Supplementary Table 1. Primers and probes used for quantitative PCR (qPCR).

<table>
<thead>
<tr>
<th>Rickettsia spp.</th>
<th>Primer/Probe</th>
<th>Sequence (5’ → 3’).</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. africae</td>
<td>Sca1_africae_fwd</td>
<td>CGT GGT ATG TAC GGC ACT AAT AA</td>
</tr>
<tr>
<td></td>
<td>Sca1_africae_rev</td>
<td>TTT CAG CAT CGA ACC CGA TAG</td>
</tr>
<tr>
<td></td>
<td>Sca1_africae</td>
<td>/56-FAM/ACC GGT CAT/ZEN/ATT CTC AAC GCG TCC/3IABkFQ/</td>
</tr>
<tr>
<td>R. rickettsii</td>
<td>Rr Sca1 F5271</td>
<td>CAA GCT CGT TAT TAC CCC GAA T</td>
</tr>
<tr>
<td></td>
<td>Sca1_RR_R5371</td>
<td>CTA CCG CTC CTG GGA ATG TTA GAC C</td>
</tr>
<tr>
<td></td>
<td>Sca1_RC_RR_Probe</td>
<td>/56-FAM/TCG GCT TAA/ZEN/GAT ACG GGA AGT/3IABkFQ/</td>
</tr>
<tr>
<td>R. parkeri</td>
<td>Rpp Sca-1 (316 bp) FWD</td>
<td>TGA TTC GTA ACA GAT TAG ATG C</td>
</tr>
<tr>
<td></td>
<td>Rpp Sca-1 (316 bp) REV</td>
<td>CCG TAA ATA GAA ACC ACA TGA C</td>
</tr>
<tr>
<td></td>
<td>Rpp Sca-1 PRB Set 2</td>
<td>/56-FAM/ACC GGT CAT/ZEN/ATT CTC AAC GCG TCC/3IABkFQ/</td>
</tr>
<tr>
<td>R. akari</td>
<td>Sca1akari_444_fwd</td>
<td>ACT AAC AGA GCA AAC GCC TAA</td>
</tr>
<tr>
<td></td>
<td>Sca1akari_568_rev</td>
<td>CGG TGA TGC CAG AGA AGT ATT</td>
</tr>
<tr>
<td></td>
<td>Sca1_akari(494-518)probe</td>
<td>/56-FAM/CGC CTA CTG/ZEN/TTA GCC CAG CTT CAA/3IABkFQ/</td>
</tr>
<tr>
<td>R. bellii</td>
<td>Sca1bellii_13_fwd</td>
<td>GAC AGG GTA GCT GCA GAT ATA AA</td>
</tr>
<tr>
<td></td>
<td>Sca1bellii_162_rev</td>
<td>CCC AAG GAG CTA TGT TCA TTA GT</td>
</tr>
<tr>
<td></td>
<td>Sca1_bellii(57-83)probe</td>
<td>/56-FAM/ TGC AGA GAA/ZEN/AGG CTT AAA CGA TCA AC /3IABkFQ/</td>
</tr>
<tr>
<td>Host Cell Actin</td>
<td>Primer/Probe</td>
<td>Sequence (5’ → 3’).</td>
</tr>
<tr>
<td>pEC3</td>
<td>Actin-F420</td>
<td>CCT GTA TGC CTC TGG TCG TA</td>
</tr>
<tr>
<td></td>
<td>Actin-R681</td>
<td>CCA TCT CCT GCT CGA AGT CT</td>
</tr>
<tr>
<td></td>
<td>Actin_MS_Probe</td>
<td>/5MAXN/ ACT GTG CCC/ZEN/ATC TAC GAG/3IABkFQ/</td>
</tr>
</tbody>
</table>

All primers and probes for *Rickettsia* species were designed from the rickettsial antigen, Sca1.

Supplemental Figure Legends
Supplemental Figure 1: *R. akari* st. Columbia significantly grows within endothelial cells (EA.hy926) and human derived macrophage cells (THP-1). (A,B)

EA.hy926 cells and PMA-differentiated THP-1 cells were infected with *R. akari* st. Columbia (MOI=2.5), and genomic DNA was extracted at each time point post-infection. Each time point represents the ratio of *R. akari* sca1 to host cell actin genes amplified from genomic DNA and determined by quantitative PCR (qPCR). Immunofluorescence microscopy growth analyses in EA.hy926 cells at days 1 and 3 post-infection (C) and in PMA-differentiated THP-1 cells at days 1 and 4 post-infection demonstrate significant intracellular proliferation. DAPI (blue) was used to visualize host cell nuclei, anti-*Rickettsia* antibody (RcPFA) followed by Alexa Fluor 488 (green) was utilized to reveal *R. rickettsii* st. Sheila Smith, and Alexa Fluor 546 Phalloidin (red) was used to indicate the host actin cytoskeleton in C and D. Scale bar= 10 µm. A logistic regression test was used to measure significance (p<0.05) in growth over time in both mammalian cell lines in A and B.

Supplemental Figure 2: *R. africae* proliferates within endothelial cells (EA.hy926) and human derived macrophage cells (THP-1). (A,B) EA.hy926 cells and PMA-differentiated THP-1 cells were infected with *R. africae* (MOI=2.5), and genomic DNA was extracted at each time point post-infection. Each time point represents the ratio of *R. africae* sca1 to host cell actin genes amplified from genomic DNA and determined by quantitative PCR (qPCR). A logistic regression test was used to measure significance (p<0.05) in growth over time in both mammalian cell lines in A and B. Immunofluorescence microscopy growth analyses in EA.hy926 cells at days 1 and 5 post-infection (C) and in PMA-differentiated THP-1 cells at days 4 and 6 post-infection
demonstrate significant intracellular proliferation. DAPI (blue) was used to visualize host cell nuclei, anti-\textit{Rickettsia} antibody (RcPFA) followed by Alexa Fluor 488 (green) was utilized to reveal \textit{R. africae}, and Alexa Fluor 546 Phalloidin (red) was used to indicate the host actin cytoskeleton in \textbf{C} and \textbf{D}. Scale bar= 10 \textmu m.

\textbf{Supplemental Figure 3:} \textit{R. rickettsii} strain \textit{Iowa} exhibits significant intracellular replication within endothelial cells (EA.hy926) but not in human derived macrophage cells (THP-1). (\textbf{A,B}) EA.hy926 cells and PMA-differentiated THP-1 cells were infected with \textit{R. rickettsii} st. Iowa (MOI=2.5), genomic DNA was extracted at each indicated time point post-infection and then growth was determined by qPCR. A logistic regression test was used to measure significance (p<0.05) in growth over time and indicated growth in EA.hy926 cells (A), but not in THP-1 cells (B). Immunofluorescence microscopy growth analyses in EA.hy926 cells at days 1 and 4 post-infection (\textbf{C}) and in PMA-differentiated THP-1 cells at days 1 and 4 post-infection confirms results from the qPCR analyses. DAPI (blue) was used to visualize host cell nuclei, anti-\textit{Rickettsia} antibody (RcPFA) followed by Alexa Fluor 488 (green) was utilized to reveal \textit{R. rickettsii}, and Alexa Fluor 546 Phalloidin (red) was used to indicate the host actin cytoskeleton in \textbf{C} and \textbf{D}.

\textbf{Supplemental Figure 4.} TlyC and Pld protein sequence conservation in pathogenic and non-pathogenic \textit{Rickettsia} species. Percent identities of TlyC (\textbf{A}) and Pld (\textbf{B}) protein homologues were generated from protein sequences (RefSeq) for each indicated \textit{Rickettsia} species when compared to \textit{R. rickettsii} “Sheila Smith” proteins using the NCBI Blastp algorithm.
A

<table>
<thead>
<tr>
<th>Species</th>
<th>RefSeq number</th>
<th>Amino acids</th>
<th>% identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. rickettsii “Sheila Smith”</td>
<td>WP_012151259.1</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>R. rickettsii “Iowa”</td>
<td>WP_0121511259.1</td>
<td>299</td>
<td>100</td>
</tr>
<tr>
<td>R. conorii</td>
<td>WP_010977712.1</td>
<td>299</td>
<td>99.7</td>
</tr>
<tr>
<td>R. africae</td>
<td>WP_012719992.1</td>
<td>299</td>
<td>99.7</td>
</tr>
<tr>
<td>R. parkeri</td>
<td>WP_014411035.1</td>
<td>299</td>
<td>99.0</td>
</tr>
<tr>
<td>R. akari</td>
<td>WP_012150023.1</td>
<td>301</td>
<td>96.6</td>
</tr>
<tr>
<td>R. bellii</td>
<td>WP_011477962.1</td>
<td>301</td>
<td>82.4</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Species</th>
<th>RefSeq number</th>
<th>Amino acids</th>
<th>% identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. rickettsii “Sheila Smith”</td>
<td>WP_012151375.1</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>R. rickettsii “Iowa”</td>
<td>WP_012151375.1</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>R. conorii</td>
<td>WP_010977832.1</td>
<td>200</td>
<td>98</td>
</tr>
<tr>
<td>R. parkeri</td>
<td>WP_014411111.1</td>
<td>200</td>
<td>97.5</td>
</tr>
<tr>
<td>R. africae</td>
<td>WP_012720066.1</td>
<td>200</td>
<td>96.5</td>
</tr>
<tr>
<td>R. akari</td>
<td>WP_012150121.1</td>
<td>200</td>
<td>92</td>
</tr>
<tr>
<td>R. bellii</td>
<td>WP_011476870.1</td>
<td>201</td>
<td>79.1</td>
</tr>
</tbody>
</table>