Abstract

Ab-Initio Study of the Electron-Phonon Interaction of a Single Fe Adatom on the MgO/Ag(100) Surface †

H. Garai-Marin 1,2, J. Ibañez-Azpiroz 3, P. Garcia-Goiricelaya 1,2, I. G. Gurtubay 1,2 and A. Eiguren 1,2,*

1 Materia Kondentsatuaren Fisika Saila, Euskal Herriko Unibertsitatea UPV/EHU, 644 Postakutxatila, 48080 Bilbao, Basque Country, Spain
2 Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Basque Country, Spain
3 Centro de Física de Materiales CSIC-UPV/EHU, Donostia, Spain
* Correspondence: asier.eiguren@ehu.eus
† Presented at the 37th International Symposium on Dynamical Properties of Solids (DyProSo 2019), Ferrara, Italy, 8–12 September 2019.
Published: 5 September 2019

Controlling the magnetic moment of individual atoms is a technologically important challenge, with applications as high density storage devices. Breakthrough experimental studies have recently shown that it is possible to create stable magnetic quantum states in individual adatoms [1–3]. While the role of electronic interactions on the magnetic stability has been thoroughly investigated theoretically [4–6], the coupling with phonons has attracted much less attention. The aim of this work is to study, via ab-initio calculations, the effect of the electron-phonon interaction (EPI) in Fe adatoms deposited on MgO/Ag(100), a benchmark system where the EPI is believed to determine to large extent its magnetic stability [3]. Here we present the calculated electronic structure and vibrational dynamics of this system, including the local vibrations of the adatom. Furthermore, we analyze the effect of the EPI on the magnetic stability via the renormalization of the electronic properties of the adatom.

References