Supporting Information

Modification of pea starch and dextrin polymers with isocyanate functional groups

Reza Hosseinpourpia 1,*, Arantzazu Santamaria Echart 2, Stergios Adamopoulos 1, Nagore Gabilondo 2 and Arantxa Eceiza 2,*

1 Department of Forestry and Wood Technology, Linnaeus University, Lückligs Plats 1, 35195 Växjö, Sweden; reza.hosseinpourpia@lnu.se
2 Materials + Technologies’ Group, Chemical & Environmental Engineering Dep., Polytechnic College of San Sebastian, University of the Basque Country UPV/EHU, Pza. Europa 1, 20018 Donostia-San Sebastián, Spain; arantzazu.santamaria@ehu.eus
3 Department of Forestry and Wood Technology, Linnaeus University, Lückligs Plats 1, 35195 Växjö, Sweden; stergios.adamopoulos@lnu.se
4 Materials + Technologies’ Group, Chemical & Environmental Engineering Dep., Polytechnic College of San Sebastian, University of the Basque Country UPV/EHU, Pza. Europa 1, 20018 Donostia-San Sebastián, Spain; nagore.gabilondo@ehu.eus
5 Materials + Technologies’ Group, Chemical & Environmental Engineering Dep., Polytechnic College of San Sebastian, University of the Basque Country UPV/EHU, Pza. Europa 1, 20018 Donostia-San Sebastián, Spain; arantxa.eceiza@ehu.eus

*Corresponding authors:
Phone: +34-943-017185 E-mail: arantxa.eceiza@ehu.es
Phone: +46-470-708074 E-mail: reza.hosseinpourpia@lnu.se
Degree of substitution (DS)

The DS was calculated according to the equation S.1, which adjusted from Wang et al.1 and Heinze et al.2 due to the two functional groups in IPDI:

\[
DS = \frac{162.15 \times N\%}{14 \times 100 - 119.12 \times N\%} \times \frac{2}{14}
\]

S.1

where N\% is nitrogen content (%) determined by elemental analysis method, 162.15 is the molecular weight of anhydrous glucose unit, 119.12 is the molecular weight of IPDI, and 14 represents the nitrogen atomic mass.

Figure S1: FTIR spectra of neat toluene and toluene from the third washing.
Figure S2: SEM micrographs of MS 3.1 (a) and MD 3.1 (b)

References
