Supporting Information

Design and Characterization of New D-A Type Electrochromic Conjugated Copolymers Based on Indolo[3,2-b]Carbazole, Isoindigo and Thiophene Units

Yuling Zhang 1,2, Shuang Chen 1,* Yan Zhang 2, Hongmei Du 2 and Jinsheng Zhao 2,3,*

1 State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), QingDao 266580, China; 18866264190@163.com (Y.L.Z.)
2 Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, LiaoCheng University, LiaoCheng 252059, China; zy@lcu.edu.cn (Y.Z.); duhongmei@lcu.edu.cn (H.D.)
3 College of Chemistry and Chemical Engineering, LiaoCheng University, LiaoCheng, 252059, China
* Correspondence: chsh1030@163.com (S.C.); j.s.zhao@163.com (J.Z.)
Figure S1. 1H NMR spectra of the copolymers PITID-1 (a) and PITID-2 (b).
Figure S2. High-resolution XPS spectra of the copolymer PITID-1; (a) survey scan; (b) C 1s; (c) N 1s; (d) S 2p; (e) O 1s. The raw and fitted curves were recorded in solid and dotted lines, respectively.

Figure S3. (a) Current–time switching curve of PITID-1 film between 0 and 1.35 V in a time interval of 4 s. (b) The second cycle of current–time curve. (c) Transmittance–time curve of PITID-1 last for 300 s at 670 nm. (d) The bleaching time (t_b) and the coloration time (t_c) of PITID-1 at 670 nm.
Figure S4. (a) Current–time switching curve of PITID-1 film between 0 and 1.35 V in a time interval of 4 s. (b) The second cycle of current–time curve. (c) Transmittance–time curve of PITID-1 last for 300 s at 1500 nm. (d) The bleaching time (t_b) and the coloration time (t_c) of PITID-1 at 1500 nm.