Abstract

Energy Scale of the Charge Density Wave in Cuprate Superconductors †

Alain Sacuto 1,*, Bastien Loret 1, Nicolas Auvray 1, Marcello Civelli 2, Paul Indranil 1, Yann Gallais 1, Maximilien Cazayous 1, Marc-Henri Julien 3, Anne Forget 4 and Dorothée Colson 4

1 Laboratoire Matériaux et Phénomènes Quantiques (UMR 7162 CNRS), Université de Paris, Bat. Condorcet, 75205 Paris CEDEX 13, France
2 Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay CEDEX, France
3 Laboratoire National des Champs Magnétiques Intenses, CNRS-Université Grenoble Alpes-Université Paul Sabatier-Institut National des Sciences Appliquées, European Magnetic Field Laboratory, 38042 Grenoble, France
4 Service de Physique de l’Etat Condensé, DSM/IRAMIS/SPEC (UMR 3680 CNRS), CEA Saclay 91191 Gif sur Yvette CEDEX, France
* Correspondence: alain.sacuto@univ-paris-diderot.fr
† Presented at the 37th International Symposium on Dynamical Properties of Solids (DyProSo 2019), Ferrara, Italy, 8–12 September 2019.
Published: 5 September 2019

The cuprate high temperature superconductors develop spontaneous charge density wave (CDW) order below a temperature T_{CDW} and over a wide range of hole doping (p). An outstanding challenge in the field is to understand whether this modulated phase is related to the more exhaustively studied pseudogap and superconducting phases [1]. To address this issue, it is important to extract the energy scale Δ_{CDW} associated with the CDW order, and to compare it with the pseudogap (PG) Δ_{PG} and with the superconducting gap Δ_{SC}. However, while T_{CDW} is well-characterized from earlier work, little is known about Δ_{CDW} until now. Here, we report the extraction of Δ_{CDW} for several cuprates using electronic Raman spectroscopy [2]. Crucially, we find that upon approaching the parent Mott state by lowering p, Δ_{CDW} increases in a manner similar to the doping dependence of Δ_{PG} and Δ_{SC} [2]. This indicates that the above three phases have a common microscopic origin [2]. In addition, we find that Δ_{CDW} and Δ_{SC} have the same magnitude over a substantial doping range, which suggests that CDW and superconducting phases are intimately related [2], as reported for example by fractionalized pair density wave [3].

References