Abstract

Electrical and Gas Sensing Properties of p-Type Co$_3$O$_4$ Loaded n-Type TiO$_2$ Nanotubes Heterostructures †

Alp Kılıç, Onur Alev and Zafer Ziya Öztürk *

Department of Physics, Gebze Technical University, 41400 Kocaeli, Turkey

* Correspondence: zozturk@gtu.edu.tr

† Presented at the 5th International Symposium on Sensor Science (I3S 2017), Barcelona, Spain, 27–29 September 2017.

Published: 4 December 2017

p-type Co$_3$O$_4$ particles loaded onto n-type TiO$_2$ nanotubes (NTs) with controlled Co$_3$O$_4$ density were synthesized using a two-step electrochemical deposition procedure. Morphology and structure of the fabricated samples were characterized by Scanning Electron Microscopy equipped with Energy Dispersive X-ray Spectroscopy and the X-ray Diffraction method. The effect of loading density on the electrical and gas sensing properties of the loaded n-type TiO$_2$ NTs was investigated. C-V and I-V characteristics were obtained and the heterojunction barrier height was determined. Sensor properties of hydrogen (H$_2$), NO$_2$ and VOCs with varying operation temperatures were measured. The results show that Co$_3$O$_4$ particle density on the surface of TiO$_2$ NTs directly affects the sensor performance such as selectivity and sensor response, even at low operation temperatures.

Acknowledgement: This study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant No: 116M201.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).