hoc comparisons using Bonferroni revealed that there was a significant
difference between slow and intermediate [mean difference = −133 g, 95% CI = −210 g to
−56 g; p < 0.001)] slow and fast [mean difference = −247 g, 95% CI = −324 g to −170 g;
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p < 0.001)] and between intermediate and fast [mean difference = −114 g, 95% CI = −191 g
to −37 g; p = 0.01)] (Figure 4).
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Objective Eating Rate among BMI z-Score Based Weight Categories

Students with a BMI z-score below 0 had a significantly lower eating rate (g/min) vs.
students who had a BMI z-score equal to or above 0 (28.2 g/min vs. 35.9 g/min respectively,
mean difference = −7.7 g/min, p = 0.012, 95% CI −14 g/min–−1.8 g/min; see Figure 5).
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Objective Eating Rate among Self-Reported Slow, Intermediate, and Fast Eaters

There was a significant difference in objectively measured eating rate (g/min) between
the self-reported eating rate categories [F(2, 111) = 7.104, p = 0.001, partial η2 = 0.113].
Post hoc comparisons using Bonferroni revealed that there was a statistically significant
difference between slow and fast [mean difference = −13.7 g/min, 95% CI = −22.5 g/min
to −4.84 g/min; p = 0.001)]. However, the difference between slow and intermediate and
between intermediate and fast were not significant (Figure 6).

Categorical Agreement: Self-Reported vs. Objective Eating Rate Categories

The weighted kappa value for self-reported eating rate categories vs. objectively
established eating rate categories in Study 1 was 0.31 (p < 0.001).
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3.3.2. Study 2. Repeated School Lunch Study
Categorical Agreement: Self-Reported vs. Objectively Established Eating Rate Categories
Lunches 1 and 2

The weighted kappa value for self-reported eating rate categories vs. objectively
established eating rate categories during lunch 1 was 0.36 (p = 0.009), while the weighted
kappa value for self-reported eating rate categories vs. objectively established eating rate
categories during lunch 2 was 0.30 (p = 0.036).

Categorical Agreement: Self-Reported Eating Rate Categories Lunch 1 vs. Lunch 2

The weighted kappa value for self-reported eating rate categories during lunch 1 vs.
lunch 2 was 0.62 (p < 0.001).

Categorical Agreement: Objective Eating Rate Categories Lunch 1 vs. Lunch 2

The weighted kappa value for objectively established eating rate categories during
lunch 1 vs. lunch 2 was 0.62 (p < 0.001).

Test–Retest Reliability of Objective Eating Rate: Lunch Meal 1 vs. Lunch Meal 2

Objectively measured eating rate during lunch 1 was significantly correlated with
objectively measured eating rate during lunch 2 (Pearson’s correlation = 0.75, 95% CI:
0.59–0.85); see Figure 7.
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Figure 7. Objectively measured eating rate lunch 1 vs. objectively measured eating rate lunch 2 among IEGS students who
ate repeated school lunches (Lunch 1: December 2015 and, lunch 2: February/March 2016).

There was a systematic change in the mean objectively measured eating rate from
lunch 1 to lunch 2 (+4.4 g/min, 95% CI: 0.7–8.1 g/min) and the typical error of measure-
ment for eating rate from lunch 1 to lunch 2 was 24.9% (95% CI: 20.4–31.9%). For more
information on individual changes in objectively measured eating rate (g/min) from lunch
1 to lunch 2, see Figure 8.

3.3.3. Study 3. BigO Cohort Study
The BigO Cohort: BMI z-Scores among Self-Reported Eating Rate (Categorical)

There was a significant difference in BMI z-scores between the three groups of self-
reported eating rate in the BigO cohort [F(2, 1829) = 9.724, p < 0.001, partial η2 = 0.011]. Post
hoc comparisons using Bonferroni revealed that there was a significant difference between
slow and intermediate [mean difference = −0.23, 95% CI = −0.43 to, −0.03; p = 0.021)], as
well as slow and fast [mean difference = −0.37, 95% CI = −0.57 to −0.17; p < 0.001)] groups.
However, the difference between intermediate and fast was not significant (Figure 9).
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When dividing the BigO cohort population into groups of Swedish (n = 748) and
Greek (n = 1084) students, there were also significant differences in BMI z-scores between
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the three groups of self-reported eating rate [Swedish students: F(2, 745) = 5.955, p = 0.003,
partial η2 = 0.012; Greek students: F(2, 1081) = 6.533, p = 0.002, partial η2 = 0.016]. Post
hoc comparisons using Bonferroni revealed that there was a significant difference between
Swedish slow and fast [mean difference = −0.36, 95% CI = −0.61 to −0.10; p = 0.003)]
groups, Greek slow and intermediate [mean difference = −0.29, 95% CI = −0.57 to, −0.02;
p = 0.032)] and Greek slow and fast [mean difference = −0.41, 95% CI = −0.69 to −0.14;
p = 0.001)] groups. However, the difference between Swedish slow and intermediate,
Swedish intermediate and fast, as well as Greek intermediate and fast eaters were not
significant (Figure 10A,B).
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When analyzing students who were treated at the obesity clinic in Athens (n = 304)
separately, there were no significant differences between the three groups of self-reported
eating rate.

4. Discussion

This study assessed the concurrent validity of self-reported eating rate compared to
objectively measured eating rate and the test–retest reliability of such measurements in
a “real-life” school lunch context. Additionally, the association between eating rate and
indices of obesity (i.e., BMI z-scores and increased food mass intake during school lunch)
was investigated among Swedish and Greek high-school student populations.

The finding of a “large” [45] correlation between objectively measured eating rate and
short-term food intake is in line with a study in 4.5-year-old Singaporean children [15],
as well as experimental studies on effects of eating rate on short-term energy intake [13].
Interestingly, when dividing students into tertiles based on their objectively measured
speed of eating, students who were in the “fast” eating rate tertile ate 247 g more food vs.
students in the “slow” eating rate tertile (~117% increase). This finding is in line with results
obtained in the study that included Singaporean children [15]. Furthermore, students with
BMI z-scores ≥ 0 had ~27% higher eating rate during school lunch vs. students with BMI
z-scores < 0. Taken together, these results corroborate the suggestion of a “obesogenic” fast
eating style that has previously been reported in younger children [48]. In other words,
students who eat faster than their peers might be at greater risk of developing obesity, most
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likely due to a combination of genetic and environmental factors [49]. However, these
results should be interpreted with caution, since students with increased BMI z-scores
most likely have higher resting energy expenditure due to their larger bodies [50]. In other
words, students with BMI z-scores > 0 might need to eat faster vs. students with BMI
z-scores < 0 given the same amount of time to eat (here pre-defined by the time allocated
for lunch by the school), to cover their energy needs [50,51].

We could also confirm the results observed among older populations in laboratory
settings [24–26], that self-reported eating rate categories (slow, intermediate, and fast)
could distinguish differences in objectively measured eating rate on a group level. More
specifically, students who reported eating faster than others had ~56% increased objectively
measured eating rate vs. students who self-reported eating slower than others, on a
group level. Self-reported eating rate categories could explain ~11% of the variance in
objectively measured eating rate in our study (partial η2 = 0.113). We are the first to confirm
such findings in a “real-life” setting (i.e., the school canteen environment). However, in
accordance with previous results [24,26], there was “minimal” agreement [46] between
self-reported eating rate categories and objectively established eating rate categories on an
individual level.

The above findings support the notion that self-reported eating rate could be used in
larger-scale epidemiological studies to differentiate populations with different objective
eating rates. On the other hand, self-reported eating rate should not be used on an individ-
ual level, i.e., in the context of clinical management of obesity in childhood or adolescence.
It should be noted that in practice, due to monetary and time cost requirements, when it
comes to monitoring of larger populations, the use of self-reported measures is often the
only option. However, we argue that objective measures of eating rate should be used
when eating rate is considered on an individual level.

Furthermore, when we tested the same individuals at consecutive time points (3 months
apart), there was “moderate” agreement between self-reported eating rate categories during
lunch 1 vs. lunch 2, as well as between objective eating rate categories during lunch 1 vs.
lunch 2. These results suggest that both objective and self-reported eating rate categories
are moderately stable on an individual level. Additionally, on a group level, self-reported
eating rate categories could distinguish group level differences in objectively measured
eating rate during both lunch 1 and lunch 2 (i.e., subjects who self-reported eating slow
had lower objective eating rate vs. subjects who self-reported eating fast on a group level).

When assessing the test–retest reliability of the more granular measurement of objec-
tive eating rate (expressed as grams of food eaten/minute), there was a “large” correlation
between repeated measures of objective eating rate during lunch 1 and lunch 2, indicating
that objective eating rate in one lunch meal could be used to predict the rank of students
eating rate during the second lunch meal with high accuracy. On the other hand, there
was a systematic bias (~15%) between the two lunches (students were eating their meals
4.4 g/min faster during lunch 2 vs. lunch 1) although the same students (n = 50) partici-
pated in both lunch 1 and lunch 2 (i.e., within subject design) and the study setting was
almost identical (i.e., with the same time duration available to eat, identical food choices,
same time of the day, etc.). However, in Study 2, n = 37 students were eating their lunch
without a food scale (i.e., the food was weighed at the food buffet before/after taking food,
instead of continuously under the plate when eating food), while in Study 1, all (n = 50)
students were eating their food on a food scale. A potential “observer effect” [52] could
therefore be expected. However, food scale use at the lunch table vs. non-use at the lunch
table during lunch 2 could explain 0% (R2 = 0.000) of the variation in the change in eating
rate from lunch 1 to lunch 2. We therefore argue that the systematic change in eating rate
must have been caused by another unmeasured environmental factor. Additionally, the
typical error of measurement was similar to what has been observed for food mass intake
during repeated school lunches, 24.9% in the current study vs. 26.1% for food intake in our
previous study [14].
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In our larger sample of students who self-reported their eating rate (i.e., the BigO
cohort), we could show that students who self-reported eating faster than others had
~0.4 units higher BMI z-scores vs. students who reported eating slower than others. This
finding was significant both among Swedish and Greek students and was expected based
on the overall epidemiological literature [17]. However, the explanatory power of self-
reported eating rate categories was low in our study and could explain ~1% of the variance
in BMI z-scores. These results are in line with the results that we obtained in the single
school lunch study (Study 1), in which self-reported eating rate categories could explain
1% of the variance in BMI z-scores. On the other hand, objectively established eating rate
categories could explain approximately 5% of the variance in BMI z-scores, and objective
eating rate expressed as grams eaten per minute could explain ~10% of the variance in
BMI z-scores in Study 1. These results suggest that self-reported eating rate cannot capture
the full size of the association between “real” eating rate and BMI z-scores among student
populations.

Additionally, in our clinical sample of Greek students with overweight/obesity
(n = 304), the difference in BMI z-scores among the self-reported eating rate categories did
not reach statistical significance, although they had a similar tendency as our larger sample,
i.e., patients with slow self-reported eating rate had lower BMI z-scores vs. patients with
fast self-reported eating rate (not significant). However, the sample size was too small for
such comparison since the expected effect size for eating rate categories on BMI z-scores
was low. Therefore, a larger-scale study (at the scale of thousands) would be needed in a
clinical student population to investigate such association. Alternatively, objective mea-
surements of eating rate could be utilized in a clinical high-school population to increase
the power and reduce the need for a larger sample size.

Our results, combined with previous studies in the area of eating rate [17,24–26], sup-
port the idea to include self-reported questionnaires to estimate eating rate in population-
level investigations of dietary intake among students. For example, the national food
agency in Sweden conducts population-level surveys about self-reported dietary intake
during school lunches [53], and could include an additional question about self-reported
eating rate. Such population-level information would give a more detailed understanding
of the association between eating rate and BMI z-scores among the total Swedish student
population, as well as enable investigations of potential regional differences in eating
rates among high-schools. Similar organizations in other countries could conduct similar
research without much added cost. Additionally, since objective measures are needed
to assess eating rate on an individual level, large-scale studies that incorporate modern
technological tools with such capability (i.e., food scales [39], off the shelf smartwatches [54]
or algorithm-assisted video recordings [55]) should be considered in order to investigate
the prospective association between fast eating rate with risk of long-term disease devel-
opment. Such population-level data could give real-time policy advice to better manage
environmental contributors to fast eating rate (i.e., school level interventions to increase
time available for eating school lunch) [14].

It is important to acknowledge that the data collection in studies 1 and 3 were of
an observational nature. Therefore, there is uncertainty of direction of the relationship
between eating rate and BMI z-scores in our studies. Large-scale prospective studies are
the logical next step and experimental studies that manipulates environmental modifiers
of eating rate could also be helpful in the school lunch context. Furthermore, the students
who were included in studies 1 and 2 were eating their school meals under observation
(i.e., video cameras recording their meals as well as their food being measured by a kitchen
scale). This addition to their normal school lunch context might have contributed to some
form of “observer effect” [52,56]. Therefore, the discrepancy between objectively measured
eating rate and self-reported eating rate categories might have been affected due to this
setup. Covert measures of objective eating rate would be needed in the school lunch context
to evaluate such effect (i.e., a study setup similar to what was used in [52]). Additionally,
the questionnaire that was used to assess self-reported eating rate did not refer to a specific
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time point (i.e., it was framed in more general terms about their habitual eating rate), while
the objective eating rate test was time and context specific (i.e., one school lunch). Also,
students who had already participated in Study 1 were invited to participate in Study 2,
this might have introduced self-selection bias in the results obtained from the reliability
analysis. The observed bias between lunch 1 and lunch 2 (−4.4 g/min reduced eating rate)
might have been related to the dates of the two lunches. Lunch 1 was conducted in the end
of the semester (December 2015), while lunch 2 was conducted in the beginning of the next
semester (February/March 2016). Students might have been more stressed during the end
of the semester (December 2015) vs. in the beginning of the next semester (February/March
2016). The measurement of students’ body weight in close connection to the school lunch
might also have modified their eating behavior (perhaps the students might have become
more conscious of how they were eating). It is also important to mention that self-reported
measurements of height and weight were used to calculate BMI z-scores in Study 3 and
potential bias might therefore have been introduced due to this as well [57]. Furthermore,
students were eating their school lunch together with other students and some form of
“social facilitation” of eating might have occurred (i.e., increased food intake) since they
were eating with their peers [58]. However, since students usually eat their school lunch
together with their classmates, this study setup is most likely the preferred one vs. having
students eat their lunch in isolation (i.e., in a laboratory-like setting). Lastly, the objective
measures of eating rate in studies 1 and 2 were conducted with Swedish high-school
students, meaning that the results might not be fully generalizable to the Greek student
population included in Study 3 (as well as students from other countries). Additionally,
IEGS is a privately owned high-school in central Stockholm and the student population
might not be representative of the overall Swedish high-school student population as well
as student populations in areas of lower socioeconomic status in Sweden (perhaps Uppsala
NTI high-school included in Study 3).

5. Conclusions

Objectively measured eating rate was associated with the weight status of students,
and students with fast eating rate consumed more food during school lunch vs. students
with a slow eating rate. Furthermore, self-reported eating rate could distinguish student
populations of different eating rates (i.e., slow eaters had lower objective eating rate vs.
fast eaters). However, the agreement between self-reported eating rate categories (slow,
intermediate, and fast) vs. objectively measured eating rate categories was “minimal”. Our
results suggest that when objective measures of eating rate are available, those should be
used instead of self-reported measures. However, in cases of studies with large sample
sizes, when the behavior of the population is of interest, self-reported measures of eating
rate categories could be used as a proxy of real eating rate on a group level. Furthermore,
it should be emphasized that when the aim is to assess eating rate on an individual level,
objectively measured eating rate should be used and self-reported eating rate categories
should be avoided, regardless of the sample size. Lastly, in our larger population of
Swedish and Greek high-school students, fast self-reported eating rate was associated with
increased BMI z-scores vs. students who self-reported slow eating rate. The results were
similar among both Swedish and Greek students.
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