Abstract

Influence of the Polymeric Matrix Type on the Optical Properties of YAG:Ce,Gd Phosphor †

Vasilica Țucureanu 1,2,*, Alina Matei 1, Andrei Avram 1, Bianca Țîncu 1, Cătălin Țucureanu 3 and Daniel Munteanu 2

1 National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 126 A, Erou Iancu Nicolae Street, 077190 Bucharest, Romania; alina.matei@imt.ro (A.M.); andrei.avram@imt.ro (A.A.); bianca.tincu@imt.ro (B.T.)
2 Department of Materials Science, Transilvania University of Brasov, 29 Eroilor Blvd, 500036 Brasov, Romania; danielmunteanu@unitbv.ro
3 “Cantacuzino” National Research Institute, Bucharest, Romania, 103 Splaiul Independenței, 050096 Bucharest, Romania; catalintucureanu@gmail.com
* Correspondence: vasilica.tucureanu@imt.ro
† Presented at the 15th International Symposium “Priorities of Chemistry for a Sustainable Development” PROIOCHEM, Bucharest, Romania, 30th October–1st November 2019.

Published: 9 October 2019

Keywords: YAG: Ce; Gd; PDMS; PMMA; epoxy resin; nanocomposite; white LED

The development of nanocomposites by incorporating YAG:Ce,Gd particles in different types of polymeric matrices aims to ensure the dispersion of phosphors in suspension medium to allow deposition on LED chips while maintaining luminescent properties or even improving them. Type of composite, uniformity, thickness, density of the deposited phosphor layer, concentration, distance to the blue chips, geometry, and so forth are important factors in order to obtain high-quality lighting sources. However, the biggest problem remains the agglomeration tendency of phosphor particles, regardless of the chosen matrix. Due to this inconvenience, problems can appear related to the control of the thickness of the deposited layer and the dispersion of phosphor in the matrix. Usually, a solution of polymer or oligomers containing nanoparticles is deposited on the chips, followed by a final heat treatment after which a polymerized and cross-linked composite film is obtained. The polymers used as matrix in the development of the devices must be transparent and not absorb in the visible field. For this purpose, we have studied the possibility of using epoxy resin, PDMS, and PMMA and their influence on the emissive properties of phosphor. The ex situ method used is based on the formation of a homogeneous mixture between YAG:Ce,Gd phosphor and the selected polymeric matrix. The structural characterization highlighted the incorporation of phosphor in the polymeric matrix while maintaining the structural YAG:Ce,Gd parameters. In the excitation PL spectra, no position variation of the bands was found, confirming that the polymers do not influence the excitation capacity of the composite. The emission spectra of the composites based on YAG:Ce,Gd polymers indicate a behavior similar to that of phosphor, confirming the existence of the same emission centers and maintaining the optical properties characteristic of phosphor in the polymeric matrix. The absence of absorption bands in the spectral domain above 600 nm confirms the maintenance of the spherical morphology of phosphor particles.

A decrease in the emission intensity was observed as a result of the lower refractive index of the polymer than of the phosphor and by the use of the substrate for the study of the optical properties. The decrease in emission intensity was found to be directly proportional to the increase of the thickness of the composite layer. In order to obtain composites with improved properties, we have found at least 5% phosphor concentration in the polymer matrix is sufficient. The obtained results
highlighted an increase in quantum yield of up to 79%. This observation is supported by the decrease in the agglomeration tendency.

Acknowledgments: This work was supported by National Basic Funding Programme MICRO-NANO-SIS PLUS—Project No. PN19 16. This work was also supported by UEFISCDI in the Partnership Framework: PN-III-P1-1.2-PCCDI-2017-0214.

References

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).