Supplementary information for

Improving Photovoltaic Properties of P3HT:IC60BA Through the Incorporation of Small Molecule

Binrui Xu ¹†, Gopalan Sai-Anand ²,³†, Anantha-Iyengar Gopalan ⁴, Qiquan Qiao ⁵ and Shin-Won Kang ¹,*

¹ School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea; kezherui123@gmail.com
² Global Innovative Center for Advanced Nanomaterials, Faculty of Engineering and Built Environment, University of Newcastle, Callaghan, NSW 2298, Australia; SaiAnand.Gopalan@newcastle.edu.au
³ Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, SA 5095, Australia
⁴ Research Institute of Advanced Energy Technology, Kyungpook National University, Daegu 41566, Korea; algopal99@gmail.com
⁵ Center for Advanced Photovoltaics, Department of Electrical Engineering and Computer Science, South Dakota State University, Brookings, SD 57007, USA; qiquan.qiao@sdstate.edu
* Correspondence: swkang@knu.ac.kr; Tel.: +82-053-950-6829
† These authors contributed equally to this work.

Figure S1. FE-SEM cross-section image of the completed device with the structure of glass/ITO/PEDOT:PSS/P3HT:IC60BA:DHP/ZnO NCs/Al.

Figure S1 exhibited the Field Emission Scanning Electron Microscopy (FE-SEM) cross-section image of fabricated device with the structure of glass/ITO/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/poly(3-hexylthiophene): indene-C60bisadduct: 2,3-dihydroxypyridine (P3HT:IC60BA:DHP)/zinc oxide nanocrystals (ZnO NCs)/Al. It can be seen from Figure S1,
the thickness of P3HT:IC60BA:DHP is near 250 nm which is belong to the desired thickness range (200 ~ 250 nm) to obtain reasonable performance of the fabricated BHJ-PSCs based on P3HT:IC60BA blend system [1] [2] [3].

References

